Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (10): 1736-1756.doi: 10.3724/SP.J.1042.2024.01736
• Research Method • Previous Articles
GUO Mingqian1(), PAN Wanke2, HU Chuanpeng2()
Received:
2023-06-25
Online:
2024-10-15
Published:
2024-08-13
Contact:
GUO Mingqian, HU Chuanpeng
E-mail:mqguo30@gmail.com;hcp4715@hotmail.com
CLC Number:
GUO Mingqian, PAN Wanke, HU Chuanpeng. Model comparison in cognitive modeling[J]. Advances in Psychological Science, 2024, 32(10): 1736-1756.
拟合度指标 | 适用的参数估计方法 | 优点 | 缺点 |
---|---|---|---|
均方误差(MSE) | 极大似然法、最小二乘法 | 直观简单, 易于计算和解释 | 不适用于分类问题, 未考虑模型复杂度对过拟合的影响 |
决定系数( | 极大似然法、最小二乘法 | 衡量模型变量变异性占比, 提供模型拟合的可解释性 | 对模型的复杂性敏感, 无法比较特征数目不同的模型 |
对数似然函数 | 极大似然法, 最大后验概率法, 贝叶斯参数估计 | 反映模型预测与实际数据的匹配程度, 可用于模型比较和参数估计; MSE和 | 不适用于非概率、非参数模型; 对异常值敏感 |
ROC曲线 | 极大似然法, 最大后验概率法, 贝叶斯参数估计 | 用于评估模型对实际数据的预测能力。 | 不适用于数据为多选项的情况; 对于不平衡数据, 结果不够准确 |
后验预测检查 | 贝叶斯参数估计 | 考虑参数不确定性和模型复杂性; 可检查对新数据样本的预测能力 | 需要领域专业知识对先验和后验分布进行假设; 计算复杂度较高 |
拟合度指标 | 适用的参数估计方法 | 优点 | 缺点 |
---|---|---|---|
均方误差(MSE) | 极大似然法、最小二乘法 | 直观简单, 易于计算和解释 | 不适用于分类问题, 未考虑模型复杂度对过拟合的影响 |
决定系数( | 极大似然法、最小二乘法 | 衡量模型变量变异性占比, 提供模型拟合的可解释性 | 对模型的复杂性敏感, 无法比较特征数目不同的模型 |
对数似然函数 | 极大似然法, 最大后验概率法, 贝叶斯参数估计 | 反映模型预测与实际数据的匹配程度, 可用于模型比较和参数估计; MSE和 | 不适用于非概率、非参数模型; 对异常值敏感 |
ROC曲线 | 极大似然法, 最大后验概率法, 贝叶斯参数估计 | 用于评估模型对实际数据的预测能力。 | 不适用于数据为多选项的情况; 对于不平衡数据, 结果不够准确 |
后验预测检查 | 贝叶斯参数估计 | 考虑参数不确定性和模型复杂性; 可检查对新数据样本的预测能力 | 需要领域专业知识对先验和后验分布进行假设; 计算复杂度较高 |
指标 | 适用的参数估计方法 | 优点 | 缺点 |
---|---|---|---|
AIC* | 极大似然法, 最大后验概率法, 贝叶斯参数估计 | 计算简便, 在任何参数估计情况下都可使用 | 对交叉验证的近似准确程度不如后三者 |
DIC* | 贝叶斯参数估计 | 计算简便, 绝大多数贝叶斯统计软件均提供了该指标 | 没有利用贝叶斯参数估计得到的整个参数后验分布 |
WAIC* | 贝叶斯参数估计 | 对交叉似然的近似更精确 | 容易受到MCMC采样极端值影响 |
PSIS-Loo-CV* | 贝叶斯参数估计 | 对交叉似然的近似更精确 | 容易受到MCMC采样极端值影响 |
指标 | 适用的参数估计方法 | 优点 | 缺点 |
---|---|---|---|
AIC* | 极大似然法, 最大后验概率法, 贝叶斯参数估计 | 计算简便, 在任何参数估计情况下都可使用 | 对交叉验证的近似准确程度不如后三者 |
DIC* | 贝叶斯参数估计 | 计算简便, 绝大多数贝叶斯统计软件均提供了该指标 | 没有利用贝叶斯参数估计得到的整个参数后验分布 |
WAIC* | 贝叶斯参数估计 | 对交叉似然的近似更精确 | 容易受到MCMC采样极端值影响 |
PSIS-Loo-CV* | 贝叶斯参数估计 | 对交叉似然的近似更精确 | 容易受到MCMC采样极端值影响 |
指标 | 适用的参数估计方法 | 优点 | 缺点 |
---|---|---|---|
BIC* | 极大似然法, 最大后验概率法, 贝叶斯参数估计。 | 计算简便, 在任何参数估计情况下都可使用。 | 没有先验的影响, 对边际似然的近似不如后四者。 |
KDE | 贝叶斯参数估计。 | 计算较采样方法更为简便。 | 较少有研究使用。没有工具包, 需要研究者手动实践。 |
拉普拉斯近似* | 极大似然法, 最大后验概率法, 贝叶斯参数估计。 | 在任何参数估计情况下都可使用。 | 海森矩阵有可能为NaN值。没有工具包, 需要研究者手动实践。 |
重要性采样 | 贝叶斯参数估计。 | 较桥采样计算简便。 | 容易受到MCMC采样极端值影响。 |
桥采样* | 贝叶斯参数估计。 | 对边际似然的近似比较精准。 | 计算步骤复杂, 只有R包bridgesampling提供了简便的使用接口 |
指标 | 适用的参数估计方法 | 优点 | 缺点 |
---|---|---|---|
BIC* | 极大似然法, 最大后验概率法, 贝叶斯参数估计。 | 计算简便, 在任何参数估计情况下都可使用。 | 没有先验的影响, 对边际似然的近似不如后四者。 |
KDE | 贝叶斯参数估计。 | 计算较采样方法更为简便。 | 较少有研究使用。没有工具包, 需要研究者手动实践。 |
拉普拉斯近似* | 极大似然法, 最大后验概率法, 贝叶斯参数估计。 | 在任何参数估计情况下都可使用。 | 海森矩阵有可能为NaN值。没有工具包, 需要研究者手动实践。 |
重要性采样 | 贝叶斯参数估计。 | 较桥采样计算简便。 | 容易受到MCMC采样极端值影响。 |
桥采样* | 贝叶斯参数估计。 | 对边际似然的近似比较精准。 | 计算步骤复杂, 只有R包bridgesampling提供了简便的使用接口 |
[1] |
胡传鹏, 孔祥祯, Wagenmakers, E.-J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965. https://doi.org/10.3724/sp.J.1042.2018.00951
doi: 10.3724/SP.J.1042.2018.00951 URL |
[2] |
区健新, 吴寅, 刘金婷, 李红. (2020). 计算精神病学: 抑郁症研究和临床应用的新视角. 心理科学进展, 28(1), 111-127. https://doi.org/10.3724/sp.J.1042.2020.00111
doi: 10.3724/SP.J.1042.2020.00111 URL |
[3] | 王允宏, van den Berg, D., Aust, F., Ly, A., Wagenmaker, E.-J., 胡传鹏,(2023). 贝叶斯方差分析在JASP中的实现. 心理技术与应用, 11(9), 528-541. http://dx.doi.org/10.16842/j.cnki.issn2095-5588.2023.09.002 |
[4] | Acerbi, L., Dokka, K., Angelaki, D. E., & Ma, W. J. (2018). Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception. PLoS Computational Biololgy, 14(7), e1006110. https://doi.org/10.1371/journal.pcbi.1006110 |
[5] | Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24-57. https://doi.org/10.1162/CPSY_a_00002 |
[6] | Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705 |
[7] | Anderson, D., & Burnham, K. (2004). Model selection and multi-model inference. (Vol 63). Springer. |
[8] |
Ballard, I. C., Wagner, A. D., & McClure, S. M. (2019). Hippocampal pattern separation supports reinforcement learning. Nature Communications, 10(1), 1073. https://doi.org/10.1038/s41467-019-08998-1
doi: 10.1038/s41467-019-08998-1 URL pmid: 30842581 |
[9] |
Betts, M. J., Richter, A., de Boer, L., Tegelbeckers, J., Perosa, V., Baumann, V., ... Krauel, K. (2020). Learning in anticipation of reward and punishment: Perspectives across the human lifespan. Neurobiology of Aging, 96, 49-57. https://doi.org/10.1016/j.neurobiolaging.2020.08.011
doi: S0197-4580(20)30267-0 URL pmid: 32937209 |
[10] | Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. |
[11] | Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. https://doi.org/10.1080/01621459.2017.1285773 |
[12] | Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., ... Wagenmakers, E.-J. (2018). Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations. Journal of Mathematical Psychology, 87, 46-75. https://doi.org/10.1016/j.jmp.2018.09.004 |
[13] | Boehm, U., Evans, N. J., Gronau, Q. F., Matzke, D., Wagenmakers, E.-J., & Heathcote, A. J. (2023). Inclusion Bayes factors for mixed hierarchical diffusion decision models. Psychological Methods. https://doi.org/10.1037/met0000582 Bos, C. S. (2002). A comparison of marginal likelihood computation methods. In: Härdle, W., & Rönz, B. (Eds.), Compstat:Physica, Heidelberg. |
[14] |
Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: linear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. https://doi.org/10.1016/j.cogpsych.2007.12.002
doi: 10.1016/j.cogpsych.2007.12.002 URL pmid: 18243170 |
[15] | Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. https://doi.org/10.1177/0049124104268644 |
[16] | Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1-32. https://doi.org/10.18637/jss.v076.i01 |
[17] | Casella, G., & Berger, R. L. (2002). Statistical inference. Cengage Learning. |
[18] | Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal theta overrides pavlovian learning biases. The Journal of Neuroscience, 33(19), 8541-8548. https://doi.org/10.1523/JNEUROSCI.5754-12.2013 |
[19] | Clyde, M. A., Ghosh, J., & Littman, M. L. (2011). Bayesian adaptive sampling for variable selection and model averaging. Journal of Computational and Graphical Statistics, 20(1), 80-101. https://doi.org/10.1198/jcgs.2010.09049 |
[20] |
Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal Of Neuroscience, 35(7), 1024-1035. https://doi.org/10.1111/j.1460-9568.2011.07980.x
doi: 10.1111/j.1460-9568.2011.07980.x URL pmid: 22487033 |
[21] | Collins, A. G. E., & Frank, M. J. (2018). Within- and across- trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proceedings of the National Academy of Sciences, 115(10), 2502-2507. https://doi.org/10.1073/pnas.1720963115 |
[22] | Daniel, R., Radulescu, A., & Niv, Y. (2020). Intact reinforcement learning but impaired attentional control during multidimensional probabilistic learning in older adults. The Journal of Neuroscience, 40(5), 1084-1096. https://doi.org/10.1523/JNEUROSCI.0254-19.2019 |
[23] | Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational Biology, 10(1), e1003441. https://doi.org/10.1371/journal.pcbi.1003441 |
[24] | Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning, Pittsburgh, Pennsylvania, USA. https://doi.org/10.1145/1143844.1143874 |
[25] | Daw, N. D. (2011). Trial-by-trial data analysis using computational models. In Delgado, M. R. (Ed.), Decision making, affect, learning: Attention performance XXIII (Vol. 23, pp. 3-38). Oxford University Press. |
[26] |
Dayan, P., Niv, Y., Seymour, B., & Daw, N. D. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19(8), 1153-1160. https://doi.org/10.1016/j.neunet.2006.03.002
URL pmid: 16938432 |
[27] | Devine, S., Falk, C. F., & Fujimoto, K. A. (2023). Comparing the accuracy of three predictive information criteria for Bayesian linear multilevel model selection. PsyArXiv. https://doi.org/10.31234/osf.io/p2n8a |
[28] | Dickey, J. (1973). Scientific reporting and personal probabilities: Student's hypothesis. Journal of the Royal Statistical Society: Series B (Methodological), 35(2), 285-305. https://doi.org/10.1111/j.2517-6161.1973.tb00959.x |
[29] | Dickey, J. M. (1976). Approximate posterior distributions. Journal of the American Statistical Association, 71(355), 680-689. https://doi.org/10.2307/2285601 |
[30] | Donkin, C., Heathcote, A., & Brown, S. (2009). Is the linear ballistic accumulator model really the simplest model of choice response times: A Bayesian model complexity analysis. Ninth International Conference on Cognitive Modeling— ICCM2009, Manchester, |
[31] |
Dorfman, H. M., & Gershman, S. J. (2019). Controllability governs the balance between Pavlovian and instrumental action selection. Nature Communications, 10(1), 5826. https://doi.org/10.1038/s41467-019-13737-7
doi: 10.1038/s41467-019-13737-7 URL pmid: 31862876 |
[32] | Doucet, A., & Johansen, A. M. (2009). A tutorial on particle filtering and smoothing:Fifteen years later. In Crisan, D. (Ed.), Handbook of nonlinear filtering. Oxford University Press. |
[33] |
Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., & Jermiin, L. S. (2020). Sensitivity and specificity of information criteria. Briefings in Bioinformatics, 21(2), 553-565. https://doi.org/10.1093/bib/bbz016
doi: 10.1093/bib/bbz016 URL pmid: 30895308 |
[34] | Evans, N. J. (2019). Assessing the practical differences between model selection methods in inferences about choice response time tasks. Psychonomic Bulletin & Review, 26(4), 1070-1098. https://doi.org/10.3758/s13423-018-01563-9 |
[35] | Evans, N. J., Hawkins, G. E., & Brown, S. D. (2020). The role of passing time in decision-making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(2), 316-326. https://doi.org/10.1037/xlm0000725 |
[36] | Farrell, S., & Lewandowsky, S. (2018). Computational modeling of cognition and behavior. Cambridge University Press. |
[37] | Fong, E., & Holmes, C. C. (2020). On the marginal likelihood and cross-validation. Biometrika, 107(2), 489-496. https://doi.org/10.1093/biomet/asz077 |
[38] | Fontanesi, L., Gluth, S., Spektor, M. S., & Rieskamp, J. (2019). A reinforcement learning diffusion decision model for value-based decisions. Psychonomic Bulletin & Review, 26(4), 1099-1121. https://doi.org/10.3758/s13423-018-1554-2 |
[39] |
Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67, 641-666. https://doi.org/10.1146/annurev-psych-122414-033645
doi: 10.1146/annurev-psych-122414-033645 URL pmid: 26393872 |
[40] | Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer |
[41] | Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology, 100(1-3), 70-87. https://doi.org/10.1016/j.jphysparis.2006.10.001 |
[42] |
Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and the Laplace approximation. NeuroImage, 34(1), 220-234. https://doi.org/10.1016/j.neuroimage.2006.08.035
doi: 10.1016/j.neuroimage.2006.08.035 URL pmid: 17055746 |
[43] | Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. Chapman & Hall/CRC, Boca Raton, FL. |
[44] | Geisser, S., & Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74(365), 153-160. https://doi.org/10.1080/01621459.1979.10481632 |
[45] | Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society: Series B (Methodological), 56(3), 501-514. https://doi.org/10.1111/j.2517-6161.1994.tb01996.x |
[46] | Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman and Hall/CRC. |
[47] | Gelman, A., Hwang, J., & Vehtari, A. (2013). Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6), 997-1016. https://doi.org/10.1007/s11222-013-9416-2 |
[48] | Geng, H., Chen, J., Hu, C.-P., Jin, J., Chan, R. C. K., Li, Y., ... Zhang, L. (2022). Promoting computational psychiatry in China. Nature Human Behaviour, 6(5), 615-617. https://doi.org/10.1038/s41562-022-01328-4 |
[49] | Gershman, S. J. (2016). Empirical priors for reinforcement learning models. Journal of Mathematical Psychology, 71, 1-6. https://doi.org/10.1016/j.jmp.2016.01.006 |
[50] |
Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., ... Steingroever, H. (2017). A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80-97. https://doi.org/10.1016/j.jmp.2017.09.005
doi: 10.1016/j.jmp.2017.09.005 URL pmid: 29200501 |
[51] | Gronau, Q. F., & Wagenmakers, E. J. (2019). Limitations of Bayesian Leave-One-Out Cross-Validation for model selection. Computational Brain & Behavior, 2(1), 1-11. https://doi.org/10.1007/s42113-018-0011-7 |
[52] |
Guitart-Masip, M., Huys, Q. J., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage, 62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024
doi: 10.1016/j.neuroimage.2012.04.024 URL pmid: 22548809 |
[53] | Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall. |
[54] | Hammersley, J. (2013). Monte carlo methods. Springer Science & Business Media. |
[55] | Heck, D. W. (2019). A caveat on the Savage-Dickey density ratio: The case of computing Bayes factors for regression parameters. British Journal of Mathematical and Statistical Psychology, 72(2), 316-333. https://doi.org/https://doi.org/10.1111/bmsp.12150 |
[56] |
Hinne, M., Gronau, Q. F., van den Bergh, D., & Wagenmakers, E.-J. (2020). A conceptual introduction to Bayesian model averaging. Advances in Methods and Practices in Psychological Science, 3(2), 200-215. https://doi.org/10.1177/2515245919898657
doi: 10.1177/2515245919898657 URL |
[57] | Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297-307. https://doi.org/10.1093/biomet/76.2.297 |
[58] | Huys, Q. J., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R. J., & Dayan, P. (2011). Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. PLoS Computational Biology, 7(4), e1002028. https://doi.org/10.1371/journal.pcbi.1002028 |
[59] |
Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404-413. https://doi.org/10.1038/nn.4238
doi: 10.1038/nn.4238 URL pmid: 26906507 |
[60] |
Iglesias, S., Mathys, C., Brodersen, K. H., Kasper, L., Piccirelli, M., den Ouden, H. E., & Stephan, K. E. (2013). Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron, 80(2), 519-530. https://doi.org/10.1016/j.neuron.2013.09.009
doi: 10.1016/j.neuron.2013.09.009 URL pmid: 24139048 |
[61] |
Ikink, I., Engelmann, J. B., van den Bos, W., Roelofs, K., & Figner, B. (2019). Time ambiguity during intertemporal decision-making is aversive, impacting choice and neural value coding. Neuroimage, 185, 236-244. https://doi.org/10.1016/j.neuroimage.2018.10.008
doi: S1053-8119(18)31967-0 URL pmid: 30296559 |
[62] | Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773-795. https://doi.org/10.1080/01621459.1995.10476572 |
[63] | Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Science, 10(7), 319-326. https://doi.org/10.1016/j.tics.2006.05.003 |
[64] | Kvålseth, T. O. (1985). Cautionary note about R2. The American Statistician, 39(4), 279-285. https://doi.org/10.1080/00031305.1985.10479448 |
[65] | Lebreton, M., Bacily, K., Palminteri, S., & Engelmann, J. B. (2019). Contextual influence on confidence judgments in human reinforcement learning. PLoS Computational Biololgy, 15(4), e1006973. https://doi.org/10.1371/journal.pcbi.1006973 |
[66] |
Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011). Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 14(10), 1250-1252. https://doi.org/10.1038/nn.2904
doi: 10.1038/nn.2904 URL pmid: 21909088 |
[67] | Li, J. A., Dong, D., Wei, Z., Liu, Y., Pan, Y., Nori, F., & Zhang, X. (2020). Quantum reinforcement learning during human decision-making. Nature Human Behaviour, 4(3), 294-307. https://doi.org/10.1038/s41562-019-0804-2 |
[68] | Li, Z.-W., & Ma, W. J. (2021). An uncertainty-based model of the effects of fixation on choice. PLOS Computational Biology, 17(8), e1009190. https://doi.org/10.1371/journal.pcbi.1009190 |
[69] | MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge University Press. |
[70] | McFadden, D. L. (1984). Chapter 24 Econometric analysis of qualitative response models. In Durlauf, S. N. (Ed.), Handbook of Econometrics (Vol. 2, pp. 1395-1457). Elsevier. https://doi.org/10.1016/S1573-4412(84)02016-X |
[71] | Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54(1), 17-24. https://doi.org/10.1080/00031305.2000.10474502 |
[72] | Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6(4), 831-860. https://www.jstor.org/stable/24306045 |
[73] | Merlise, C., & Edward, I. G. (2004). Model uncertainty. Statistical Science, 19(1), 81-94. https://doi.org/10.1214/088342304000000035 |
[74] | Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Science, 16(1), 72-80. https://doi.org/10.1016/j.tics.2011.11.018 |
[75] | Murphy, K. P. (2023). Probabilistic machine learning: An introduction. The MIT Press. |
[76] | Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review, 4(1), 79-95. https://doi.org/10.3758/BF03210778 |
[77] | Myung, J., & Pitt, M. (2018). Model comparison in psychology. In Wagenmakers, E.J. (Ed.), Stevens' handbook of experimental psychology and cognitive neuroscience (Vol. 5, pp. 1-34). https://doi.org/10.1002/9781119170174.epcn503 |
[78] |
Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6), 425-433. https://doi.org/10.1016/j.tics.2017.03.011
doi: S1364-6613(17)30054-2 URL pmid: 28476348 |
[79] | Pedersen, M. L., Ironside, M., Amemori, K. I., McGrath, C. L., Kang, M. S., Graybiel, A. M., Pizzagalli, D. A., & Frank, M. J. (2021). Computational phenotyping of brain- behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLoS Computational Biololgy, 17(5), e1008955. https://doi.org/10.1371/journal.pcbi.1008955 |
[80] |
Raab, H. A., & Hartley, C. A. (2020). Adolescents exhibit reduced Pavlovian biases on instrumental learning. Scientific reports, 10(1), 15770. https://doi.org/10.1038/s41598-020-72628-w
doi: 10.1038/s41598-020-72628-w URL pmid: 32978451 |
[81] |
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260-281. https://doi.org/10.1016/j.tics.2016.01.007
doi: S1364-6613(16)00025-5 URL pmid: 26952739 |
[82] |
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593. https://doi.org/10.1126/science.275.5306.1593
doi: 10.1126/science.275.5306.1593 URL pmid: 9054347 |
[83] | Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://www.jstor.org/stable/2958889 |
[84] | Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333-343. https://doi.org/10.1007/BF02294360 |
[85] | Sivula, T., Magnusson, M., Matamoros, A. A., & Vehtari, A. (2020). Uncertainty in Bayesian leave-one-out cross- validation based model comparison. arXiv. https://doi.org/10.48550/arXiv.2001.00980 |
[86] | Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. https://doi.org/10.1111/1467-9868.00353 |
[87] | Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2014). The deviance information criterion: 12 years on. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 76(3), 485-493. http://www.jstor.org/stable/24774528 |
[88] |
Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966-973. https://doi.org/10.1038/nn.3413
doi: 10.1038/nn.3413 URL pmid: 23708143 |
[89] | Steingroever, H., Wetzels, R., & Wagenmakers, E.-J. (2014). Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision, 1(3), 161-183. https://doi.org/10.1037/dec0000005 |
[90] | Steingroever, H., Wetzels, R., & Wagenmakers, E.-J. (2016). Bayes factors for reinforcement-learning models of the Iowa gambling task. Decision, 3(2), 115-131. https://doi.org/10.1037/dec0000040 |
[91] |
Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuroimage, 46(4), 1004-1017. https://doi.org/10.1016/j.neuroimage.2009.03.025
doi: 10.1016/j.neuroimage.2009.03.025 URL pmid: 19306932 |
[92] | Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of the Royal Statistical Society: Series B, 39(1), 44-47. https://doi.org/10.1111/j.2517-6161.1977.tb01603.x |
[93] | Sugiura, N. (1978). Further analysis of the data by akaike's information criterion and the finite corrections: Further analysis of the data by akaike's. Communications in Statistics-theory Methods, 7(1), 13-26. https://doi.org/10.1080/03610927808827599 |
[94] |
Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe, N., Haruno, M., Cheng, K., & Nakahara, H. (2012). Learning to simulate others' decisions. Neuron, 74(6), 1125-1137. https://doi.org/10.1016/j.neuron.2012.04.030
doi: 10.1016/j.neuron.2012.04.030 URL pmid: 22726841 |
[95] | Swart, J. C., Fröbose, M. I., Cook, J. L., Geurts, D. E., Frank, M. J., Cools, R., & den Ouden, H. E. (2017). Catecholaminergic challenge uncovers distinct Pavlovian and instrumental mechanisms of motivated (in)action. Elife, 6. https://doi.org/10.7554/eLife.22169 |
[96] | Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model comparison and the principle of parsimony. In Busemeyer, J. R., Wang, Z., Townsend, J. T., & Eidels, A. (Eds.), The Oxford handbook of computational and mathematical psychology. (pp.300-319). Oxford University Press. |
[97] |
Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response times. Psychological Methods, 16(1), 44-62. https://doi.org/10.1037/a0021765
doi: 10.1037/a0021765 URL pmid: 21299302 |
[98] | van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., ... Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1(1), 1-26. https://doi.org/10.1038/s43586-021-00017-2 |
[99] | Vehtari, A. (2022). Cross-validation FAQ. https://avehtari.github.io/modelselection/CV-FAQ.html |
[100] | Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413-1432. https://doi.org/10.1007/s11222-016-9696-4 |
[101] | Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., & Winther, O. (2016). Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. The Journal of Machine Learning Research, 17(1), 3581-3618. http://jmlr.org/papers/v17/14-540.html |
[102] | Vehtari, A., Simpson, D. P., Yao, Y., & Gelman, A. (2019). Limitations of “Limitations of Bayesian Leave-one-out Cross-Validation for Model Selection”. Computational Brain & Behavior, 2(1), 22-27. https://doi.org/10.1007/s42113-018-0020-6 |
[103] |
Verstynen, T., & Kording, K. P. (2023). Overfitting to ‘predict’ suicidal ideation. Nature Human Behaviour, 7(5), 680-681. https://doi.org/10.1038/s41562-023-01560-6
doi: 10.1038/s41562-023-01560-6 URL pmid: 37024723 |
[104] |
Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17(2), 228-243. https://doi.org/10.1037/a0027127
doi: 10.1037/a0027127 URL pmid: 22309957 |
[105] | Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192-196. https://doi.org/10.3758/BF03206482 |
[106] |
Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 60(3), 158-189. https://doi.org/10.1016/j.cogpsych.2009.12.001
doi: 10.1016/j.cogpsych.2009.12.001 URL pmid: 20064637 |
[107] | Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Business Media. |
[108] | Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(12). http://jmlr.org/papers/v11/watanabe10a.html |
[109] |
Westbrook, A., van den Bosch, R., Määttä, J., Hofmans, L., Papadopetraki, D., Cools, R., & Frank, M. J. (2020). Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science, 367(6484), 1362-1366. https://doi.org/10.1126/science.aaz5891
doi: 10.1126/science.aaz5891 URL pmid: 32193325 |
[110] | Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1), 60-62. http://www.jstor.org/stable/2957648 |
[111] | Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8. https://doi.org/10.7554/eLife.49547 |
[112] | Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika, 92(4), 937-950. https://doi.org/10.1093/biomet/92.4.937 |
[113] | Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3), 917-1007. https://doi.org/10.1214/17-BA1091 |
[114] |
Zhang, L., Lengersdorff, L., Mikus, N., Gläscher, J., & Lamm, C. (2020). Using reinforcement learning models in social neuroscience: Frameworks, pitfalls and suggestions of best practices. Social Cognitive and Affective Neuroscience, 15(6), 695-707. https://doi.org/10.1093/scan/nsaa089
doi: 10.1093/scan/nsaa089 URL pmid: 32608484 |
[115] | Zhang, Y., & Yang, Y. (2015). Cross-validation for selecting a model selection procedure. Journal of Econometrics, 187(1), 95-112. https://doi.org/10.1016/j.jeconom.2015.02.006 |
[1] | SHEN Si-Chu, WANG Yao-Min, ZHANG Han-Bing, MA Jia-Tao. Discount or trade off: The psychological mechanisms of intertemporal choice with double-dated mixed outcomes [J]. Advances in Psychological Science, 2023, 31(7): 1121-1132. |
[2] | PENG Yujia, WANG Yuxi, LU Di. The mechanism of emotion processing and intention inference in social anxiety disorder based on biological motion [J]. Advances in Psychological Science, 2023, 31(6): 905-914. |
[3] | OU Jianxin, WU Yin, LIU Jinting, LI Hong. Computational psychiatry: A new perspective on research and clinical applications in depression [J]. Advances in Psychological Science, 2020, 28(1): 111-127. |
[4] | Fang Hou; Yukai Zhao; Luis A. Lesmes; Zhong-Lin Lu. The Shape of the Contrast Sensitivity Function: Invariant across Light Conditions, Varies Across Observers [J]. Advances in Psychological Science, 2016, 24(Suppl.): 37-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||