Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (12): 2043-2053.doi: 10.3724/SP.J.1042.2025.2043
• Academic Papers of the 27th Annual Meeting of the China Association for Science and Technology • Previous Articles Next Articles
CHEN Siyu, PAN Wanke(
), HU Chuan-Peng(
)
Received:2025-05-10
Online:2025-12-15
Published:2025-10-27
CLC Number:
CHEN Siyu, PAN Wanke, HU Chuan-Peng. Cognitive decision neural networks based on evidence accumulation framework[J]. Advances in Psychological Science, 2025, 33(12): 2043-2053.
| 模型名称 | 人工神经网络算法 | 证据积累过程 | 认知决策特征反映 |
|---|---|---|---|
| RTNet (Rafiei et al., | BNN | 竞争模型。根据权重的概率分布进行证据积累, 存在选项对应证据积累超过阈值时, 判断做出决策 | 速度与准确性权衡、任务难度对速度及准确性的影响、正误试验对信心水平的影响 |
| RTify (Cheng et al., | ConvLSTM | 特征值积累。将隐藏层特征值映射成证据值并积累, 超过阈值时做出决策, 对应时间步长判定为决策时间点 | 任务难度对速度及准确性的影响 |
| SN-DM (Duggins & Eliasmith, | SNN | 价值评估。将感觉刺激映射为决策变量并累积积分。当决策变量超过阈值时, 模型的动作群体神经元变得活跃, 解码出决策行为 | 速度与准确性权衡 |
| 模型名称 | 人工神经网络算法 | 证据积累过程 | 认知决策特征反映 |
|---|---|---|---|
| RTNet (Rafiei et al., | BNN | 竞争模型。根据权重的概率分布进行证据积累, 存在选项对应证据积累超过阈值时, 判断做出决策 | 速度与准确性权衡、任务难度对速度及准确性的影响、正误试验对信心水平的影响 |
| RTify (Cheng et al., | ConvLSTM | 特征值积累。将隐藏层特征值映射成证据值并积累, 超过阈值时做出决策, 对应时间步长判定为决策时间点 | 任务难度对速度及准确性的影响 |
| SN-DM (Duggins & Eliasmith, | SNN | 价值评估。将感觉刺激映射为决策变量并累积积分。当决策变量超过阈值时, 模型的动作群体神经元变得活跃, 解码出决策行为 | 速度与准确性权衡 |
| 神经网络层 | 数学原理 | 主要操作 | 核心作用 | 心理过程 |
|---|---|---|---|---|
| 全连接层 | 维度映射, 通过学习权重矩阵和偏置向量, 对输入数据进行线性变换, 将输入特征映射到新的特征空间。 | (1)连接输入层和输出层的每个神经元; (2)实现特征值的维度变换。 | 决策变量分类与整合 | |
| 卷积层 | 卷积运算, 通过卷积核对输入数据进行特征提取。 | 在图像识别任务中, 可以通过聚合局部特征, 以在整个图像级别进行预测。 | 视觉系统的初级感知加工 | |
| 池化层 (以平均池化为例) | 将图像划分为若干个不重叠的池化窗口, 并对其数据进行相应的池化操作。 | 对输入数据(多为图像矩阵)采样, 提取其主要特征。 | 认知中的注意力选择机制 | |
| 激活函数 (以Sigmoid函数为例) | 引入非线性, 通过对神经元的输入进行非线性变换, 将其映射到一个特定的输出范围。 | (1)输出归一化, 可通过判断事件发生概率对样本进行分类; (2)在反向传播中, 方便梯度计算, 有利于参数更新; (3)控制神经元的激活状态。 | 神经元激活阈值及对证据强度的非线性响应 | |
| 损失函数 | $\mathrm{L}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \ell\left(\mathrm{y}_{\mathrm{i}}, \hat{\mathrm{y}}_{\mathrm{i}}\right)$ | 量化模型预测值$\hat{y}$与真实值y之间的误差, 通过反向传播算法, 计算损失对参数的梯度, 更新权重。 | (1)在预测输出结果时, 调整模型预测结果与真实值之间差异, 优化训练; (2)在进行分类任务(如对图像辨别)时, 通过衡量概率分布差异得出分类判断。 | 反馈学习机制与决策策略优化 |
| 神经网络层 | 数学原理 | 主要操作 | 核心作用 | 心理过程 |
|---|---|---|---|---|
| 全连接层 | 维度映射, 通过学习权重矩阵和偏置向量, 对输入数据进行线性变换, 将输入特征映射到新的特征空间。 | (1)连接输入层和输出层的每个神经元; (2)实现特征值的维度变换。 | 决策变量分类与整合 | |
| 卷积层 | 卷积运算, 通过卷积核对输入数据进行特征提取。 | 在图像识别任务中, 可以通过聚合局部特征, 以在整个图像级别进行预测。 | 视觉系统的初级感知加工 | |
| 池化层 (以平均池化为例) | 将图像划分为若干个不重叠的池化窗口, 并对其数据进行相应的池化操作。 | 对输入数据(多为图像矩阵)采样, 提取其主要特征。 | 认知中的注意力选择机制 | |
| 激活函数 (以Sigmoid函数为例) | 引入非线性, 通过对神经元的输入进行非线性变换, 将其映射到一个特定的输出范围。 | (1)输出归一化, 可通过判断事件发生概率对样本进行分类; (2)在反向传播中, 方便梯度计算, 有利于参数更新; (3)控制神经元的激活状态。 | 神经元激活阈值及对证据强度的非线性响应 | |
| 损失函数 | $\mathrm{L}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \ell\left(\mathrm{y}_{\mathrm{i}}, \hat{\mathrm{y}}_{\mathrm{i}}\right)$ | 量化模型预测值$\hat{y}$与真实值y之间的误差, 通过反向传播算法, 计算损失对参数的梯度, 更新权重。 | (1)在预测输出结果时, 调整模型预测结果与真实值之间差异, 优化训练; (2)在进行分类任务(如对图像辨别)时, 通过衡量概率分布差异得出分类判断。 | 反馈学习机制与决策策略优化 |
| [1] | 刘逸康, 胡传鹏. (2024). 证据积累模型的行为与认知神经证据. 科学通报, 69(8), 1068-1081. https://doi.org/10.1360/TB-2023-1080 |
| [2] | 潘晚坷, 胡传鹏. (2025). 神经模拟推断:基于神经网络和模拟推断的认知建模方法. 心理科学, 48(4), 826-835. https://doi.org/10.16719/j.cnki.1671-6981.20250406 |
| [3] |
Binz M., Akata E., Bethge M., Brändle F., Callaway F., Coda-Forno J., … Schulz E. (2025). A foundation model to predict and capture human cognition. Nature, 644, 1002-1009. https://doi.org/10.1038/s41586-025-09215-4
doi: 10.1038/s41586-025-09215-4 URL |
| [4] | Boag R. J., Innes R. J., Stevenson N., Bahg G., Busemeyer J. R., Cox G. E., … Forstmann B. U. (2025). An expert guide to planning experimental tasks for evidence-accumulation modeling. Advances in Methods and Practices in Psychological Science, 8(2), 25152459251336127. https://doi.org/10.1177/25152459251336127 |
| [5] |
Bompas A., Sumner P., & Hedge C. (2025). Non-decision time: The Higgs Boson of decision. Psychological Review, 132(2), 330-363. https://doi.org/10.1037/rev0000487
doi: 10.1037/rev0000487 URL |
| [6] | Cheng Y. -A., Rodriguez I. F., Chen S., Kar K., Watanabe T., & Serre T. (2024). RTify: Aligning deep neural networks with human behavioral decisions. arXiv, https://doi.org/10.48550/ARXIV.2411.03630 |
| [7] |
Churchland A. K., Kiani R., & Shadlen M. N. (2008). Decision- making with multiple alternatives. Nature Neuroscience, 11(6), 693-702. https://doi.org/10.1038/nn.2123
doi: 10.1038/nn.2123 URL pmid: 18488024 |
| [8] | Deng L. (2012). The MNIST database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 29(6), 141-142. https://doi.org/10.1109/MSP.2012.2211477 |
| [9] |
Donders F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412-431. https://doi.org/10.1016/0001-6918(69)90065-1
URL pmid: 5811531 |
| [10] |
Duggins P., & Eliasmith C. (2025). A spiking neural model of decision making and the speed-accuracy trade-off. Psychological Review, 132(5), 1090-1127. https://doi.org/10.1037/rev0000520
doi: 10.1037/rev0000520 URL |
| [11] |
Evans N. J., & Servant M. (2020). A comparison of conflict diffusion models in the flanker task through pseudolikelihood Bayes factors. Psychological Review, 127(1), 114-135. https://doi.org/10.1037/rev0000165
doi: 10.1037/rev0000165 URL pmid: 31599635 |
| [12] |
Fiedler K., McCaughey L., Prager J., Eichberger J., & Schnell K. (2021). Speed-accuracy trade-offs in sample-based decisions. Journal of Experimental Psychology: General, 150(6), 1203-1224. https://doi.org/10.1037/xge0000986
doi: 10.1037/xge0000986 URL |
| [13] |
Forstmann B. U., Tittgemeyer M., Wagenmakers E. -J., Derrfuss J., Imperati D., & Brown S. (2011). The speed- accuracy tradeoff in the elderly brain: A structural model- based approach. Journal of Neuroscience, 31(47), 17242-17249. https://doi.org/10.1523/JNEUROSCI.0309-11.2011
doi: 10.1523/JNEUROSCI.0309-11.2011 URL pmid: 22114290 |
| [14] |
Gold J. I., & Shadlen M. N. (2007). The Neural basis of decision making. Annual Review of Neuroscience, 30(1), 535-574. https://doi.org/10.1146/annurev.neuro.29.051605.113038
doi: 10.1146/neuro.2007.30.issue-1 URL |
| [15] |
Hafner D., Pasukonis J., Ba J., & Lillicrap T. (2025). Mastering diverse control tasks through world models. Nature, 640(8059), 647-653. https://doi.org/10.1038/s41586-025-08744-2
doi: 10.1038/s41586-025-08744-2 URL |
| [16] | Hanks T., Kiani R., & Shadlen M. N. (2014). A neural mechanism of speed-accuracy tradeoff in macaque area LIP. eLife, 3, Article e02260. https://doi.org/10.7554/elife.02260 |
| [17] | Ji-An L., Benna M. K., & Mattar M. G. (2025). Discovering cognitive strategies with tiny recurrent neural networks. Nature, 993-1001. https://doi.org/10.1038/s41586-025-09142-4 |
| [18] |
Kheradpisheh S. R., Ghodrati M., Ganjtabesh M., & Masquelier T. (2016). Deep networks can resemble human feed-forward vision in invariant object recognition. Scientific Reports, 6(1), 32672. https://doi.org/10.1038/srep32672
doi: 10.1038/srep32672 URL |
| [19] |
Krizhevsky A., Sutskever I., & Hinton G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
doi: 10.1145/3065386 URL |
| [20] |
Lee D. G., & Usher M. (2023). Value certainty in drift-diffusion models of preferential choice. Psychological Review, 130(3), 790-806. https://doi.org/10.1037/rev0000329
doi: 10.1037/rev0000329 URL |
| [21] | Lin T. -Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., … Dollár P. (2014). Microsoft COCO: Common objects in context. arXiv. https://doi.org/10.48550/ARXIV.1405.0312 |
| [22] |
Lo C. -C., & Wang X. -J. (2006). Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience, 9(7), 956-963. https://doi.org/10.1038/nn1722
doi: 10.1038/nn1722 URL |
| [23] |
Lo C. -C., Wang C. -T., & Wang X. -J. (2015). Speed- accuracy tradeoff by a control signal with balanced excitation and inhibition. Journal of Neurophysiology, 114(1), 650-661. https://doi.org/10.1152/jn.00845.2013
doi: 10.1152/jn.00845.2013 URL |
| [24] | Luce R. D. (1986). Response times:Their role in inferring elementary mental organization. Oxford University Press, New York. |
| [25] | Marr D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman. |
| [26] |
Moustafa A. A., Kéri S., Somlai Z., Balsdon T., Frydecka D., Misiak B., & White C. (2015). Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data. Behavioural Brain Research, 291, 147-154. https://doi.org/10.1016/j.bbr.2015.05.024
doi: S0166-4328(15)00353-8 URL pmid: 26005124 |
| [27] |
Pan W., Geng H., Zhang L., Fengler A., Frank M. J., Zhang R.-Y., & Chuan-Peng H. (2025). dockerHDDM: A user- friendly environment for Bayesian hierarchical drift- diffusion modeling. Advances in Methods and Practices in Psychological Science, 8(1), 25152459241298700. https://doi.org/10.1177/25152459241298700
doi: 10.1177/25152459241298700 URL |
| [28] | Qu Y., Du P., Che W., Wei C., Zhang C., Ouyang W., ... Liu Q. (2024). Promoting interactions between cognitive science and large language models. The Innovation, 5(2). https://doi.org/10.1016/j.xinn.2024.100579 |
| [29] |
Rafiei F., Shekhar M., & Rahnev D. (2024). The neural network RTNet exhibits the signatures of human perceptual decision-making. Nature Human Behaviour, 8(9), 1752-1770. https://doi.org/10.1038/s41562-024-01914-8
doi: 10.1038/s41562-024-01914-8 URL pmid: 38997452 |
| [30] |
Rajalingham R., Piccato A., & Jazayeri M. (2022). Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task. Nature Communications, 13(1), 5865. https://doi.org/10.1038/s41467-022-33581-6
doi: 10.1038/s41467-022-33581-6 URL |
| [31] |
Ratcliff R., & McKoon G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922. https://doi.org/10.1162/neco.2008.12-06-420
doi: 10.1162/neco.2008.12-06-420 URL pmid: 18085991 |
| [32] |
Ratcliff R., Smith P. L., Brown S. D., & McKoon G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260-281. https://doi.org/10.1016/j.tics.2016.01.007
doi: S1364-6613(16)00025-5 URL pmid: 26952739 |
| [33] |
Roitman J. D., & Shadlen M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475-9489. https://doi.org/10.1523/JNEUROSCI.22-21-09475.2002
URL pmid: 12417672 |
| [34] |
Shadlen M. N., & Kiani R. (2013). Decision making as a window on cognition. Neuron, 80(3), 791-806. https://doi.org/10.1016/j.neuron.2013.10.047
doi: 10.1016/j.neuron.2013.10.047 URL pmid: 24183028 |
| [35] | Shen B., Louie K., & Glimcher P. (2023). Flexible control of representational dynamics in a disinhibition-based model of decision-making. eLife, 12, Article e82426. https://doi.org/10.7554/elife.82426 |
| [36] | Steinemann N., Stine G. M., Trautmann E., Zylberberg A., Wolpert D. M., & Shadlen M. N. (2024). Direct observation of the neural computations underlying a single decision. eLife, 12, RP90859. https://doi.org/10.7554/eLife.90859 |
| [37] |
Stine G. M., Trautmann E. M., Jeurissen D., & Shadlen M. N. (2023). A neural mechanism for terminating decisions. Neuron, 111(16), 2601-2613. https://doi.org/10.1016/j.neuron.2023.05.028
doi: 10.1016/j.neuron.2023.05.028 URL pmid: 37352857 |
| [38] | Tump A. N., Pleskac T. J., & Kurvers R. H. J. M. (2020). Wise or mad crowds? The cognitive mechanisms underlying information cascades. Science Advances, 6(29), eabb0266- eabb0266. https://doi.org/10.1126/sciadv.abb0266 |
| [39] |
Wichmann F. A., & Geirhos R. (2023). Are deep neural networks adequate behavioral models of human visual perception? Annual Review of Vision Science, 9, 501-524. https://doi.org/10.1146/annurev-vision-120522-031739
doi: 10.1146/vision.2023.9.issue-1 URL |
| [40] |
Wong K. -F., & Wang X. -J. (2006). A recurrent network mechanism of time integration in perceptual decisions. The Journal of Neuroscience, 26(4), 1314-1328. https://doi.org/10.1523/JNEUROSCI.3733-05.2006
doi: 10.1523/JNEUROSCI.3733-05.2006 URL |
| [41] |
Zeng K., Wang Y., Tan H., Fang Q., Wang Y., & Yuan L. (2025). Prospects and technology of embodied intelligent humanoid robots driven by AI large models. Scientia Sinica Informationis, 55(5), 967. https://doi.org/10.1360/ssi-2024-0350
doi: 10.1360/SSI-2024-0350 URL |
| [42] | Zhang S., Seak L., Dolan R., & Wu H. (2025). AI in the computation and regulation of social decision-making. OSF. https://doi.org/10.31234/osf.io/uf9g4_v1 |
| [1] | LIU Yu, BI Dandan, ZHAO Kaibin, SHI Yiming, Hanna Y. ADAMSEGED, JIN Zheng. Cognitive factors influencing picky eating behavior in children [J]. Advances in Psychological Science, 2025, 33(2): 305-321. |
| [2] | WEN Xiujuan, MA Yujing, TAN Siqi, LI Yun, LIU Wenhua. Motivation deficits in physical effort or cognitive effort expenditure? Evaluation of effort-based reward motivation and application of computational modeling in depression [J]. Advances in Psychological Science, 2025, 33(1): 107-122. |
| [3] | LI Jingjing, ZHANG Jian, ZHANG Na. How team work passion affects team creativity? An investigation of multi-level causal circle mechanism from a dynamic computational perspective [J]. Advances in Psychological Science, 2024, 32(2): 206-227. |
| [4] | CHENG Meixia, KUANG Ziyi, LENG Xiaoxue, ZHANG Yang, WANG Fuxing. Can learning by non-interactive teaching promote learning? [J]. Advances in Psychological Science, 2023, 31(5): 769-782. |
| [5] | LI Suiqing, CHEN Xinling, ZHAI Yuzhu, ZHANG Yijie, ZHANG Zhixing, FENG Chunliang. The computational and neural substrates underlying social learning [J]. Advances in Psychological Science, 2021, 29(4): 677-696. |
| [6] | GAO Qinglin, ZHOU Yuan. Psychological and neural mechanisms of trust formation: A perspective from computational modeling based on the decision of investor in the trust game [J]. Advances in Psychological Science, 2021, 29(1): 178-189. |
| [7] | LI Jingjing, ZHANG Jian, TIAN Huirong, Jeffrey B. VANCOUVER. Application of computational modeling in organizational behavior research [J]. Advances in Psychological Science, 2020, 28(2): 368-380. |
| [8] | MA Yuanxiao, CHEN Xu. Plasticity of insecure attachment and its neuromechanism [J]. Advances in Psychological Science, 2019, 27(12): 1967-1979. |
| [9] | ZHANG Li Hua, MIAO Li. Hostile interpretation bias and aggression [J]. Advances in Psychological Science, 2019, 27(12): 2097-2108. |
| [10] | XIE Heping, PENG Ji, ZHOU Zongkui. Attention guidance and cognitive processing: The educational effects of eye movement modeling examples [J]. Advances in Psychological Science, 2018, 26(8): 1404-1416. |
| [11] | ZHANG Xiuping, ZHANG Yuping, YANG Xiaohong, YANG Yufang. Emotion comprehension in discourse and its cognitive neural mechanism [J]. Advances in Psychological Science, 2017, 25(8): 1289-1298. |
| [12] | LI Lin, LIU Wen, SUI Xue. Prediction effect during syntactic processing and experimental evidence [J]. Advances in Psychological Science, 2017, 25(7): 1122-1131. |
| [13] | REN Xuezhu, WANG Tengfei, Karl Schweizer. Fixed-links modeling and its application in cognitive psychology research [J]. Advances in Psychological Science, 2017, 25(10): 1675-1681. |
| [14] | HE Xing; CUI Liying. Fortune emotions: The analysis for the social comparison & cognitive appraisal process of envy [J]. Advances in Psychological Science, 2016, 24(9): 1485-1495. |
| [15] | LI Songze; HU Jinsheng; LI Chengshi; WANG Qi; LIU Shuqing; KANG Xiaodong; CUI Li . Visual-spatial working memory deficits and neural mechanism in autism spectrum disorder [J]. Advances in Psychological Science, 2016, 24(7): 1050-1064. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||