Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (3): 580-590.doi: 10.3724/SP.J.1042.2022.00580
• Regular Articles • Previous Articles Next Articles
WAN Bicheng, YANG Zheng, LI Hongting, MA Shu()
Received:
2021-04-10
Online:
2022-03-15
Published:
2022-01-25
Contact:
MA Shu
E-mail:mas@zstu.edu.cn
CLC Number:
WAN Bicheng, YANG Zheng, LI Hongting, MA Shu. The vivid tactile experience from vision and auditory: Clues from multisensory channel integration[J]. Advances in Psychological Science, 2022, 30(3): 580-590.
[1] | 吴淼. (2019). 视触觉交互的纹理力触觉感知实验研究及应用 (硕士学位论文). 东南大学, 南京. |
[2] |
Adams, W. J., Kerrigan, I. S., & Graf, E. W. (2016). Touch influences perceived gloss. Scientific Reports, 6(1), 21866- 21866.
doi: 10.1038/srep21866 URL |
[3] |
Aktar, T., Chen, J., Ettelaie, R., Holmes, M., & Henson, B. (2017). Human roughness perception and possible factors effecting roughness sensation. Journal of Texture Studies, 48(3), 181-192.
doi: 10.1111/jtxs.2017.48.issue-3 URL |
[4] | Altinsoy, M. E. (2004, April). The influence of frequency on the integration of auditory and tactile information. In: Proceedings of the 18th International Congress on Acoustics (ICA), Kyoto, Japan. |
[5] | Altinsoy, M. E. (2008, September). The effect of auditory cues on the audiotactile roughness perception: Modulation frequency and sound pressure level. In: International Workshop on Haptic and Audio Interaction Design, HAID 2008, A. Pirhonen and S. Brewster (Eds.), Lecture Notes in Computer Science (Vol. 5270, pp. 120-129). Springer, Berlin and Heidelberg, Germany. |
[6] | Aoyama, S., Iwai, D., & Sato, K. (2016, November). Altering resistive force perception by modulating velocity of dot pattern projected onto hand. In Proceedings of the 2016 workshop on Multimodal Virtual and Augmented Reality, Tokyo, Japan. |
[7] | Bi, W., Newport, J., & Xiao, B. (2018, August). Interaction between static visual cues and force-feedback on the perception of mass of virtual objects. In Proceedings of the 15th ACM Symposium on Applied Perception, New York, NY: ACM. |
[8] |
Bizley, J. K., Shinn-Cunningham, B. G., & Lee, A. K. C. (2012). Nothing is irrelevant in a noisy world: Sensory illusions reveal obligatory within-and across-modality integration. The Journal of Neuroscience, 32(39), 13402- 13410.
doi: 10.1523/JNEUROSCI.2495-12.2012 URL |
[9] | Bosman, I. D. V. (2018). Using binaural audio for inducing intersensory illusions to create illusory tactile feedback in virtual reality (Unpublished master’s thesis). University of Pretoria |
[10] |
Collins, K., & Kapralos, B. (2019). Pseudo-haptics: Leveraging cross-modal perception in virtual environments. The Senses and Society, 14(3), 313-329.
doi: 10.1080/17458927.2019.1619318 URL |
[11] | Cooper, N., Milella, F., Cant, I. E., Pinto, C., White, M. D., & Meyer, G. F. (2016). The effects of multisensory cues on the sense of presence and task performance in a virtual reality environment. Perception, 45, 332-333. |
[12] |
Crommett, L. E., Pérez-Bellido, A., & Yau, J. M. (2017). Auditory adaptation improves tactile frequency perception. Journal of Neurophysiology, 117(3), 1352-1362.
doi: 10.1152/jn.00783.2016 pmid: 28077668 |
[13] |
Culbertson, H., Schorr, S. B., & Okamura, A. M. (2018). Haptics: The present and future of artificial touch sensation. Annual Review of Control, Robotics, and Autonomous Systems, 1(1), 1-12.
doi: 10.1146/control.2018.1.issue-1 URL |
[14] |
Eitan, Z., & Rothschild, I. (2011). How music touches: Musical parameters and listeners’ audio-tactile metaphorical mappings. Psychology of Music, 39(4), 449-467.
doi: 10.1177/0305735610377592 URL |
[15] |
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433
doi: 10.1038/415429a URL |
[16] |
Etzi, R., Ferrise, F., Bordegoni, M., Zampini, M., & Gallace, A. (2018). The effect of visual and auditory information on the perception of pleasantness and roughness of virtual surfaces. Multisensory Research, 31(6), 501-522.
doi: 10.1163/22134808-00002603 URL |
[17] |
Guest, S., Catmur, C., Lloyd, D., & Spence, C. (2002). Audiotactile interactions in roughness perception. Experimental Brain Research, 146(2), 161-171.
doi: 10.1007/s00221-002-1164-z URL |
[18] | Günther, S., Makhija, M., Müller, F., Schön, D., Mühlhäuser, M., & Funk, M. (2019, June). PneumAct: Pneumatic kinesthetic actuation of body joints in virtual reality environments. In Proceedings of the 2019 on Designing Interactive Systems Conference (DIS ’19). ACM, New York, NY, USA. |
[19] | Hannig, G., & Deml, B. (2008, August). Scrutinizing pseudo haptic feedback of surface roughness in virtual environments. In 2008 IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, Istanbul, Turkey. |
[20] | Hashimoto, T., Narumi, T., Nagao, R., Tanikawa, T., & Hirose, M. (2018, June). Effect of pseudo-haptic feedback on touchscreens on visual memory during image browsing. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Pisa, Italy. |
[21] |
Hecht, D., Reiner, M., & Karni, A. (2008). Enhancement of response times to bi- and tri-modal sensory stimuli during active movements. Experimental Brain Research, 185(4), 655-665.
doi: 10.1007/s00221-007-1191-x URL |
[22] | Hirao, Y., Takala, T. M., & Lecuyer, A. (2020). Comparing motion-based versus controller-based pseudo-haptic weight sensations in VR. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Munich, Germany. |
[23] |
Ho, Y. X., Landy, M. S., & Maloney, L. T. (2006). How direction of illumination affects visually perceived surface roughness. Journal of Vision, 6(5), 634-648.
doi: 10.1167/6.6.634 URL |
[24] | Ho, Y. X., Maloney, L. T., & Landy, M. S. (2007). The effect of viewpoint on perceived visual roughness. Journal of Vision, 7(1), 1-1. |
[25] | Hoggan, E., & Brewster, S. (2007, November). Designing audio and tactile crossmodal icons for mobile devices. In Proceedings of the 9th international conference on Multimodal interfaces. Association for Computing Machinery, New York, NY, USA, ICMI.. |
[26] |
Honson, V., Huynh-Thu, Q., Arnison, M., Monaghan, D., Isherwood, Z. J., & Kim, J. (2020, May). Effects of shape, roughness and gloss on the perceived reflectance of colored surfaces. Frontiers in Psychology, 11, 485.
doi: 10.3389/fpsyg.2020.00485 URL |
[27] | Jones, B., & O’Neil, S. (1985). Combining vision and touch in texture perception. Attention Perception & Psychophysics, 37(1), 66-72. |
[28] |
Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8(6), 190-191.
pmid: 9512426 |
[29] | Kang, N., & Lee, S. (2018, February).A meta-analysis of recent studies on haptic feedback enhancement in immersive-augmented reality. In Proceedings of the 4th International Conference on Virtual Reality, Hong Kong. |
[30] | Kapralos, B., Moussa, F., Collins, K., & Dubrowski, A. (2017). Fidelity and multimodal interactions. In P. Wouters & H. Oostendorp (Eds.), Instructional Techniques to Facilitate Learning and Motivation of Serious Games (pp.79-101). Springer-Verlag |
[31] |
Kawabe, T. (2020). Mid-air action contributes to pseudo- haptic stiffness effects. IEEE Transactions on Haptics, 13(1), 18-24.
doi: 10.1109/TOH.4543165 URL |
[32] | Kim, S.-C., Kyung, K.-U., & Kwon, D.-S. (2007, March). The effect of sound on haptic perception. In: Jt. EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Tsukuba, Japan. |
[33] | Klatzky, R. L., & Lederman, S. J. (2010). Multisensory texture perception. In J. Kaiser & M. Naumer (Eds.), Multisensory object perception in the primate brain (pp.211-230). New York: Springer. |
[34] | Lécuyer, A., Coquillart, S., Kheddar, A., Richard, P., & Coiffet, P. (2000, March). Pseudo-haptic feedback: Can isometric input devices simulate force feedback? In Proceedings IEEE Virtual Reality 2000, New Brunswick, NJ, USA. |
[35] |
Lederman, S. J. (1979). Auditory texture perception. Perception, 8(1), 93-103.
pmid: 432084 |
[36] |
Lederman, S. J., & Abbott, S. G. (1981). Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 902-915.
doi: 10.1037/0096-1523.7.4.902 URL |
[37] | Lederman, S. J., Klatzky, R. L., Hamilton, C. L., & Ramsay, G. I. (1999). Perceiving roughness via a rigid probe: Psychophysical effects of exploration speed and mode of touch. Haptics-e, 1(1), 1-20. |
[38] | Lederman, S. J., Martin, A., Tong, C., & Klatzky, R. L. (2003, March). Relative performance using haptic and/or touch-produced auditory cues in a remote absolute texture identification task. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Los Angeles, CA, USA. |
[39] |
Lederman, S. J., Thorne, G., & Jones, B. (1986). Perception of texture by vision and touch: multidimensionality and intersensory integration. Journal of Experimental Psychology: Human Perception and Performance, 12(2), 169-180.
doi: 10.1037/0096-1523.12.2.169 URL |
[40] | Lederman, S. J., & Taylor, M. M. (1972). Fingertip force, surface geometry, and the perception of roughness by active touch. Attention Perception & Psychophysics, 12(5), 401-408. |
[41] |
Li, M., Sareh, S., Xu, G., Ridzuan, M. B., Luo, S., Xie, J., ... Althoefer, K. (2016). Evaluation of pseudo-haptic interactions with soft objects in virtual environments. PLOS ONE, 11(6), DOI: 10.1371/journal.pone.0157681
doi: 10.1371/journal.pone.0157681 |
[42] | Lin, J.-W., Han, P.-H., Lee, J.-Y., Chen, Y.-S., Chang, T.-W., Chen, K.-W., & Hung, Y.-P. (2017, July). Visualizing the keyboard in virtual reality for enhancing immersive experience. In ACM SIGGRAPH 2017 Posters (SIGGRAPH ’17). ACM, New York, NY, USA. |
[43] |
Malpica, S., Serrano, A., Allue, M., Bedia, M. G., & Masiá, B. (2020). Crossmodal perception in virtual reality. Multimedia Tools and Applications, 79(5), 3311-3331.
doi: 10.1007/s11042-019-7331-z URL |
[44] |
Marucci, M., di Flumeri, G., Borghini, G., Sciaraffa, N., Scandola, M., Pavone, E. F., ... Aricò, P. (2021). The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Scientific Reports, 11(1), 4831-4831.
doi: 10.1038/s41598-021-84196-8 pmid: 33649348 |
[45] | Matsumoto, D., Zhu, Y., Tanaka, Y., Yamazaki, K., Hasegawa, K., Makino, Y., & Shinoda, H. (2016, November).An immersive visuo-haptic VR environment with pseudo- haptic effects on perceived stiffness. International AsiaHaptics Conference, Chiba, Japan. |
[46] |
Okamoto, S., Nagano, H., & Yamada, Y. (2013). Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 6(1), 81-93.
doi: 10.1109/TOH.2012.32 pmid: 24808270 |
[47] | Ota, Y., Ujitoko, Y., Ban, Y., Sakurai, S., & Hirota, K. (2020, September). Surface roughness judgment during finger exploration is changeable by visual oscillations. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Leiden, The Netherlands. |
[48] | Paulun, V. C., Schmidt, F., van Assen, J. J. R., & Fleming, R. W. (2017). Shape, motion, and optical cues to stiffness of elastic objects. Journal of Vision, 17(1), 20-20. |
[49] | Peeva, D., Baird, B., Izmirli, O., & Blevins, D. (2004, July). Haptic and sound correlations: pitch, loudness and texture. In Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004. London, UK. |
[50] | Poling, G. L., Weisenberger, J. M., & Kerwin, T. (2003, March). The role of multisensory feedback in haptic surface perception. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Angeles, CA, USA. |
[51] | Ramírez, A. G. R., Luna, F. J. G., Villegas, O. O. V., & Nandayapa, M. (2018). Applications of haptic systems in virtual environments: A brief review. In O. Villegas, M. Nandayapa, & I. Soto (Eds.), Advanced Topics on Computer Vision, Control and Robotics in Mechatronics (pp. 349-377). Springer-Verlag. |
[52] | Samad, M., Gatti, E., Hermes, A., Benko, H., & Parise, C. (2019, May). Pseudo-haptic weight: Changing the perceived weight of virtual objects by manipulating control-display ratio. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK. |
[53] |
Sato, Y., Hiraki, T., Tanabe, N., Matsukura, H., Iwai, D., & Sato, K. (2020). Modifying texture perception with pseudo-haptic feedback for a projected virtual hand interface. IEEE Access, 8, 120473-120488.
doi: 10.1109/Access.6287639 URL |
[54] |
Schmidt, F., Paulun, V. C., van Assen, J. J. R., & Fleming, R. W. (2017). Inferring the stiffness of unfamiliar objects from optical, shape, and motion cues. Journal of Vision, 17(3), 18-18.
doi: 10.1167/17.3.18 pmid: 28355630 |
[55] |
Suzuki, Y., Gyoba, J., & Sakamoto, S. (2008). Selective effects of auditory stimuli on tactile roughness perception. Brain Research, 1242, 87-94.
doi: 10.1016/j.brainres.2008.06.104 pmid: 18638461 |
[56] | Suzuki, Y., Suzuki, M., & Gyoba, J. (2006). Effects of auditory feedback on tactile roughness perception. Tohoku Psychologica Folia, 65, 45-56. |
[57] | Todd, J. T., & Norman, J. F. (2018). The visual perception of metal. Journal of Vision, 18(3), 9-9. |
[58] |
Ujitoko, Y., Ban, Y., & Hirota, K. (2019a). Modulating fine roughness perception of vibrotactile textured surface using pseudo-haptic effect. IEEE Transactions on Visualization and Computer Graphics, 25(5), 1981-1990.
doi: 10.1109/TVCG.2945 URL |
[59] | Ujitoko, Y., Ban, Y., & Hirota, K. (2019b, July). Presenting static friction sensation at stick-slip transition using pseudo-haptic effect. In 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan. |
[60] |
Van Egmond, R., Lemmens, P., Pappas, T. N., & Ridder, H. D. (2009). Roughness in sound and vision. Electronic Imaging, 7240(72400). doi: 10.1117/12.817164
doi: 10.1117/12.817164 |
[61] | Vardar, Y., Wallraven, C., & Kuchenbecker, K. J. (2019, July). Fingertip interaction metrics correlate with visual and haptic perception of real surfaces. In 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan. |
[62] | Wall, S. A., & Harwin, W. S. (2001). Interaction of visual and haptic information in simulated environments: Texture perception. In S. Brewster & R. Murray-Smith (Eds.), Haptic human-computer interaction 2000 (pp. 108-117). Berlin/Heidelberg: Springer-Verlag. |
[63] |
Wang, D., Ohnishi, K., & Xu, W. (2020). Multimodal haptic display for virtual reality: A survey. IEEE Transactions on Industrial Electronics, 67(1), 610-623.
doi: 10.1109/TIE.41 URL |
[64] | Weisenberger, J. M., & Poling, G. L. (2004, March). Multisensory roughness perception of virtual surfaces: effects of correlated cues. In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS ’04. Proceedings, Chicago, IL, USA. |
[65] |
Zampini, M., Guest, S., & Spence, C. (2003). The role of auditory cues in modulating the perception of electric toothbrushes. Journal of Dental Research, 82(11), 929-932.
pmid: 14578508 |
[1] | LIANG Jing;LI Kaiyun;QU Fangbing;CHEN Yu-Hsin;YAN Wenjing;FU Xiaolan. The Nonverbal Visual Cues to Deception [J]. Advances in Psychological Science, 2014, 22(6): 995-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||