Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (12): 2168-2181.doi: 10.3724/SP.J.1042.2025.2168
• Regular Articles • Previous Articles Next Articles
SONG Qingyi1,2, JIANG Xiaoming1,2(
)
Received:2025-03-19
Online:2025-12-15
Published:2025-10-27
CLC Number:
SONG Qingyi, JIANG Xiaoming. Temporal prediction during turn-taking[J]. Advances in Psychological Science, 2025, 33(12): 2168-2181.
| [1] |
方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. (2021). 口语句子的韵律边界: 窥探言语理解的秘窗. 心理科学进展, 29(3), 425-437.
doi: 10.3724/SP.J.1042.2021.00425 |
| [2] | 方梅, 李先银, 谢心阳. (2018). 互动语言学与互动视角的汉语研究. 语言教学与研究, (3), 1-16. |
| [3] | 廉宇煊, 张环, 刘拓. (2021). 内容预测对话轮转换加工的影响:基于近红外成像的研究. 见中国心理学会(编), 第二十三届全国心理学学术会议摘要集(上) (pp. 865-866). 中国心理学会. |
| [4] |
孙丽君, 杨玉芳. (2024). 预期视角下音乐节拍结构的认知与神经机制. 心理科学进展, 32(10), 1567-1577.
doi: 10.3724/SP.J.1042.2024.01567 |
| [5] |
晏芹, 张清芳. (2022). 节奏在言语加工中的时间进程:来自元分析的证据. 心理与行为研究, 20(5), 607-614.
doi: 10.12139/j.1672-0628.2022.05.005 |
| [6] | 于文勃, 梁丹丹. (2025). 话轮转换的认知机制. 当代语言学, 27(1), 146-158. |
| [7] |
Altmann G. T., & Kamide Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73(3), 247-264.
doi: 10.1016/s0010-0277(99)00059-1 pmid: 10585516 |
| [8] | Assaneo M. F., & Orpella J. (2024). Rhythms in speech. In H. Merchant, & V. de Lafuente (Eds.), Neurobiology of interval timing (Vol. 1455, pp. 257-274). Springer. https://doi.org/10.1007/978-3-031-60183-5_14 |
| [9] |
Auer P. (2021). Turn-allocation and gaze: A multimodal revision of the “current-speaker-selects-next” rule of the turn-taking system of conversation analysis. Discourse Studies, 23(2), 117-140.
doi: 10.1177/1461445620966922 URL |
| [10] | Barthel M., & Sauppe S. (2019). Speech planning at turn transitions in dialog is associated with increased processing load. Cognitive Science, 43(7), e12768. |
| [11] |
Brennan J. R., Dyer C., Kuncoro A., & Hale J. T. (2020). Localizing syntactic predictions using recurrent neural network grammars. Neuropsychologia, 146, 107479.
doi: 10.1016/j.neuropsychologia.2020.107479 URL |
| [12] | Breska A., & Ivry R. B. (2018). Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson’s disease. Proceedings of the National Academy of Sciences, 115(48), 12283-12288. |
| [13] |
Bögels S., & Torreira F. (2015). Listeners use intonational phrase boundaries to project turn ends in spoken interaction. Journal of Phonetics, 52, 46-57. https://doi.org/10.1016/j.wocn.2015.04.004
doi: 10.1016/j.wocn.2015.04.004 URL |
| [14] |
Bögels S., & Torreira F. (2021). Turn-end estimation in conversational turn-taking: The roles of context and prosody. Discourse processes, 58(10), 903-924.
doi: 10.1080/0163853X.2021.1986664 URL |
| [15] |
Buhusi C. V., & Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755-765.
doi: 10.1038/nrn1764 pmid: 16163383 |
| [16] |
Buzsáki G., & Draguhn A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926-1929.
doi: 10.1126/science.1099745 pmid: 15218136 |
| [17] |
Cannon J., O'Brien A. M., Bungert L., & Sinha P. (2021). Prediction in autism spectrum disorder: A systematic review of empirical evidence. Autism Research, 14(4), 604-630.
doi: 10.1002/aur.2482 pmid: 33570249 |
| [18] | Casillas M., & Frank M. C. (2013). The development of predictive processes in children's discourse understanding. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (pp. 299-304). Cognitive Science Society. |
| [19] |
Castellucci G. A., Kovach C. K., Howard III M. A., Greenlee J. D., & Long M. A. (2022). A speech planning network for interactive language use. Nature, 602(7895), 117-122.
doi: 10.1038/s41586-021-04270-z |
| [20] |
Corps R. E., Crossley A., Gambi C., & Pickering M. J. (2018). Early preparation during turn-taking: Listeners use content predictions to determine what to say but not when to say it. Cognition, 175, 77-95.
doi: S0010-0277(18)30023-4 pmid: 29477750 |
| [21] |
Coull J. T., Cheng R. K., & Meck W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3-25.
doi: 10.1038/npp.2010.113 pmid: 20668434 |
| [22] | Criscuolo A., Schwartze M., Nozaradan S., & Kotz S. A. (2025). Basal ganglia and cerebellar lesions causally impact the neural encoding of temporal regularities. Imaging Neuroscience, 3, imag_a_00492. |
| [23] |
Daume J., Wang P., Maye A., Zhang D., & Engel A. K. (2021). Non-rhythmic temporal prediction involves phase resets of low-frequency delta oscillations. Neuroimage, 224, 117376.
doi: 10.1016/j.neuroimage.2020.117376 URL |
| [24] |
De Ruiter J. P., Mitterer H., & Enfield N. J. (2006). Projecting the end of a speaker's turn: A cognitive cornerstone of conversation. Language, 82(3), 515-535.
doi: 10.1353/lan.2006.0130 URL |
| [25] |
Degutyte Z., & Astell A. (2021). The role of eye gaze in regulating turn taking in conversations: A systematized review of methods and findings. Frontiers in Psychology, 12, 616471.
doi: 10.3389/fpsyg.2021.616471 URL |
| [26] |
Ding N., Melloni L., Zhang H., Tian X., & Poeppel D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
doi: 10.1038/nn.4186 pmid: 26642090 |
| [27] |
Duncan S. (1972). Some signals and rules for taking speaking turns in conversations. Journal of Personality and Social Psychology, 23(2), 283-292.
doi: 10.1037/h0033031 URL |
| [28] |
Fenner B., Cooper N., Romei V., & Hughes G. (2020). Individual differences in sensory integration predict differences in time perception and individual levels of schizotypy. Consciousness and Cognition, 84, 102979.
doi: 10.1016/j.concog.2020.102979 URL |
| [29] |
Ferreira F., & Qiu Z. (2021). Predicting syntactic structure. Brain Research, 1770, 147632.
doi: 10.1016/j.brainres.2021.147632 URL |
| [30] |
Giraud A. L., & Poeppel D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517.
doi: 10.1038/nn.3063 |
| [31] |
Golumbic E. M. Z., Ding N., Bickel S., Lakatos P., Schevon C. A., McKhann G. M., ... Schroeder C. E. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron, 77(5), 980-991.
doi: 10.1016/j.neuron.2012.12.037 pmid: 23473326 |
| [32] | Gravano A., & Hirschberg J. (2011). Turn-taking cues in task-oriented dialogue. Computer Speech & Language, 25(3), 601-634. |
| [33] |
Grosjean F. (1996). Using prosody to predict the end of sentences in English and French: Normal and brain-damaged subjects. Language and Cognitive Processes, 11(1-2), 107-134
doi: 10.1080/016909696387231 URL |
| [34] | Gross J., Hoogenboom N., Thut G., Schyns P., Panzeri S., Belin P., & Garrod S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biology, 11(12), e1001752. |
| [35] |
Indefrey P., & Levelt W. J. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.
doi: 10.1016/j.cognition.2002.06.001 pmid: 15037128 |
| [36] |
Jones C. R., Malone T. J., Dirnberger G., Edwards M., & Jahanshahi M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain and Cognition, 68(1), 30-41.
doi: 10.1016/j.bandc.2008.02.121 URL |
| [37] |
Kamide Y., Altmann G. T., & Haywood S. L. (2003). The time-course of prediction in incremental sentence processing: Evidence from anticipatory eye movements. Journal of Memory and Language, 49(1), 133-156.
doi: 10.1016/S0749-596X(03)00023-8 URL |
| [38] | Karanikolaou M., Limanowski J., & Northoff G. (2022). Does temporal irregularity drive prediction failure in schizophrenia? Temporal modelling of ERPs. Schizophrenia, 8(1), 23. |
| [39] |
Kazanina N., & Tavano A. (2023). What neural oscillations can and cannot do for syntactic structure building. Nature Reviews Neuroscience, 24(2), 113-128.
doi: 10.1038/s41583-022-00659-5 |
| [40] | Keitel A., & Daum M. M. (2015). The use of intonation for turn anticipation in observed conversations without visual signals as source of information. Frontiers in Psychology, 6(108), 265-273. |
| [41] |
Keitel A., Prinz W., Friederici A. D., Von Hofsten C., & Daum M. M. (2013). Perception of conversations: The importance of semantics and intonation in children’s development. Journal of Experimental Child Psychology, 116(2), 264-277.
doi: 10.1016/j.jecp.2013.06.005 pmid: 23876388 |
| [42] | Kendrick K. H., Holler J., & Levinson S. C. (2023). Turn-taking in human face-to-face interaction is multimodal: Gaze direction and manual gestures aid the coordination of turn transitions. Philosophical Transactions of the Royal Society B, 378(1875), 20210473. |
| [43] |
Kendrick K. H., & Torreira F. (2015). The timing and construction of preference: A quantitative study. Discourse Processes, 52(4), 255-289.
doi: 10.1080/0163853X.2014.955997 URL |
| [44] |
Koekkoek S. K. E., Hulscher H. C., Dortland B. R., Hensbroek R. A., Elgersma Y., Ruigrok T. J. H., & De Zeeuw C. I. (2003). Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science, 301(5640), 1736-1739.
pmid: 14500987 |
| [45] |
Kotz S. A., & Schwartze M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392-399.
doi: 10.1016/j.tics.2010.06.005 pmid: 20655802 |
| [46] | Kunimatsu J., Suzuki T. W., Ohmae S., & Tanaka M. (2018). Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. eLife, 7, e35676. |
| [47] |
Lau E., Stroud C., Plesch S., & Phillips C. (2006). The role of structural prediction in rapid syntactic analysis. Brain and Language, 98(1), 74-88.
pmid: 16620944 |
| [48] |
Levinson S. C., & Torreira F. (2015). Timing in turn-taking and its implications for processing models of language. Frontiers in Psychology, 6, 731.
doi: 10.3389/fpsyg.2015.00731 pmid: 26124727 |
| [49] |
Lin J. F. L., Imada T., Meltzoff A. N., Hiraishi H., Ikeda T., Takahashi T., ... Kuhl P. K. (2023). Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cerebral Cortex, 33(7), 4116-4134.
doi: 10.1093/cercor/bhac330 URL |
| [50] |
Local J., & Walker G. (2012). How phonetic features project more talk. Journal of the International Phonetic Association, 42(3), 255-280.
doi: 10.1017/S0025100312000187 URL |
| [51] | Lourenço V., Pereira A. F., Sampaio A., & Coutinho J. (2022). Turn-taking in object-oriented and face-to-face interactions: A longitudinal study at 7 and 12 months. Psychology & Neuroscience, 15(4), 304-319. |
| [52] |
Lourenço V., Serra J., Coutinho J., & Pereira A. F. (2023). Turn-taking in free-play interactions: A cross-sectional study from 3 to 5 years. Cognition, 239, 105568.
doi: 10.1016/j.cognition.2023.105568 URL |
| [53] |
Lucarini V., Grice M., Wehrle S., Cangemi F., Giustozzi F., Amorosi S., ... Tonna M. (2024). Language in interaction: Turn-taking patterns in conversations involving individuals with schizophrenia. Psychiatry Research, 339, 116102.
doi: 10.1016/j.psychres.2024.116102 URL |
| [54] |
Luo H., & Poeppel D. (2012). Cortical oscillations in auditory perception and speech: Evidence for two temporal windows in human auditory cortex. Frontiers in Psychology, 3, 170.
doi: 10.3389/fpsyg.2012.00170 pmid: 22666214 |
| [55] |
Magyari L., Bastiaansen M. C., De Ruiter J. P., & Levinson S. C. (2014). Early anticipation lies behind the speed of response in conversation. Journal of Cognitive Neuroscience, 26(11), 2530-2539.
doi: 10.1162/jocn_a_00673 pmid: 24893743 |
| [56] |
Magyari L., & De Ruiter J. P. (2012). Prediction of turn-ends based on anticipation of upcoming words. Frontiers in Psychology, 3, 376.
doi: 10.3389/fpsyg.2012.00376 pmid: 23112776 |
| [57] |
Matell M. S., & Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139-170.
pmid: 15464348 |
| [58] |
Meyer L. (2018). The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. European Journal of Neuroscience, 48(7), 2609-2621.
doi: 10.1111/ejn.13748 pmid: 29055058 |
| [59] | Miyata K., Yamamoto T., Fukunaga M., Sugawara S., & Sadato N. (2022). Neural correlates with individual differences in temporal prediction during auditory-motor synchronization. Cerebral Cortex Communications, 3(2), tgac014. |
| [60] | Morillon B., & Schroeder C. E. (2015). Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Annals of the New York Academy of Sciences, 1337(1), 26-31. |
| [61] |
Nguyen V., Versyp O., Cox C., & Fusaroli R. (2022). A systematic review and Bayesian meta‐analysis of the development of turn taking in adult-child vocal interactions. Child Development, 93(4), 1181-1200.
doi: 10.1111/cdev.v93.4 URL |
| [62] |
Nozaradan S., Schwartze M., Obermeier C., & Kotz S. A. (2017). Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex, 95, 156-168.
doi: S0010-9452(17)30272-1 pmid: 28910668 |
| [63] |
Pecenka N., & Keller P. E. (2011). The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Experimental Brain Research, 211, 505-515.
doi: 10.1007/s00221-011-2616-0 pmid: 21424257 |
| [64] |
Peelle J. E., & Sommers M. S. (2015). Prediction and constraint in audiovisual speech perception. Cortex, 68, 169-181.
doi: 10.1016/j.cortex.2015.03.006 pmid: 25890390 |
| [65] |
Poeppel D., & Assaneo M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322-334.
doi: 10.1038/s41583-020-0304-4 pmid: 32376899 |
| [66] |
Riest C., Jorschick A. B., & de Ruiter J. P. (2015). Anticipation in turn-taking: Mechanisms and information sources. Frontiers in Psychology, 6, 89.
doi: 10.3389/fpsyg.2015.00089 pmid: 25699004 |
| [67] |
Sacks H., Schegloff E. A., & Jefferson G. (1974). A simplest systematics for the organization of turn-taking for conversation. Language, 50(4), 696-735.
doi: 10.1353/lan.1974.0010 URL |
| [68] |
Salinas E., & Sejnowski T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2(8), 539-550.
doi: 10.1038/35086012 pmid: 11483997 |
| [69] |
Schirmer A. (2004). Timing speech: A review of lesion and neuroimaging findings. Cognitive Brain Research, 21(2), 269-287.
pmid: 15464357 |
| [70] |
Schwartze M., & Kotz S. A. (2013). A dual-pathway neural architecture for specific temporal prediction. Neuroscience & Biobehavioral Reviews, 37(10), 2587-2596.
doi: 10.1016/j.neubiorev.2013.08.005 URL |
| [71] |
Schwartze M., & Kotz S. A. (2016). Contributions of cerebellar event-based temporal processing and preparatory function to speech perception. Brain and Language, 161, 28-32.
doi: S0093-934X(15)00182-0 pmid: 26362972 |
| [72] | Skantze G. (2021). Turn-taking in conversational systems and human-robot interaction: A review. Computer Speech & Language, 67, 101178. |
| [73] |
Spencer R. M., & Ivry R. B. (2005). Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain and Cognition, 58(1), 84-93.
doi: 10.1016/j.bandc.2004.09.010 URL |
| [74] |
Spencer R. M., Ivry R. B., & Zelaznik H. N. (2005). Role of the cerebellum in movements: Control of timing or movement transitions? Experimental Brain Research, 161(3), 383-396.
doi: 10.1007/s00221-004-2088-6 pmid: 15558254 |
| [75] |
Staub A., & Clifton Jr C. (2006). Syntactic prediction in language comprehension: Evidence from either... or. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 425-436.
doi: 10.1037/0278-7393.32.2.425 URL |
| [76] | Stehwien S., & Meyer L. (2022). Short-term periodicity of prosodic phrasing: Corpus-based evidence. Speech Prosody, 2022, 693-698. |
| [77] | Stivers T., Enfield N. J., Brown P., Englert C., Hayashi M., Heinemann T., ... Levinson S. C. (2009). Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Sciences, 106(26), 10587-10592. |
| [78] | Stockert A., Schwartze M., Poeppel D., Anwander A., & Kotz S. A. (2021). Temporo-cerebellar connectivity underlies timing constraints in audition. eLife, 10, e67303. |
| [79] | Tanaka M., Kameda M., & Okada K. I. (2024). Temporal information processing in the cerebellum and basal Ganglia. Advances in Experimental Medicines and Biology, 1455, 95-116. |
| [80] | Templeton E. M., Chang L. J., Reynolds E. A., Cone LeBeaumont M. D., & Wheatley T. (2022). Fast response times signal social connection in conversation. Proceedings of the National Academy of Sciences, 119(4), e2116915119. |
| [81] |
Tian Y., Liu S., & Wang J. (2024). A corpus study on the difference of turn-taking in online audio, online video, and face-to-face conversation. Language and Speech, 67(3), 593-616.
doi: 10.1177/00238309231176768 URL |
| [82] |
Toren I., Aberg K. C., & Paz R. (2020). Prediction errors bidirectionally bias time perception. Nature Neuroscience, 23(10), 1198-1202.
doi: 10.1038/s41593-020-0698-3 pmid: 32839618 |
| [83] |
Torreira F., & Bögels S. (2022). Vocal reaction times to speech offsets: Implications for processing models of conversational turn-taking. Journal of Phonetics, 94, 101175.
doi: 10.1016/j.wocn.2022.101175 URL |
| [84] |
Torreira F., Bögels S., & Levinson S. C. (2015). Breathing for answering: The time course of response planning in conversation. Frontiers in Psychology, 6, 284.
doi: 10.3389/fpsyg.2015.00284 pmid: 25814976 |
| [85] |
Tseng C. Y., Pin S. H., Lee Y., Wang H. M., & Chen Y. C. (2005). Fluent speech prosody: Framework and modeling. Speech Communication, 46 (3-4), 284-309.
doi: 10.1016/j.specom.2005.03.015 URL |
| [86] | Turk A., & Shattuck-Hufnagel S. (2014). Timing in talking: What is it used for, and how is it controlled? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130395. |
| [87] |
Van Berkum J. J., Brown C. M., Zwitserlood P., Kooijman V., & Hagoort P. (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467.
doi: 10.1037/0278-7393.31.3.443 URL |
| [88] |
Verga L., Kotz S. A., & Ravignani A. (2023). The evolution of social timing. Physics of Life Reviews, 46, 131-151.
doi: 10.1016/j.plrev.2023.06.006 pmid: 37419011 |
| [89] |
Wilson M., & Wilson T. P. (2005). An oscillator model of the timing of turn-taking. Psychonomic Bulletin & Review, 12, 957-968.
doi: 10.3758/BF03206432 URL |
| [90] |
Wittmann M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217-223.
doi: 10.1038/nrn3452 pmid: 23403747 |
| [91] | Zamm A., Debener S., & Sebanz N. (2023). The spontaneous emergence of rhythmic coordination in turn taking. Scientific Reports, 13(1), 3259. |
| [92] |
Zheng Q., Cheng Y. Y., Sonuga-Barke E., & Shum K. K. M. (2022). Do executive dysfunction, delay aversion, and time perception deficit predict ADHD symptoms and early academic performance in preschoolers. Research on Child and Adolescent Psychopathology, 50(11), 1381-1397.
doi: 10.1007/s10802-022-00937-x pmid: 35689730 |
| [1] | LEI Ming, LI Pengbo. Neural mechanism underlying the attentional modulation of auditory sensory gating [J]. Advances in Psychological Science, 2020, 28(8): 1232-1245. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||