Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (1): 100-117.doi: 10.3724/SP.J.1042.2024.00100
• Regular Articles • Previous Articles Next Articles
CHEN Songlin, CHEN Xinwei, LI Huangxia, YAO Panpan()
Received:
2023-04-06
Online:
2024-01-15
Published:
2023-10-25
Contact:
YAO Panpan
E-mail:yaopp@blcu.edu.cn
CLC Number:
CHEN Songlin, CHEN Xinwei, LI Huangxia, YAO Panpan. Comparison of models of eye movement in reading[J]. Advances in Psychological Science, 2024, 32(1): 100-117.
对比项 | 模型 | |||||
---|---|---|---|---|---|---|
E-Z Reader | SWIFT | Glenmore | OB1 Reader | CRM | ||
模型的基本逻辑 | ||||||
基于语言 | 英语 | 德语 | 德语 | 德语 | 中文 | |
注意分布 | 序列 | 平行 | 平行 | 平行 | 平行 | |
模型结构 | 主要模块 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 |
词汇识别 | 熟悉度检验+词汇通达完成+词汇后整合 | 前加工+词汇通达 | 视觉输入层+字母层+词语层 | 视觉输入层+字母层+词语层+空间主题信息表征 | 视觉输入层+汉字层+词汇层 | |
眼动控制 | 目标选择+眼跳发生 | 目标选择+眼跳发生 | 显著性地图+注视中心+眼跳发生 | 目标选择+眼跳发生 | 眼跳单元+注视词单元+汉字激活地图+眼跳目标选择+眼跳执行 | |
字母/ 汉字识别 | 影响因素 | 未建模 | 未建模 | 视敏度、词长、词汇反馈 | 视敏度、词汇反馈、注意权重、拥挤度 | 视敏度、词汇反馈、模板匹配 |
字母/汉字竞争 | 未建模 | 未建模 | 无 | 有 | 有 | |
词汇识别 | 完成标记 | 完成词汇通达阶段 | 词汇激活值衰减为0 | 词汇激活值衰减为0 | 激活值达到阈限值 | 激活值达到阈限值 |
影响因素 | 视敏度、词频、预测性、词长 | 视敏度、词频、预测性 | 视敏度、词频、词长、任务难度 | 视敏度、词频、预测性、词长 | 视敏度、词频、预测性 | |
影响方式 | 降低阈值 | 降低阈值 | 增加激活值 | 降低阈值 | 增加激活值 | |
预测性作用的时间 | 前词识别后 | 无主张 | 无主张 | 无主张 | 前词识别后 | |
是否存在词语竞争 | 未建模 | 未建模 | 未建模 | 存在 | 存在 | |
词切分 | 词间空格 | 词间空格 | 词间空格 | 词间空格 | 与词汇识别一起 | |
词汇整合 | 包含词汇后整合阶段 | 未建模 | 未建模 | 未建模 | 未建模 | |
对常见眼动现象的解释 | ||||||
注视 | 注视位置 | 见眼跳目标选择 | 见眼跳目标选择 | 见眼跳目标选择 | 见眼跳目标选择 | 见眼跳目标选择 |
注视停留时间 | 受词频、预测性、眼跳执行、词汇后整合影响 | 受词频、预测性、眼跳执行影响 | 受词频、眼跳执行影响 | 受词频、预测性、眼跳执行影响 | 受词频、预测性、眼跳执行影响 | |
眼跳 | 眼跳目标选择 | 默认词n+1 | 激活地图 | 激活地图 | 激活地图 | 汉字激活地图 |
潜在眼跳目标的竞争 | 无 | 有 | 有 | 有 | 无 | |
眼跳计划阶段划分 | 不稳定和稳定阶段 | 不稳定和稳定阶段 | 无主张 | 无主张 | 无主张 | |
眼跳触发 | 直接控制:触发机制 | 直接控制:阻碍机制/间接控制 | 直接控制:阻碍机制/间接控制 | 直接控制:阻碍机制 | 直接控制:阻碍机制/间接控制 | |
眼跳 | 回视 | 词汇后整合阶段不成功 | 词汇未识别 | 词汇未识别 | 词汇未识别 | 未考察 |
再注视 | 眼跳首落点位置、词汇后整合 | 词汇识别难度大、眼跳幅度 | 词汇识别难度大 | 词汇识别难度大 | 汉字识别难度大 | |
跳读 | 副中央凹的词汇通达 | 无意义 | 无意义 | 无意义 | 副中央凹的汉字识别 | |
对常见实验效应的解释 | ||||||
词频效应 | 降低激活阈限 | 降低激活阈限 | 增加激活值 | 降低激活阈限 | 增加激活值 | |
预测性效应 | 降低激活阈限 | 降低激活阈限 | 未建模 | 降低激活阈限 | 增加激活值 | |
词长效应 | 降低激活阈限 | 无观点 | 长词能获得更多的从字母到词的激活 | 降低激活阈限 | 词切分需加工汉字的数量 | |
预视效应 | 内在逻辑 | 注意力转移的结果 | 平行加工 | 平行加工 | 平行加工 | 平行加工 |
预视程度 | 一般未达到语义 | 达到语义 | 达到语义 | 达到语义 | 无明确观点 | |
副中央凹−中央凹效应 | 不存在 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | |
中央凹−副中央凹效应 | 词汇后整合导致的注意力转移 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | |
溢出效应 | 词汇后整合难度 | 中央凹抑制延迟 | 上一次注视携带激活值至当前注视 | 认知资源的分配 | 副中央凹预视 | |
偏好注视位置 | 由系统和随机误差导致的眼跳偏移 | 由系统和随机误差导致的眼跳偏移 | 由系统和随机误差导致的眼跳偏移 | 由系统和随机误差导致的眼跳偏移 | 无偏好注视位置而基于加工效率进行选择 | |
词切分 | 由初级视觉输入获取词边界信息 | 由初级视觉输入获取词边界信息 | 由初级视觉输入获取词边界信息 | 由初级视觉输入获取词边界信息 | 与词汇加工为统一的过程 | |
个体差异 | 无观点 | 影响平均眼跳计划间隔 | 无观点 | 影响注意力分布的宽度 | 无观点 | |
任务难度 | 无观点 | 无观点 | 影响注视中心的激活阈限 | 无观点 | 无观点 |
对比项 | 模型 | |||||
---|---|---|---|---|---|---|
E-Z Reader | SWIFT | Glenmore | OB1 Reader | CRM | ||
模型的基本逻辑 | ||||||
基于语言 | 英语 | 德语 | 德语 | 德语 | 中文 | |
注意分布 | 序列 | 平行 | 平行 | 平行 | 平行 | |
模型结构 | 主要模块 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 | 词汇加工+眼跳控制 |
词汇识别 | 熟悉度检验+词汇通达完成+词汇后整合 | 前加工+词汇通达 | 视觉输入层+字母层+词语层 | 视觉输入层+字母层+词语层+空间主题信息表征 | 视觉输入层+汉字层+词汇层 | |
眼动控制 | 目标选择+眼跳发生 | 目标选择+眼跳发生 | 显著性地图+注视中心+眼跳发生 | 目标选择+眼跳发生 | 眼跳单元+注视词单元+汉字激活地图+眼跳目标选择+眼跳执行 | |
字母/ 汉字识别 | 影响因素 | 未建模 | 未建模 | 视敏度、词长、词汇反馈 | 视敏度、词汇反馈、注意权重、拥挤度 | 视敏度、词汇反馈、模板匹配 |
字母/汉字竞争 | 未建模 | 未建模 | 无 | 有 | 有 | |
词汇识别 | 完成标记 | 完成词汇通达阶段 | 词汇激活值衰减为0 | 词汇激活值衰减为0 | 激活值达到阈限值 | 激活值达到阈限值 |
影响因素 | 视敏度、词频、预测性、词长 | 视敏度、词频、预测性 | 视敏度、词频、词长、任务难度 | 视敏度、词频、预测性、词长 | 视敏度、词频、预测性 | |
影响方式 | 降低阈值 | 降低阈值 | 增加激活值 | 降低阈值 | 增加激活值 | |
预测性作用的时间 | 前词识别后 | 无主张 | 无主张 | 无主张 | 前词识别后 | |
是否存在词语竞争 | 未建模 | 未建模 | 未建模 | 存在 | 存在 | |
词切分 | 词间空格 | 词间空格 | 词间空格 | 词间空格 | 与词汇识别一起 | |
词汇整合 | 包含词汇后整合阶段 | 未建模 | 未建模 | 未建模 | 未建模 | |
对常见眼动现象的解释 | ||||||
注视 | 注视位置 | 见眼跳目标选择 | 见眼跳目标选择 | 见眼跳目标选择 | 见眼跳目标选择 | 见眼跳目标选择 |
注视停留时间 | 受词频、预测性、眼跳执行、词汇后整合影响 | 受词频、预测性、眼跳执行影响 | 受词频、眼跳执行影响 | 受词频、预测性、眼跳执行影响 | 受词频、预测性、眼跳执行影响 | |
眼跳 | 眼跳目标选择 | 默认词n+1 | 激活地图 | 激活地图 | 激活地图 | 汉字激活地图 |
潜在眼跳目标的竞争 | 无 | 有 | 有 | 有 | 无 | |
眼跳计划阶段划分 | 不稳定和稳定阶段 | 不稳定和稳定阶段 | 无主张 | 无主张 | 无主张 | |
眼跳触发 | 直接控制:触发机制 | 直接控制:阻碍机制/间接控制 | 直接控制:阻碍机制/间接控制 | 直接控制:阻碍机制 | 直接控制:阻碍机制/间接控制 | |
眼跳 | 回视 | 词汇后整合阶段不成功 | 词汇未识别 | 词汇未识别 | 词汇未识别 | 未考察 |
再注视 | 眼跳首落点位置、词汇后整合 | 词汇识别难度大、眼跳幅度 | 词汇识别难度大 | 词汇识别难度大 | 汉字识别难度大 | |
跳读 | 副中央凹的词汇通达 | 无意义 | 无意义 | 无意义 | 副中央凹的汉字识别 | |
对常见实验效应的解释 | ||||||
词频效应 | 降低激活阈限 | 降低激活阈限 | 增加激活值 | 降低激活阈限 | 增加激活值 | |
预测性效应 | 降低激活阈限 | 降低激活阈限 | 未建模 | 降低激活阈限 | 增加激活值 | |
词长效应 | 降低激活阈限 | 无观点 | 长词能获得更多的从字母到词的激活 | 降低激活阈限 | 词切分需加工汉字的数量 | |
预视效应 | 内在逻辑 | 注意力转移的结果 | 平行加工 | 平行加工 | 平行加工 | 平行加工 |
预视程度 | 一般未达到语义 | 达到语义 | 达到语义 | 达到语义 | 无明确观点 | |
副中央凹−中央凹效应 | 不存在 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | |
中央凹−副中央凹效应 | 词汇后整合导致的注意力转移 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | 注意资源竞争 | |
溢出效应 | 词汇后整合难度 | 中央凹抑制延迟 | 上一次注视携带激活值至当前注视 | 认知资源的分配 | 副中央凹预视 | |
偏好注视位置 | 由系统和随机误差导致的眼跳偏移 | 由系统和随机误差导致的眼跳偏移 | 由系统和随机误差导致的眼跳偏移 | 由系统和随机误差导致的眼跳偏移 | 无偏好注视位置而基于加工效率进行选择 | |
词切分 | 由初级视觉输入获取词边界信息 | 由初级视觉输入获取词边界信息 | 由初级视觉输入获取词边界信息 | 由初级视觉输入获取词边界信息 | 与词汇加工为统一的过程 | |
个体差异 | 无观点 | 影响平均眼跳计划间隔 | 无观点 | 影响注意力分布的宽度 | 无观点 | |
任务难度 | 无观点 | 无观点 | 影响注视中心的激活阈限 | 无观点 | 无观点 |
[1] | 白学军, 梁菲菲, 闫国利, 田瑾, 臧传丽, 孟红霞. (2012). 词边界信息在中文阅读眼跳目标选择中的作用:来自中文二语学习者的证据. 心理学报, 44(7), 853-867. |
[2] | 陈庆荣, 邓铸. (2006). 阅读中的眼动控制理论与SWIFT模型. 心理科学进展, 14(5), 675-681. |
[3] | 胡笑羽, 刘海健, 刘丽萍, 臧传丽, 白学军. (2007). E-Z阅读者模型的新进展. 心理学探新, (1), 24-29+40. |
[4] | 李兴珊, 刘萍萍, 马国杰. (2011). 中文阅读中词切分的认知机理述评. 心理科学进展, 19(4), 459-470. |
[5] |
李玉刚, 黄忍, 滑慧敏, 李兴珊. (2017). 阅读中的眼跳目标选择问题. 心理科学进展, 25(3), 404-412. https://doi.org/10.3724/SP.J.1042.2017.00404
doi: 10.3724/SP.J.1042.2017.00404 URL |
[6] | 刘丽萍, 刘海健, 胡笑羽. (2006). SWIFT-Ⅱ:阅读中眼跳发生的动力学模型. 心理与行为研究, 4(3), 230-235. |
[7] |
马国杰, 李兴珊. (2012). 阅读中的注意分配:序列与平行之争. 心理科学进展, 20(11), 1755-1767.
doi: 10.3724/SP.J.1042.2012.01755 |
[8] | 沈模卫, 张光强, 符德江, 陶嵘. (2002). 阅读过程眼动控制理论模型: E-Z Reader. 心理科学, (2), 129-133+252. https://doi.org/doi:10.16719/j.cnki.1671-6981.2002.02.001 |
[9] | 隋雪, 沈彤, 吴琼, 李莹. (2013). 阅读眼动控制模型的中文研究——串行和并行. 辽宁师范大学学报(社会科学版), 36(5), 672-679. |
[10] | 隋雪, 杨帆, 徐迩嘉. (2018). 交互激活眼动控制的Glenmore模型述评. 沈阳师范大学学报(社会科学版), 42(2), 118-124. https://doi.org/doi:10.19496/j.cnki.ssxb.2018.02.022 |
[11] |
王永胜, 赵冰洁, 陈茗静, 李馨, 闫国利, 白学军. (2018). 中央凹加工负荷与副中央凹信息在汉语阅读眼跳目标选择中的作用. 心理学报, 50(12), 1336-1345. https://doi.org/10.3724/SP.J.1041.2018.01336
doi: 10.3724/SP.J.1041.2018.01336 URL |
[12] | 吴俊, 莫雷. (2008). 阅读中重要眼动控制模型的核心架构. 华南师范大学学报(社会科学版), (3), 115-121+160. |
[13] |
张慢慢, 臧传丽, 白学军. (2020). 中文阅读中副中央凹预加工的范围与程度. 心理科学进展, 28(6), 871-882.
doi: 10.3724/SP.J.1042.2020.00871 |
[14] |
张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. (2020). 快速与慢速读者的中央凹加工对副中央凹预视的影响. 心理学报, 52(8), 933-945. https://doi.org/10.3724/SP.J.1041.2020.00933
doi: 10.3724/SP.J.1041.2020.00933 URL |
[15] |
Angele, B., & Rayner, K. (2013). Processing the in the parafovea: Are articles skipped automatically? Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(2), 649-662. https://doi.org/10.1037/a0029294
doi: 10.1037/a0029294 URL |
[16] |
Antúnez, M., López-Pérez, P. J., Dampuré, J., & Barber, H. A. (2022). Frequency-based foveal load modulates semantic parafoveal-on-foveal effects. Journal of Neurolinguistics, 63, 101071. https://doi.org/10.1016/j.jneuroling.2022.101071
doi: 10.1016/j.jneuroling.2022.101071 URL |
[17] |
Bordag, D., & Opitz, A. (2022). Employing general linguistic knowledge in incidental acquisition of grammatical properties of new L1 and L2 lexical representations: Toward reducing fuzziness in the initial ontogenetic stage. Frontiers in Psychology, 12, 768362. https://doi.org/10.3389/fpsyg.2021.768362
doi: 10.3389/fpsyg.2021.768362 URL |
[18] |
Brossette, B., Grainger, J., Lété, B., & Dufau, S. (2022). On the relations between letter, word, and sentence-level processing during reading. Scientific Reports, 12(1), 17735. https://doi.org/10.1038/s41598-022-22587-1
doi: 10.1038/s41598-022-22587-1 URL pmid: 36273244 |
[19] |
Chang, M., Hao, L., Zhao, S., Li, L., Paterson, K. B., & Wang, J. (2020). Flexible parafoveal encoding of character order supports word predictability effects in Chinese reading: Evidence from eye movements. Attention, Perception, & Psychophysics, 82, 2793-2801. https://doi.org/10.3758/s13414-020-02050-x
doi: 10.3758/s13414-020-02050-x URL |
[20] |
Clifton, C., Ferreira, F., Henderson, J. M., Inhoff, A. W., Liversedge, S. P., Reichle, E. D., & Schotter, E. R. (2016). Eye movements in reading and information processing: Keith Rayner’s 40 year legacy. Journal of Memory and Language, 86, 1-19. https://doi.org/10.1016/j.jml.2015.07.004
doi: 10.1016/j.jml.2015.07.004 URL |
[21] |
Cui, L., Zang, C., Xu, X., Zhang, W., Su, Y., & Liversedge, S. P. (2022). Predictability effects and parafoveal processing of compound words in natural Chinese reading. Quarterly Journal of Experimental Psychology, 75(1), 18-29. https://doi.org/10.1177/17470218211048193
doi: 10.1177/17470218211048193 URL |
[22] |
Cutter, M. G., Drieghe, D., & Liversedge, S. P. (2017). Reading sentences of uniform word length: Evidence for the adaptation of the preferred saccade length during reading. Journal of Experimental Psychology: Human Perception and Performance, 43(11), 1895-1911. https://doi.org/10.1037/xhp0000416
doi: 10.1037/xhp0000416 URL |
[23] |
Cutter, M. G., Drieghe, D., & Liversedge, S. P. (2018). Reading sentences of uniform word length - II: Very rapid adaptation of the preferred saccade length. Psychonomic Bulletin & Review, 25(4), 1435-1440. https://doi.org/10.3758/s13423-018-1473-2
doi: 10.3758/s13423-018-1473-2 URL |
[24] |
Dufour, S., Mirault, J., & Grainger, J. (2022). Transposed- word effects in speeded grammatical decisions to sequences of spoken words. Scientific Reports, 12(1), 22035. https://doi.org/10.1038/s41598-022-26584-2
doi: 10.1038/s41598-022-26584-2 URL |
[25] |
Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision Research, 42(5), 621-636. https://doi.org/10.1016/S0042-6989(01)00301-7
URL pmid: 11853779 |
[26] |
Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777-813. https://doi.org/10.1037/0033-295X.112.4.777
URL pmid: 16262468 |
[27] |
Gordon, P. C., Moore, M., Choi, W., Hoedemaker, R. S., & Lowder, M. W. (2020). Individual differences in reading: Separable effects of reading experience and processing skill. Memory & Cognition, 48(4), 553-565. https://doi.org/10.3758/s13421-019-00989-3
doi: 10.3758/s13421-019-00989-3 URL |
[28] |
Gregg, J., Inhoff, A. W., & Li, X. (2023). Lexical competition influences correct and incorrect visual word recognition. Quarterly Journal of Experimental Psychology, 76(5), 1011-1025. https://doi.org/10.1177/17470218221102878
doi: 10.1177/17470218221102878 URL |
[29] |
Huang, L., Staub, A., & Li, X. (2021). Prior context influences lexical competition when segmenting Chinese overlapping ambiguous strings. Journal of Memory and Language, 118, 104218. https://doi.org/10.1016/j.jml.2021.104218
doi: 10.1016/j.jml.2021.104218 URL |
[30] | Inhoff, A. W., Radach, R., Eiter, B. M., & Juhasz, B. (2003). Distinct subsystems for the parafoveal processing of spatial and linguistic information during eye fixations in reading. Quarterly Journal of Experimental Psychology, 56(5), 803-827. https://doi.org/10.1080/02724980244000639 |
[31] | Kuperman, V., Schroeder, S., & Gnetov, D. (2023). Word length and frequency effects on text reading are highly similar in 12 alphabetic languages [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/cbvjr |
[32] |
Li, X., Huang, L., Yao, P., & Hyönä, J. (2022). Universal and specific reading mechanisms across different writing systems. Nature Reviews Psychology, 1(3), 133-144. https://doi.org/10.1038/s44159-022-00022-6
doi: 10.1038/s44159-022-00022-6 URL |
[33] |
Li, X., Liu, P., & Rayner, K. (2015). Saccade target selection in Chinese reading. Psychonomic Bulletin & Review, 22(2), 524-530. https://doi.org/10.3758/s13423-014-0693-3
doi: 10.3758/s13423-014-0693-3 URL |
[34] |
Li, X., & Pollatsek, A. (2020). An integrated model of word processing and eye-movement control during Chinese reading. Psychological Review, 127(6), 1139-1162. https://doi.org/10.1037/rev0000248
doi: 10.1037/rev0000248 URL |
[35] |
Li, X., Rayner, K., & Cave, K. R. (2009). On the segmentation of Chinese words during reading. Cognitive Psychology, 58(4), 525-552. https://doi.org/10.1016/j.cogpsych.2009.02.003
doi: 10.1016/j.cogpsych.2009.02.003 URL pmid: 19345938 |
[36] |
Li, X.-W., Li, S., Gao, L., Niu, Z.-B., Wang, D.-H., Zeng, M.,... Gao, X.-L. (2022). Eye movement control in Tibetan reading: The roles of word length and frequency. Brain Sciences, 12(9), 1205. https://doi.org/10.3390/brainsci12091205
doi: 10.3390/brainsci12091205 URL |
[37] |
Liao, X., Loh, E. K. Y., & Cai, M. (2022). Lexical orthographic knowledge mediates the relationship between character reading and reading comprehension among learners with Chinese as a second language. Frontiers in Psychology, 13, 779905. https://doi.org/10.3389/fpsyg.2022.779905
doi: 10.3389/fpsyg.2022.779905 URL |
[38] |
Liu, N., Wang, X., Yan, G., Paterson, K. B., & Pagán, A. (2020). Eye movements of developing Chinese readers: Effects of word frequency and predictability. Scientific Studies of Reading, 25(3), 234-250. https://doi.org/10.1080/10888438.2020.1759074
doi: 10.1080/10888438.2020.1759074 URL |
[39] |
Liu, Y., Yu, L., Fu, L., Li, W., Duan, Z., & Reichle, E. D. (2019). The effects of parafoveal word frequency and segmentation on saccade targeting during Chinese reading. Psychonomic Bulletin & Review, 26(4), 1367-1376. https://doi.org/10.3758/s13423-019-01577-x
doi: 10.3758/s13423-019-01577-x URL |
[40] |
Liu, Y., Yu, L., & Reichle, E. D. (2019a). The dynamic adjustment of saccades during Chinese reading: Evidence from eye movements and simulations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(3), 535-543. https://doi.org/10.1037/xlm0000595
doi: 10.1037/xlm0000595 URL |
[41] |
Liu, Y., Yu, L., & Reichle, E. D. (2019b). The influence of parafoveal preview, character transposition, and word frequency on saccadic targeting in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 45(4), 537-552. https://doi.org/10.1037/xhp0000630
doi: 10.1037/xhp0000630 URL |
[42] |
Ma, G., Li, X., & Pollatsek, A. (2015). There is no relationship between preferred viewing location and word segmentation in Chinese reading. Visual Cognition, 23(3), 399-414. https://doi.org/10.1080/13506285.2014.1002554
doi: 10.1080/13506285.2014.1002554 URL |
[43] |
Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535. https://doi.org/10.1080/23273798.2018.1552007
doi: 10.1080/23273798.2018.1552007 URL |
[44] |
McConkie, G. W., Kerr, P. W., Reddix, M. D., & Zola, D. (1988). Eye movement control during reading: I. the location of initial eye fixations on words. Vision Research, 28(10), 1107-1118. https://doi.org/10.1016/0042-6989(88)90137-X
URL pmid: 3257013 |
[45] | Mézière, D. C., Yu, L., Reichle, E., von der Malsburg, T., & McArthur, G. (2021). Using eye-tracking measures to predict reading comprehension [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/v2rdp |
[46] |
Mirault, J., Vandendaele, A., Pegado, F., & Grainger, J. (2022). Transposed-word effects when reading serially. PLOS ONE, 17(11), e0277116. https://doi.org/10.1371/journal.pone.0277116
doi: 10.1371/journal.pone.0277116 URL |
[47] |
Murray, W. S., Fischer, M. H., & Tatler, B. W. (2013). Serial and parallel processes in eye movement control: Current controversies and future directions. Quarterly Journal of Experimental Psychology, 66(3), 417-428. https://doi.org/10.1080/17470218.2012.759979
doi: 10.1080/17470218.2012.759979 URL |
[48] |
Pegado, F., & Grainger, J. (2020). A transposed-word effect in same-different judgments to sequences of words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(7), 1364-1371. https://doi.org/10.1037/xlm0000776
doi: 10.1037/xlm0000776 URL |
[49] |
Pollatsek, A., Juhasz, B. J., Reichle, E. D., Machacek, D., & Rayner, K. (2008). Immediate and delayed effects of word frequency and word length on eye movements in reading: A reversed delayed effect of word length. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 726-750. https://doi.org/10.1037/0096-1523.34.3.726
doi: 10.1037/0096-1523.34.3.726 URL pmid: 18505334 |
[50] |
Pollatsek, A., Reichle, E. D., & Rayner, K. (2006). Tests of the E-Z Reader model: Exploring the interface between cognition and eye-movement control. Cognitive Psychology, 52(1), 1-56. https://doi.org/10.1016/j.cogpsych.2005.06.001
URL pmid: 16289074 |
[51] |
Primativo, S., Rusich, D., Martelli, M., & Arduino, L. S. (2022). The timing of semantic processing in the parafovea: Evidence from a rapid parallel visual presentation study. Brain Sciences, 12(11), 1535. https://doi.org/10.3390/brainsci12111535
doi: 10.3390/brainsci12111535 URL |
[52] |
Rayner, K. (1979). Eye guidance in reading: Fixation locations within words. Perception, 8(1), 21-30. https://doi.org/10.1068/p080021
URL pmid: 432075 |
[53] |
Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14(3), 191-201. https://doi.org/10.3758/BF03197692
doi: 10.3758/BF03197692 URL |
[54] |
Rayner, K., Li, X., & Pollatsek, A. (2007). Extending the E-Z Reader model of eye movement control to Chinese readers. Cognitive Science, 31(6), 1021-1033. https://doi.org/10.1080/03640210701703824
doi: 10.1080/03640210701703824 URL pmid: 21635327 |
[55] |
Rayner, K., Pollatsek, A., & Reichle, E. D. (2003). Eye movements in reading: Models and data. Behavioral and Brain Sciences, 26(4), 507-526. https://doi.org/10.1017/S0140525X03520106
doi: 10.1017/S0140525X03520106 URL |
[56] | Rayner, K., Reichle, E. D., & Pollatsek, A. (2005). Eye movement control in reading and the E-Z Reader model. In G.Underwood (Eds.), Eye movement control in reading and the E-Z Reader model. In G. Underwood (Eds.), Cognitive processes in eye guidance (pp. 131-162). Oxford University Press. |
[57] |
Reichle, E. D., Liversedge, S. P., Pollatsek, A., & Rayner, K. (2009). Encoding multiple words simultaneously in reading is implausible. Trends in Cognitive Sciences, 13(3), 115-119. https://doi.org/10.1016/j.tics.2008.12.002
doi: 10.1016/j.tics.2008.12.002 URL pmid: 19223223 |
[58] |
Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125-157. https://doi.org/10.1037/0033-295X.105.1.125
URL pmid: 9450374 |
[59] |
Reichle, E. D., Pollatsek, A., & Rayner, K. (2006). E-Z Reader: A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7(1), 4-22. https://doi.org/10.1016/j.cogsys.2005.07.002
doi: 10.1016/j.cogsys.2005.07.002 URL |
[60] |
Reichle, E. D., Rayner, K., & Pollatsek, A. (1999). Eye movement control in reading: Accounting for initial fixation locations and refixations within the E-Z Reader model. Vision Research, 39(26), 4403-4411. https://doi.org/10.1016/S0042-6989(99)00152-2
URL pmid: 10789433 |
[61] |
Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z Reader model of eye-movement control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26(4), 445-476. https://doi.org/10.1017/S0140525X03000104
URL pmid: 15067951 |
[62] |
Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E-Z Reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 1-21. https://doi.org/10.3758/PBR.16.1.1
doi: 10.3758/PBR.16.1.1 URL |
[63] |
Reilly, R. G., & Radach, R. (2006). Some empirical tests of an interactive activation model of eye movement control in reading. Cognitive Systems Research, 7(1), 34-55. https://doi.org/10.1016/j.cogsys.2005.07.006
doi: 10.1016/j.cogsys.2005.07.006 URL |
[64] |
Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H. (2012). Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive Psychology, 65(2), 177-206.
doi: 10.1016/j.cogpsych.2012.03.001 pmid: 22542804 |
[65] |
Richter, E. M., Engbert, R., & Kliegl, R. (2006). Current advances in SWIFT. Cognitive Systems Research, 7(1), 23-33. https://doi.org/10.1016/j.cogsys.2005.07.003
doi: 10.1016/j.cogsys.2005.07.003 URL |
[66] | Schwalm, L., & Radach, R. (2023). Parafoveal syntactic processing from word N+2 during reading: The case of gender-specific German articles [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-2642281/v1 |
[67] |
Snell, J., & Grainger, J. (2019a). Readers are parallel processors. Trends in Cognitive Sciences, 23(7), 537-546. https://doi.org/10.1016/j.tics.2019.04.006
doi: 10.1016/j.tics.2019.04.006 URL |
[68] |
Snell, J., & Grainger, J. (2019b). Consciousness is not key in the serial-versus-parallel debate. Trends in Cognitive Sciences, 23(10), 814-815. https://doi.org/10.1016/j.tics.2019.07.010
doi: 10.1016/j.tics.2019.07.010 URL |
[69] |
Snell, J., van Leipsig, S., Grainger, J., & Meeter, M. (2018). OB1-reader: A model of word recognition and eye movements in text reading. Psychological Review, 125(6), 969-984. https://doi.org/10.1037/rev0000119
doi: 10.1037/rev0000119 URL pmid: 30080066 |
[70] |
Snell, J., Yeaton, J., Mirault, J., & Grainger, J. (2023). Parallel word reading revealed by fixation-related brain potentials. Cortex, 162, 1-11. https://doi.org/10.1016/j.cortex.2023.02.004
doi: 10.1016/j.cortex.2023.02.004 URL pmid: 36948090 |
[71] |
Staub, A. (2021). How reliable are individual differences in eye movements in reading? Journal of Memory and Language, 116, 104190. https://doi.org/10.1016/j.jml.2020.104190
doi: 10.1016/j.jml.2020.104190 URL |
[72] | Sui, L., Dirix, N., Woumans, E., & Duyck, W. (2022). GECO-CN: Ghent eye-tracking corpus of sentence reading for Chinese-English bilinguals. Behavior Research Methods. https://doi.org/10.3758/s13428-022-01931-3 |
[73] |
Tschense, M., & Wallot, S. (2022). Using measures of reading time regularity (RTR) to quantify eye movement dynamics, and how they are shaped by linguistic information. Journal of Vision, 22(6), 9. https://doi.org/10.1167/jov.22.6.9
doi: 10.1167/jov.22.6.9 URL pmid: 35612847 |
[74] |
Veldre, A., Reichle, E. D., Yu, L., & Andrews, S. (2023). Understanding the visual constraints on lexical processing: New empirical and simulation results. Journal of Experimental Psychology: General, 152(3), 693-722. https://doi.org/10.1037/xge0001295
doi: 10.1037/xge0001295 URL |
[75] |
Wei, W., Li, X., & Pollatsek, A. (2013). Word properties of a fixated region affect outgoing saccade length in Chinese reading. Vision Research, 80, 1-6. https://doi.org/10.1016/j.visres.2012.11.015
doi: 10.1016/j.visres.2012.11.015 URL pmid: 23231957 |
[76] |
Xia, X., Liu, Y., Yu, L., & Reichle, E. D. (2023). Are there preferred viewing locations in Chinese reading? Evidence from eye-tracking and computer simulations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(4), 607-625. https://doi.org/10.1037/xlm0001142
doi: 10.1037/xlm0001142 URL |
[77] | Yang, J., van den Bosch, A., & Frank, S. L. (2021). Unsupervised text segmentation predicts eye fixations during reading [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/eyvu7 |
[78] |
Yao, P., Alkhammash, R., & Li, X. (2022). Plausibility and syntactic reanalysis in processing novel noun-noun combinations during Chinese reading: Evidence from native and non-native speakers. Scientific Studies of Reading, 26(5), 390-408. https://doi.org/10.1080/10888438.2021.2020796
doi: 10.1080/10888438.2021.2020796 URL |
[79] |
Yao, P., Slattery, T. J., & Li, X. (2022). Sentence context modulates the neighborhood frequency effect in Chinese reading: Evidence from eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(10), 1507-1517. https://doi.org/10.1037/xlm0001030
doi: 10.1037/xlm0001030 URL |
[80] |
Yao, P., Staub, A., & Li, X. (2022). Predictability eliminates neighborhood effects during Chinese sentence reading. Psychonomic Bulletin & Review, 29(1), 243-252. https://doi.org/10.3758/s13423-021-01966-1
doi: 10.3758/s13423-021-01966-1 URL |
[81] |
Yu, L., Liu, Y., & Reichle, E. D. (2021). A corpus-based versus experimental examination of word- and character- frequency effects in Chinese reading: Theoretical implications for models of reading. Journal of Experimental Psychology. General, 150(8), 1612-1641. https://doi.org/10.1037/xge0001014
doi: 10.1037/xge0001014 URL |
[82] |
Zang, C., Fu, Y., Bai, X., Yan, G., & Liversedge, S. P. (2018). Investigating word length effects in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 44(12), 1831-1841. https://doi.org/10.1037/xhp0000589
doi: 10.1037/xhp0000589 URL |
[83] | Zhang, G., Yao, P., Ma, G., Wang, J., Zhou, J., Huang, L., Xu, P., Chen, L., Chen, S., Gu, J., Wei, W., Cheng, X., Hua, H., Liu, P., Lou, Y., Shen, W., Bao, Y., Liu, J., Lin, N., & Li, X. (2022). The database of eye-movement measures on words in Chinese reading. Scientific Data, 9(1), 411. https://doi.org/10.1038/s41597-022-01464-6 |
[84] |
Zhang, M., Bai, X., & Li, S. (2022). Word complexity modulates the divided-word effect during Chinese reading. Frontiers in Psychology, 13, 921056. https://doi.org/10.3389/fpsyg.2022.921056
doi: 10.3389/fpsyg.2022.921056 URL |
[85] |
Zhang, M., Liversedge, S. P., Bai, X., Yan, G., & Zang, C. (2019). The influence of foveal lexical processing load on parafoveal preview and saccadic targeting during Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 45(6), 812-825. https://doi.org/10.1037/xhp0000644
doi: 10.1037/xhp0000644 URL |
[86] |
Zhang, Y., Wang, M., & Wang, J. (2022). The sequence effect: Character position processing in Chinese words. Frontiers in Psychology, 13, 877627. https://doi.org/10.3389/fpsyg.2022.877627
doi: 10.3389/fpsyg.2022.877627 URL |
[87] |
Zhou, W., Wang, A., Shu, H., Kliegl, R., & Yan, M. (2018). Word segmentation by alternating colors facilitates eye guidance in Chinese reading. Memory & Cognition, 46(5), 729-740. https://doi.org/10.3758/s13421-018-0797-5
doi: 10.3758/s13421-018-0797-5 URL |
[1] | LI Weiyang;XIAO Yuchun. Swift Trust in Temporary Organizations: Conceptualization, Antecedents and Consequences [J]. Advances in Psychological Science, 2014, 22(8): 1282-1293. |
[2] | Chen Qingrong;Deng Zhu. Eyemovement Theories and SWIFT Model [J]. , 2006, 14(5): 675-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||