Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (3): 402-415.doi: 10.3724/SP.J.1042.2023.00402
• Regular Articles • Previous Articles Next Articles
LIU Peihan1, ZHANG Huoyin2, ZHANG Xukai1, LI Hong1, LEI Yi1()
Received:
2021-10-15
Online:
2023-03-15
Published:
2022-12-22
Contact:
LEI Yi
E-mail:642034842@qq.com
CLC Number:
LIU Peihan, ZHANG Huoyin, ZHANG Xukai, LI Hong, LEI Yi. Effects of acute versus chronic pain on reward processing and the underlying neural mechanisms involved[J]. Advances in Psychological Science, 2023, 31(3): 402-415.
研究 | 被试类型 | 刺激类型 | 奖赏任务/刺激 | 奖赏成分 | 研究方法 | 指标 |
---|---|---|---|---|---|---|
Zubieta, | 人类 | 实验室诱导急性疼痛 | - | 阿片系统与享乐成分相关 | PET实验 | 口腔面部表情 |
Foo et al., | 大鼠 | 注射福尔马林 | 蔗糖奖赏 | 动机成分及 享乐成分无变化 | - | 进食行为的差异 |
Low & Fitzgerald, | 大鼠 | 皮肤切口 | 蔗糖奖赏 | 动机成分 | - | 感觉敏感性 |
Darbor et al., | 人类 | 冷压刺激 | 食物奖赏 | 动机成分 | 行为实验 | 疼痛强度评分 食物重量消耗 |
Gandhi et al., | 人类 | 热痛刺激 | MID任务 (金钱奖赏) | 动机成分 | 行为实验 | RT、SCR 疼痛强度、不愉快程度评分 |
Becker et al., | 人类 | 热痛刺激 | 金钱决策任务 (金钱奖赏) | 享乐成分 | 行为实验 | 奖赏喜爱程度评分 |
Wang et al., | 人类 | 热痛刺激 (辣椒素) | 金钱决策任务 (金钱奖赏) | 动机成分 | 行为实验 | 疼痛情感评分 阿片系统的激活 |
Wang et al., | 人类 | 热痛刺激 (辣椒素) | 猜牌游戏 (金钱奖赏) | 享乐成分 | fMRI实验 | 主观幸福感评分 |
研究 | 被试类型 | 刺激类型 | 奖赏任务/刺激 | 奖赏成分 | 研究方法 | 指标 |
---|---|---|---|---|---|---|
Zubieta, | 人类 | 实验室诱导急性疼痛 | - | 阿片系统与享乐成分相关 | PET实验 | 口腔面部表情 |
Foo et al., | 大鼠 | 注射福尔马林 | 蔗糖奖赏 | 动机成分及 享乐成分无变化 | - | 进食行为的差异 |
Low & Fitzgerald, | 大鼠 | 皮肤切口 | 蔗糖奖赏 | 动机成分 | - | 感觉敏感性 |
Darbor et al., | 人类 | 冷压刺激 | 食物奖赏 | 动机成分 | 行为实验 | 疼痛强度评分 食物重量消耗 |
Gandhi et al., | 人类 | 热痛刺激 | MID任务 (金钱奖赏) | 动机成分 | 行为实验 | RT、SCR 疼痛强度、不愉快程度评分 |
Becker et al., | 人类 | 热痛刺激 | 金钱决策任务 (金钱奖赏) | 享乐成分 | 行为实验 | 奖赏喜爱程度评分 |
Wang et al., | 人类 | 热痛刺激 (辣椒素) | 金钱决策任务 (金钱奖赏) | 动机成分 | 行为实验 | 疼痛情感评分 阿片系统的激活 |
Wang et al., | 人类 | 热痛刺激 (辣椒素) | 猜牌游戏 (金钱奖赏) | 享乐成分 | fMRI实验 | 主观幸福感评分 |
研究 | 被试类型 | 刺激类型 | 奖赏任务/刺激 | 奖励成分 | 研究方法 | 指标 |
---|---|---|---|---|---|---|
Marbach et al., | 人类 | CLBP | - | 享乐成分 | 行为实验 | 身体快感缺失量表 |
Becerra-García & Robles Jurado, | 人类 | FM | - | 动机成分 | 行为实验 | 行为方法系统的问卷 |
Y.-T. Liu et al., | 小鼠 | CWP | 蔗糖奖赏 | 动机成分 享乐成分 | - | 蔗糖奖赏消耗模式 |
Okun et al., | 大鼠 | 术后神经病理性疼痛 | 蔗糖奖赏 | 动机成分及 享乐成分无变化 | - | 口腔面部表情 |
Schwartz et al., | 小鼠 | 慢性炎症性/神经病理性疼痛 | 蔗糖奖赏 | 动机成分 享乐成分 | - | 蔗糖奖赏消耗模式 |
Salcido et al., | 小鼠 | 慢性炎症性疼痛 | 接近-回避范式 (蔗糖奖赏) | 动机成分 | - | 杠杆按压次数 |
Small & Apkarian, | 人类 | CBP | 食物奖赏 | 享乐成分无变化 | 行为实验 | 奖赏喜爱程度评分 |
Geha et al., | 人类 | CLBP | 食物奖赏 | 享乐成分 | 行为实验 | 奖赏喜爱程度评分 |
Nees et al., | 人类 | CBP | 社会奖赏 | 享乐成分 | fMRI实验 | 奖赏喜爱程度评分 |
Kocselet al., | 人类 | EM | MID任务 (金钱奖赏) | 享乐成分 | fMRI实验 | 奖赏喜爱程度评分 |
Martucciet al., | 人类 | FM | MID任务 (金钱奖赏) | 动机成分 | fMRI实验 | RT 奖赏唤醒度评分 |
Kim et al., | 人类 | FM CLBP | MID任务 (金钱奖赏) | 动机成分 享乐成分 | fMRI实验 | RT 快感缺失及BDI评分 |
研究 | 被试类型 | 刺激类型 | 奖赏任务/刺激 | 奖励成分 | 研究方法 | 指标 |
---|---|---|---|---|---|---|
Marbach et al., | 人类 | CLBP | - | 享乐成分 | 行为实验 | 身体快感缺失量表 |
Becerra-García & Robles Jurado, | 人类 | FM | - | 动机成分 | 行为实验 | 行为方法系统的问卷 |
Y.-T. Liu et al., | 小鼠 | CWP | 蔗糖奖赏 | 动机成分 享乐成分 | - | 蔗糖奖赏消耗模式 |
Okun et al., | 大鼠 | 术后神经病理性疼痛 | 蔗糖奖赏 | 动机成分及 享乐成分无变化 | - | 口腔面部表情 |
Schwartz et al., | 小鼠 | 慢性炎症性/神经病理性疼痛 | 蔗糖奖赏 | 动机成分 享乐成分 | - | 蔗糖奖赏消耗模式 |
Salcido et al., | 小鼠 | 慢性炎症性疼痛 | 接近-回避范式 (蔗糖奖赏) | 动机成分 | - | 杠杆按压次数 |
Small & Apkarian, | 人类 | CBP | 食物奖赏 | 享乐成分无变化 | 行为实验 | 奖赏喜爱程度评分 |
Geha et al., | 人类 | CLBP | 食物奖赏 | 享乐成分 | 行为实验 | 奖赏喜爱程度评分 |
Nees et al., | 人类 | CBP | 社会奖赏 | 享乐成分 | fMRI实验 | 奖赏喜爱程度评分 |
Kocselet al., | 人类 | EM | MID任务 (金钱奖赏) | 享乐成分 | fMRI实验 | 奖赏喜爱程度评分 |
Martucciet al., | 人类 | FM | MID任务 (金钱奖赏) | 动机成分 | fMRI实验 | RT 奖赏唤醒度评分 |
Kim et al., | 人类 | FM CLBP | MID任务 (金钱奖赏) | 动机成分 享乐成分 | fMRI实验 | RT 快感缺失及BDI评分 |
[1] | 陈乐乐, 黄蓉, 贾世伟. (2020). 反馈相关负波与成瘾. 心理科学进展, 28(6), 959-969. |
[2] | 李丹阳, 李鹏, 李红. (2018). 反馈负波及其近10年理论解释. 心理科学进展, 26(9), 1642-1650. |
[3] | 李琪, 许晶, 郑亚. (2017). 刺激前负波:奖赏期待的电生理指标. 心理科学进展, 25(7), 1114-1121. |
[4] |
Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current Opinion in Psychology, 4, 114-118.
pmid: 26258159 |
[5] |
Apkarian, V. A., Sosa, Y., Krauss, B. R., Thomas, S. P., Fredrickson, B. E., Levy, R. E., Harden, N. R., & Chialvo, D. R. (2004). Chronic pain patients are impaired on an emotional decision-making task. Pain, 108(1-2), 129-136.
doi: 10.1016/j.pain.2003.12.015 pmid: 15109516 |
[6] |
Baliki, M. N., & Apkarian, A. V. (2015). Nociception, pain, negative moods, and behavior selection. Neuron, 87(3), 474-491.
doi: 10.1016/j.neuron.2015.06.005 pmid: 26247858 |
[7] |
Baliki, M. N., Petre, B., Torbey, S., Herrmann, K. M., Huang, L., Schnitzer, T. J., Fields, H. L., & Apkarian, A. V. (2012). Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience, 15(8), 1117-1119.
doi: 10.1038/nn.3153 pmid: 22751038 |
[8] |
Becerra-García, J. A., & Robles Jurado, M. J. (2014). Behavioral approach system activity and self-reported somatic symptoms in fibromyalgia: An exploratory study. International Journal of Rheumatic Diseases, 17(1), 89-92.
doi: 10.1111/1756-185X.12034 pmid: 24472271 |
[9] |
Becker, S., Gandhi, W., Chen, Y. J., & Schweinhardt, P. (2017). Subjective utility moderates bidirectional effects of conflicting motivations on pain perception. Scientific Reports, 7(1), 7790.
doi: 10.1038/s41598-017-08454-4 pmid: 28798478 |
[10] |
Becker, S., Gandhi, W., Elfassy, N. M., & Schweinhardt, P. (2013). The role of dopamine in the perceptual modulation of nociceptive stimuli by monetary wins or losses. European Journal of Neuroscience, 38(7), 3080-3088.
doi: 10.1111/ejn.12303 pmid: 23841460 |
[11] |
Becker, S., Gandhi, W., & Schweinhardt, P. (2012). Cerebral interactions of pain and reward and their relevance for chronic pain. Neuroscience Letters, 520(2), 182-187.
doi: 10.1016/j.neulet.2012.03.013 pmid: 22440855 |
[12] |
Becker, S., Kleinböhl, D., Baus, D., & Hölzl, R. (2011). Operant learning of perceptual sensitization and habituation is impaired in fibromyalgia patients with and without irritable bowel syndrome. Pain, 152(6), 1408-1417.
doi: 10.1016/j.pain.2011.02.027 pmid: 21439728 |
[13] |
Becker, S., Löffler, M., & Seymour, B. (2020). Reward enhances pain discrimination in humans. Psychological Science, 31(9), 1191-1199.
doi: 10.1177/0956797620939588 pmid: 32818387 |
[14] |
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664.
doi: 10.1016/j.neuron.2015.02.018 pmid: 25950633 |
[15] |
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘Liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65-73.
doi: 10.1016/j.coph.2008.12.014 pmid: 19162544 |
[16] |
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815-834.
doi: 10.1016/j.neuron.2010.11.022 pmid: 21144997 |
[17] |
Bushnell, M. C., Čeko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews Neuroscience, 14(7), 502-511.
doi: 10.1038/nrn3516 pmid: 23719569 |
[18] |
Cameron, J. D., Goldfield, G. S., Finlayson, G., Blundell, J. E., & Doucet, É. (2014). Fasting for 24 hours heightens reward from food and food-related cues. PLoS ONE, 9(1), e85970.
doi: 10.1371/journal.pone.0085970 URL |
[19] |
Chapman, C. R., & Vierck, C. J. (2017). The transition of acute postoperative pain to chronic pain: An integrative overview of research on mechanisms. The Journal of Pain, 18(4), 359.e1-359.e38.
doi: 10.1016/j.jpain.2016.11.004 URL |
[20] |
Cowen, S. L., Phelps, C. E., Navratilova, E., McKinzie, D. L., Okun, A., Husain, O., Gleason, S. D., Witkin, J. M., & Porreca, F. (2018). Chronic pain impairs cognitive flexibility and engages novel learning strategies in rats. Pain, 159(7), 1403-1412.
doi: 10.1097/j.pain.0000000000001226 pmid: 29578947 |
[21] |
Darbor, K. E., Lench, H. C., & Carter-Sowell, A. R. (2016). Do people eat the pain away? The effects of acute physical pain on subsequent consumption of sweet-tasting food. PLOS ONE, 11(11), e0166931.
doi: 10.1371/journal.pone.0166931 URL |
[22] |
DosSantos, M. F., de Souza Moura, B., & DaSilva, A. F. (2017). Reward circuitry plasticity in pain perception and modulation. Frontiers in Pharmacology, 8, 790.
doi: 10.3389/fphar.2017.00790 pmid: 29209204 |
[23] |
Eisenberger, N. I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical and social pain. Nature Reviews Neuroscience, 13(6), 421-434.
doi: 10.1038/nrn3231 pmid: 22551663 |
[24] |
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85-93.
doi: 10.1016/j.tics.2010.11.004 pmid: 21167765 |
[25] |
Fields, H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5(7), 565-575.
doi: 10.1038/nrn1431 pmid: 15208698 |
[26] |
Fields, H. (2007). Understanding how opioids contribute to reward and analgesia. Regional Anesthesia and Pain Medicine, 32(3), 242-246.
pmid: 17543821 |
[27] |
Finan, P. H., Letzen, J., Epstein, D. H., Mun, C. J., Stull, S., Kowalczyk, W. J., ... Preston, K. L. (2021). Reward responsiveness in patients with opioid use disorder on opioid agonist treatment: Role of comorbid chronic pain. Pain Medicine, 22(9), 2019-2027.
doi: 10.1093/pm/pnab031 pmid: 33624802 |
[28] |
Foo, H., Crabtree, K., Thrasher, A., & Mason, P. (2009). Eating is a protected behavior even in the face of persistent pain in male rats. Physiology & Behavior, 97(3-4), 426-429.
doi: 10.1016/j.physbeh.2009.03.015 URL |
[29] |
Gandhi, W., Becker, S., & Schweinhardt, P. (2013). Pain increases motivational drive to obtain reward, but does not affect associated hedonic responses: A behavioural study in healthy volunteers. European Journal of Pain, 17(7), 1093-1103.
doi: 10.1002/j.1532-2149.2012.00281.x pmid: 23349058 |
[30] |
Geha, P., deAraujo, I., Green, B., & Small, D. M. (2014). Decreased food pleasure and disrupted satiety signals in chronic low back pain. Pain, 155(4), 712-722.
doi: 10.1016/j.pain.2013.12.027 pmid: 24384160 |
[31] |
Glare, P., Aubrey, K. R., & Myles, P. S. (2019). Transition from acute to chronic pain after surgery. The Lancet, 393(10180), 1537-1546.
doi: 10.1016/S0140-6736(19)30352-6 URL |
[32] |
Gureje, O., von Korff, M., Kola, L., Demyttenaere, K., He, Y., Posada-Villa, J., ... Alonso, J. (2008). The relation between multiple pains and mental disorders: Results from the World Mental Health Surveys. Pain, 135(1-2), 82-91.
doi: 10.1016/j.pain.2007.05.005 pmid: 17570586 |
[33] |
Haack, M., Simpson, N., Sethna, N., Kaur, S., & Mullington, J. (2020). Sleep deficiency and chronic pain: Potential underlying mechanisms and clinical implications. Neuropsychopharmacology, 45(1), 205-216.
doi: 10.1038/s41386-019-0439-z pmid: 31207606 |
[34] |
Harris, R. E., Clauw, D. J., Scott, D. J., McLean, S. A., Gracely, R. H., & Zubieta, J.-K. (2007). Decreased central μ-opioid receptor availability in fibromyalgia. Journal of Neuroscience, 27(37), 10000-10006.
doi: 10.1523/JNEUROSCI.2849-07.2007 URL |
[35] |
Hashmi, J. A., Baliki, M. N., Huang, L., Baria, A. T., Torbey, S., Hermann, K. M., Schnitzer, T. J., & Apkarian, A. V. (2013). Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain, 136(9), 2751-2768.
doi: 10.1093/brain/awt211 URL |
[36] |
Huckins, J. F., Adeyemo, B., Miezin, F. M., Power, J. D., Gordon, E. M., Laumann, T. O., ... Kelley, W. M. (2019). Reward-related regions form a preferentially coupled system at rest. Human Brain Mapping, 40(2), 361-376.
doi: 10.1002/hbm.24377 pmid: 30251766 |
[37] |
Jin, C., Yuan, K., Zhao, L., Zhao, L., Yu, D., von Deneen, K. M., ... Tian, J. (2013). Structural and functional abnormalities in migraine patients without aura. NMR in Biomedicine, 26(1), 58-64.
doi: 10.1002/nbm.2819 pmid: 22674568 |
[38] |
Kamping, S., Bomba, I. C., Kanske, P., Diesch, E., & Flor, H. (2013). Deficient modulation of pain by a positive emotional context in fibromyalgia patients. Pain, 154(9), 1846-1855.
doi: 10.1016/j.pain.2013.06.003 pmid: 23752177 |
[39] |
Kehlet, H. (2018). Postoperative pain, analgesia, and recovery— Bedfellows that cannot be ignored. Pain, 159(1), S11-S16.
doi: 10.1097/j.pain.0000000000001243 URL |
[40] |
Kim, D. J., Jassar, H., Lim, M., Nascimento, T. D., & DaSilva, A. F. (2021). Dopaminergic regulation of reward system connectivity underpins pain and emotional suffering in migraine. Journal of Pain Research, 14, 631-643.
doi: 10.2147/JPR.S296540 pmid: 33727857 |
[41] |
Kim, M., Mawla, I., Albrecht, D. S., Admon, R., Torrado-Carvajal, A., Bergan, C., ... Loggia, M. L. (2020). Striatal hypofunction as a neural correlate of mood alterations in chronic pain patients. NeuroImage, 211, 116656.
doi: 10.1016/j.neuroimage.2020.116656 URL |
[42] | Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuro Report, 12(17), 3683-3687. |
[43] |
Kocsel, N., Galambos, A., Szabó, E., Édes, A. E., Magyar, M., Zsombók, T., ... Juhász, G. (2019). Altered neural activity to monetary reward/loss processing in episodic migraine. Scientific Reports, 9(1), 5420.
doi: 10.1038/s41598-019-41867-x pmid: 30931979 |
[44] |
Kurnianingsih, Y. A., & Mullette-Gillman, O. A. (2016). Neural mechanisms of the transformation from objective value to subjective utility: Converting from count to worth. Frontiers in Neuroscience, 10, 507.
pmid: 27881949 |
[45] | Liu, X., Wang, N., Gu, L., Guo, J., Wang, J., & Luo, F. (2019). Reward processing under chronic pain from the perspective of “Liking” and “Wanting”: A Narrative Review. Pain Research and Management, 2019, 6760121. |
[46] |
Liu, Y.-T., Shao, Y.-W., Yen, C.-T., & Shaw, F.-Z. (2014). Acid-induced hyperalgesia and anxio-depressive comorbidity in rats. Physiology & Behavior, 131, 105-110.
doi: 10.1016/j.physbeh.2014.03.030 URL |
[47] | Loggia, M. L., Berna, C., Kim, J., Cahalan, C. M., Gollub, R. L., Wasan, A. D., ... Napadow, V. (2014). Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia. Arthritis & Rheumatology, 66(1), 203-212. |
[48] |
Lonsdorf, T. B., & Richter, J. (2017). Challenges of fear conditioning research in the age of RDoC. Zeitschrift Für Psychologie, 225(3), 189-199.
doi: 10.1027/2151-2604/a000303 URL |
[49] |
Low, L. A., & Fitzgerald, M. (2012). Acute pain and a motivational pathway in adult rats: Influence of early life pain experience. PLoS ONE, 7(3), e34316.
doi: 10.1371/journal.pone.0034316 URL |
[50] |
Marbach, J. J., Richlin, D. M., & Lipton, J. A. (1983). Illness behavior, Depression and anhedonia in myofascial face and back pain patients. Psychotherapy and Psychosomatics, 39(1), 47-54.
doi: 10.1159/000287720 pmid: 6220421 |
[51] |
Martucci, K. T., Borg, N., MacNiven, K. H., Knutson, B., & Mackey, S. C. (2018). Altered prefrontal correlates of monetary anticipation and outcome in chronic pain. Pain, 159(8), 1494-1507.
doi: 10.1097/j.pain.0000000000001232 pmid: 29790868 |
[52] |
Martucci, K. T., MacNiven, K. H., Borg, N., Knutson, B., & Mackey, S. C. (2019). Apparent effects of opioid use on neural responses to reward in chronic pain. Scientific Reports, 9(1), 9633.
doi: 10.1038/s41598-019-45961-y pmid: 31270360 |
[53] |
McFarland, B. R., Shankman, S. A., Tenke, C. E., Bruder, G. E., & Klein, D. N. (2006). Behavioral activation system deficits predict the six-month course of depression. Journal of Affective Disorders, 91(2-3), 229-234.
doi: 10.1016/j.jad.2006.01.012 pmid: 16487598 |
[54] |
Mitsi, V., & Zachariou, V. (2016). Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience, 338, 81-92.
doi: S0306-4522(16)30166-X pmid: 27189881 |
[55] |
Murray, C. J. L., & Lopez, A. D. (2013). Measuring the global burden of disease. New England Journal of Medicine, 369(5), 448-457.
doi: 10.1056/NEJMra1201534 URL |
[56] |
Navratilova, E., Morimura, K., Xie, J. Y., Atcherley, C. W., Ossipov, M. H., & Porreca, F. (2016). Positive emotions and brain reward circuits in chronic pain. Journal of Comparative Neurology, 524(8), 1646-1652.
doi: 10.1002/cne.23968 pmid: 26788716 |
[57] |
Nees, F., Becker, S., Millenet, S., Banaschewski, T., Poustka, L., Bokde, A., ··· IMAGEN consortium. (2017). Brain substrates of reward processing and the μ-opioid receptor: A pathway into pain? Pain, 158(2), 212-219.
doi: 10.1097/j.pain.0000000000000720 pmid: 28092323 |
[58] |
Nees, F., Usai, K., Löffler, M., & Flor, H. (2019). The evaluation and brain representation of pleasant touch in chronic and subacute back pain. Neurobiology of Pain, 5, 100025.
doi: 10.1016/j.ynpai.2018.10.002 URL |
[59] |
Nijs, J., Mairesse, O., Neu, D., Leysen, L., Danneels, L., Cagnie, B., ... Goubert, D. (2018). Sleep disturbances in chronic pain: Neurobiology, assessment, and treatment in physical therapist practice. Physical Therapy, 98(5), 325-335.
doi: 10.1093/ptj/pzy020 pmid: 29425327 |
[60] |
Nusslock, R., & Alloy, L. B. (2017). Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. Journal of Affective Disorders, 216, 3-16.
doi: S0165-0327(16)31001-1 pmid: 28237133 |
[61] |
Okun, A., McKinzie, D. L., Witkin, J. M., Remeniuk, B., Husein, O., Gleason, S. D., ... Porreca, F. (2016). Hedonic and motivational responses to food reward are unchanged in rats with neuropathic pain. Pain, 157(12), 2731-2738.
doi: 10.1097/j.pain.0000000000000695 pmid: 27548047 |
[62] |
Peciña, S., & Berridge, K. C. (2005). Hedonic hot spot in Nucleus Accumbens Shell: Where do mu-Opioids cause increased hedonic impact of sweetness? Journal of Neuroscience, 25(50), 11777-11786.
doi: 10.1523/JNEUROSCI.2329-05.2005 pmid: 16354936 |
[63] |
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “Wanting” but not “Liking” for sweet rewards. The Journal of Neuroscience, 23(28), 9395-9402.
doi: 10.1523/JNEUROSCI.23-28-09395.2003 URL |
[64] |
Porreca, F., & Navratilova, E. (2017). Reward, motivation, and emotion of pain and its relief. Pain, 158(1), S43-S49.
doi: 10.1097/j.pain.0000000000000798 URL |
[65] |
Rizvi, S. J., Gandhi, W., & Salomons, T. (2021). Reward processing as a common diathesis for chronic pain and depression. Neuroscience & Biobehavioral Reviews, 127, 749-760.
doi: 10.1016/j.neubiorev.2021.04.033 URL |
[66] |
Roughan, W. H., Campos, A. I., García-Marín, L. M., Cuéllar-Partida, G., Lupton, M. K., Hickie, I. B., ... Rentería, M. E. (2021). Comorbid chronic pain and depression: Shared risk factors and differential antidepressant effectiveness. Frontiers in Psychiatry, 12, 643609.
doi: 10.3389/fpsyt.2021.643609 URL |
[67] |
Salcido, C. A., Harris Bozer, A. L., McNabb, C. T., & Fuchs, P. N. (2018). Assessing the aversive nature of pain with an operant approach/avoidance paradigm. Physiology & Behavior, 189, 59-63.
doi: 10.1016/j.physbeh.2018.02.053 URL |
[68] |
Schwartz, N., Miller, C., & Fields, H. L. (2017). Cortico- Accumbens regulation of approach-avoidance behavior is modified by experience and chronic pain. Cell Reports, 19(8), 1522-1531.
doi: S2211-1247(17)30602-2 pmid: 28538173 |
[69] |
Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S., & Zubieta, J.-K. (2006). Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. Journal of Neuroscience, 26(42), 10789-10795.
doi: 10.1523/JNEUROSCI.2577-06.2006 pmid: 17050717 |
[70] | Sheng, J., Liu, S., Wang, Y., Cui, R., & Zhang, X. (2017). The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plasticity, 2017, 9724371. |
[71] |
Small, D. M., & Apkarian, V. A. (2006). Increased taste intensity perception exhibited by patients with chronic back pain. Pain, 120(1-2), 124-130.
doi: 10.1016/j.pain.2005.10.021 pmid: 16360267 |
[72] |
Taylor, A. M. W., Becker, S., Schweinhardt, P., & Cahill, C. (2016). Mesolimbic dopamine signaling in acute and chronic pain: Implications for motivation, analgesia, and addiction. Pain, 157(6), 1194-1198.
doi: 10.1097/j.pain.0000000000000494 pmid: 26797678 |
[73] |
Thompson, S. J., Pitcher, M. H., Stone, L. S., Tarum, F., Niu, G., Chen, X., ... Bushnell, M. C. (2018). Chronic neuropathic pain reduces opioid receptor availability with associated anhedonia in rat. Pain, 159(9), 1856-1866.
doi: 10.1097/j.pain.0000000000001282 pmid: 29794614 |
[74] |
Wang, C., Bao, C., Gao, J., Gu, Y., & Dong, X. (2020). Pain modulates neural responses to reward in the medial prefrontal cortex. Human Brain Mapping, 41(5), 1372-1381.
doi: 10.1002/hbm.24882 pmid: 31785068 |
[75] |
Wang, C., Gao, J., Ma, Y., Zhu, C., & Dong, X.-W. (2018). Physical pain increases interpersonal trust in females. European Journal of Pain, 22(1), 150-160.
doi: 10.1002/ejp.1111 pmid: 28913979 |
[76] | Watanabe, M., & Narita, M. (2018). Brain reward circuit and pain. In B.-C. Shyu & M. Tominaga (Eds.), Advances in pain research: Mechanisms and modulation of chronic pain (Vol. 1099, pp. 201-210). Springer Singapore. |
[77] |
Wood, P. B., Schweinhardt, P., Jaeger, E., Dagher, A., Hakyemez, H., Rabiner, E. A., Bushnell, M. C., & Chizh, B. A. (2007). Fibromyalgia patients show an abnormal dopamine response to pain. European Journal of Neuroscience, 25(12), 3576-3582.
doi: 10.1111/j.1460-9568.2007.05623.x pmid: 17610577 |
[78] |
Yang, X., Liu, X., Zeng, Y., Wu, R., Zhao, W., Xin, F., ... Becker, B. (2021). Secondary rewards acquire enhanced incentive motivation via increasing anticipatory activity of the lateral orbitofrontal cortex. Brain Structure and Function, 226(7), 2339-2355.
doi: 10.1007/s00429-021-02333-5 pmid: 34254166 |
[79] |
Yarkoni, T., Poldrack, R. A., Nichols, T. E., van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665-670.
doi: 10.1038/nmeth.1635 pmid: 21706013 |
[80] |
Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13(1), 471-495.
doi: 10.1146/annurev-clinpsy-032816-044957 URL |
[81] |
Zubieta, J.-K., Smith, Y. R., Bueller, J. A., Kilbourn, M. R., Jewett, D. M., ... Stohler, C. S. (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science, 293(5528), 311-315.
doi: 10.1126/science.1060952 pmid: 11452128 |
[1] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[2] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[3] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[4] | LIU Bo, CHENG Xiangjuan, YUE Heng, BAO Hugejiletu. The role of inhibition function in pain [J]. Advances in Psychological Science, 2022, 30(6): 1253-1261. |
[5] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[6] | GU Lijia, GONG Wenxiao, ZHANG Jing, CHEN Wei, GUO Jianyou. The influence of body ownership illusion on pain and its potential mechanisms [J]. Advances in Psychological Science, 2022, 30(11): 2518-2528. |
[7] | YAN Wan-Sen, LIU Su-Jiao, ZHANG Ran-Ran, XU Peng. The susceptibility of compulsive traits and neural substrates of the prefrontal and anti-reward systems implicated in drug addiction [J]. Advances in Psychological Science, 2021, 29(8): 1345-1357. |
[8] | QIN Haofang, HUANG Rong, JIA Shiwei. Feedback-related negativity: A biomarker for depression [J]. Advances in Psychological Science, 2021, 29(3): 404-413. |
[9] | WANG Lei, HE Huizhong, BI Xiaobin, ZHOU Li, FAN Xiaozhuang. Social deficits in autism spectrum disorder: A perspective from the social motivation theory [J]. Advances in Psychological Science, 2021, 29(12): 2209-2223. |
[10] | ZHOU Can, ZHOU Linshu, JIANG Cunmei. Neural mechanisms underlying the experience of musical pleasure [J]. Advances in Psychological Science, 2021, 29(1): 123-130. |
[11] | CHEN Lele, HUANG Rong, JIA Shiwei. Feedback-related negativity and addiction [J]. Advances in Psychological Science, 2020, 28(6): 959-968. |
[12] | LIU Xinhe, WANG Ning, WANG Jinyan, LUO Fei. Adaptive changes of interval timing in pain context [J]. Advances in Psychological Science, 2020, 28(5): 766-777. |
[13] | LIU Huichen, CHEN Jian. The pain perception of infant [J]. Advances in Psychological Science, 2020, 28(10): 1723-1732. |
[14] | Ran Zhuang, Yanyan Tu, Hui Li, Huimin Cao, Yanju Ren. Contributions of Reward- and Punishment-Association to Attentional Shifting and Disengagement [J]. Advances in Psychological Science, 2019, 27(suppl.): 72-72. |
[15] | YI Wei, MEI Shuting, ZHENG Ya. Effort: Cost or reward? [J]. Advances in Psychological Science, 2019, 27(8): 1439-1450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||