Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (3): 460-471.doi: 10.3724/SP.J.1042.2021.00460
• Regular Articles • Previous Articles Next Articles
ZHANG Xiaodan1, ZHANG Lijin1, DING Yulong2, QU Zhe1()
Received:
2020-07-05
Online:
2021-03-15
Published:
2021-01-26
Contact:
QU Zhe
E-mail:quzhe@mail.sysu.edu.cn
CLC Number:
ZHANG Xiaodan, ZHANG Lijin, DING Yulong, QU Zhe. Behavioral oscillations in attentional processing[J]. Advances in Psychological Science, 2021, 29(3): 460-471.
[1] | 贾建荣, 方方, 罗欢. (2019). 视觉注意的时间结构和动态神经机制. 生理学报, 71(1), 1-10. |
[2] | 武侠, 钟楚鹏, 丁玉珑, 曲折. (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364. |
[3] | 杨阳, 齐正阳, 张珂烨, 罗文波. (2019). 行为振荡: 揭示心理过程动态变化的新现象. 科学通报, 64(Z1), 67-75. |
[4] | 钟楚鹏, 曲折, 丁玉珑. (2020). 刺激前alpha振荡对视知觉的影响. 心理科学进展, 28(6), 945-958. |
[5] |
Arnal, L. H., & Giraud, A. L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390-398.
URL pmid: 22682813 |
[6] |
Bae, G. Y., & Luck, S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409-422.
URL pmid: 2263321 |
[7] | Benoni, H. (2018). Top-down prioritization of salient items may produce the so-called stimulus-driven capture. Frontiers in Psychology, 9, 218. |
[8] |
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626-1628.
URL pmid: 16973878 |
[9] |
Chen, A., Wang, A., Wang, T., Tang, X., & Zhang, M. (2017). Behavioral oscillations in visual attention modulated by task difficulty. Frontiers in Psychology, 8, 1630.
URL pmid: 29018373 |
[10] | Chica, A. B., Martín-Arévalo, E., Botta, F., & Lupiánez, J. (2014). The Spatial Orienting paradigm: How to design and interpret spatial attention experiments. Neuroscience & Biobehavioral Reviews, 40, 35-51. |
[11] | Cohen, M. R., & Maunsell, J. H. R. (2011). Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron, 70(6), 1192-1204. |
[12] | Dugué, L., McLelland, D., Lajous, M., & VanRullen, R. (2015). Attention searches nonuniformly in space and in time. Proceedings of the National Academy of Sciences, 112(49), 15214-15219. |
[13] | Dugué, L., Xue, A. M., & Carrasco, M. (2017). Distinct perceptual rhythms for feature and conjunction searches. Journal of Vision, 17(3), 22. |
[14] | Eckstein M. P. (2011). Visual search: A retrospective. Journal of Vision, 11(5), 14. |
[15] |
Feng, W., Störmer, V. S., Martinez, A., McDonald, J. J., & Hillyard, S. A. (2017). Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception. NeuroImage, 150, 318-328.
URL pmid: 28213117 |
[16] | Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention. Trends in Cognitive Sciences, 23(2), 87-101. |
[17] |
Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2019). The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nature Communications, 10(1), 215.
URL pmid: 30644391 |
[18] | Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23(24), 2553-2558. |
[19] |
Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2017). Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention. Psychological Science, 28(7), 929-941.
URL pmid: 28537480 |
[20] | Harris, A. M., Dux, P. E., & Mattingley, J. B. (2018). Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. Journal of Neuroscience, 38(12), 3092-3101. |
[21] | Helfrich, R. F., Fiebelkorn, I. C., Szczepanski, S. M., Lin, J. J., Parvizi, J., Knight, R. T., & Kastner, S. (2018). Neural mechanisms of sustained attention are rhythmic. Neuron, 99(4), 854-865.e5. |
[22] | Ho, H. T., Leung, J., Burr, D. C., Alais, D., & Morrone, M. C. (2017). Auditory sensitivity and decision criteria oscillate at different frequencies separately for the two ears. Current Biology, 27(23), 3643-3649.e3. |
[23] | Huang, Y., Chen, L., & Luo, H. (2015). Behavioral oscillation in priming: Competing perceptual predictions conveyed in alternating theta-band rhythms. Journal of Neuroscience, 35(6), 2830-2837. |
[24] | Iemi, L., & Busch, N. A. (2018). Moment-to-Moment fluctuations in neuronal excitability bias subjective perception rather than strategic decision-making. eNeuro, 5(3), e0430-17. http://dx.doi.org/10.1523/ENEURO.0430-17.2018 |
[25] |
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206.
doi: 10.1016/j.tics.2012.03.002 URL pmid: 22436764 |
[26] |
Jensen, O., & Vissers, M. E. (2017). Multiple visual objects are sampled sequentially. PLOS Biology, 15(7), e2003230.
URL pmid: 28742091 |
[27] | Jia, J. R., Liu, L., Fang, F., & Luo, H. (2017). Sequential sampling of visual objects during sustained attention. PLOS Biology, 15(6), e2001903. |
[28] | Kayser, S. J., McNair, S. W., & Kayser, C. (2016). Prestimulus influences on auditory perception from sensory representations and decision processes. Proceedings of the National Academy of Sciences, 113(17), 4842-4847. |
[29] | Keller, A. S., Payne, L., & Sekuler, R. (2017). Characterizing the roles of alpha and theta oscillations in multisensory attention. Neuropsychologia, 99, 48-63. |
[30] |
Lamy, D., & Egeth, H. (2002). Object-based selection: The role of attentional shifts. Perception & Psychophysics, 64(1), 52-66.
URL pmid: 11916302 |
[31] |
Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22(11), 1000-1004.
URL pmid: 22633805 |
[32] | Li, T., Wang, L., Huang, W., Zhen, Y., Zhong, C., Qu, Z., & Ding, Y. (2020). Onset time of inhibition of return is a promising index for assessing cognitive functions in older adults. The Journals of Gerontology: Series B, 75(4), 753-761. |
[33] | Limbach, K., & Corballis, P. M. (2016). Prestimulus alpha power influences response criterion in a detection task. Psychophysiology, 53(8), 1154-1164. |
[34] |
Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016.
URL pmid: 23522038 |
[35] |
Luo, H., Tian, X., Song, K., Zhou, K., & Poeppel, D. (2013). Neural response phase tracks how listeners learn new acoustic representations. Current Biology, 23(11), 968-974.
URL pmid: 23664974 |
[36] |
Mazaheri, A., van Schouwenburg, M. R., Dimitrijevic, A., Denys, D., Cools, R., & Jensen, O. (2014). Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. Neuroimage, 87, 356-362.
URL pmid: 24188814 |
[37] | Mo, C., Lu, J., Wu, B., Jia, J., Luo, H., & Fang, F. (2019). Competing rhythmic neural representations of orientations during concurrent attention to multiple orientation features. Nature Communications, 10(1), 5264. |
[38] | Mo, J., Schroeder, C. E., & Ding, M. (2011). Attentional modulation of alpha oscillations in macaque inferotemporal cortex. Journal of Neuroscience, 31(3), 878-882. |
[39] |
Pfurtscheller, G., & da Silva, F. H. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842-1857.
URL pmid: 10576479 |
[40] | Posner M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. |
[41] | Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2(3), 211-228. |
[42] | Rajagovindan, R., & Ding, M. (2011). From prestimulus alpha oscillation to visual-evoked response: An inverted-u function and its attentional modulation. Journal of Cognitive Neuroscience, 23(6), 1379-1394. |
[43] |
Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-based attention samples stimuli rhythmically. Current Biology, 29(4), 693-699.
URL pmid: 30744973 |
[44] | Remington, R., & Pierce, L. (1984). Moving attention: Evidence for time-invariant shifts of visual selective attention. Perception and Psychophysics, 35(4), 393-399. |
[45] | Samaha, J., Bauer, P., Cimaroli, S., & Postle, B. R. (2015). Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction. Proceedings of the National Academy of Sciences, 112(27), 8439-8444. |
[46] | Serences, J. T., & Boynton, G. M. (2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55(2), 301-312. |
[47] | Siegel, M., Donner, T. H., Oostenveld, R., Fries, P., & Engel, A. K. (2008). Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron, 60(4), 709-719. |
[48] | Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron, 60(4), 683-697. |
[49] | Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. Journal of Neuroscience, 34(14), 4837-4844. |
[50] | Tran, T. T., Hoffner, N. C., LaHue, S. C., Tseng, L., & Voytek, B. (2016). Alpha phase dynamics predict age-related visual working memory decline. NeuroImage, 143, 196-203. |
[51] |
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
URL pmid: 7351125 |
[52] | VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723-735. |
[53] | VanRullen, R., Carlson, T., & Cavanagh, P. (2007). The blinking spotlight of attention. Proceedings of the National Academy of Sciences, 104(49), 19204-19209. |
[54] | Womelsdorf, T., & Fries, P. (2007). The role of neuronal synchronization in selective attention. Current Opinion in Neurobiology, 17(2), 154-160. |
[55] |
Wyart, V., & Tallon-Baudry, C. (2009). How ongoing fluctuations in human visual cortex predict perceptual awareness: Baseline shift versus decision bias. Journal of Neuroscience, 29(27), 8715-8725.
URL pmid: 19587278 |
[1] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[2] | ZHOU Guomei, ZHENG Ruoying, LIN Jia, LIU Xinge. The holistic representation of facial attractiveness and the attractiveness enhancement mechanism of dynamic faces [J]. Advances in Psychological Science, 2022, 30(7): 1429-1438. |
[3] | LIU Yanxiu, XIE Tong, FU Shimin. The role of object representation strength in the object-based attention of dynamic object [J]. Advances in Psychological Science, 2022, 30(3): 591-600. |
[4] | YE Liqun, TAN Xin, YAO Kun, DING Yulong. Influence of normal aging on early stages of visual attention: Evidence from ERP studies [J]. Advances in Psychological Science, 2022, 30(12): 2746-2763. |
[5] | ZHANG Wen, DONG Qiyiru, GONG Lijuan, SHANG Qi, CHENG Chen, DING Xuechen. The theoretical accounts and developmental predictors of operational momentum effect [J]. Advances in Psychological Science, 2022, 30(12): 2777-2788. |
[6] | YIN Rong. Comparative studies of mind reading: Similarities and differences in theory of mind between non-human primates and humans and corresponding explanations [J]. Advances in Psychological Science, 2022, 30(11): 2540-2557. |
[7] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[8] | LI Jingting, DONG Zizhao, LIU Ye, WANG Su-Jing, ZHUANG Dongzhe. Micro-expression spotting method based on human attention mechanism [J]. Advances in Psychological Science, 2022, 30(10): 2143-2153. |
[9] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[10] | WU Xia, WANG Junzhe, WANG Yun, CHEN Ying, YANG Haibo. The processing mechanism of category-specific attentional control settings in attentional capture [J]. Advances in Psychological Science, 2022, 30(10): 2219-2227. |
[11] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[12] | LI Aimei, CHE Jingshang, LIU Nan, SUN Hailong, ZHOU Wei. How does massive information affect intertemporal choice? A theoretical perspective based on attentional resources [J]. Advances in Psychological Science, 2021, 29(9): 1521-1533. |
[13] | HE Jiamei, JIN Lei. Discriminating the concepts of goal and its influence on decision-making [J]. Advances in Psychological Science, 2021, 29(8): 1410-1419. |
[14] | JING Wei, ZHANG Jie, FU Jinxia, TIAN Lin, ZHAO Wei. Attention bias to faces in infants and toddlers: Inborn predispositions and developmental changes [J]. Advances in Psychological Science, 2021, 29(7): 1216-1230. |
[15] | REN Xiaoyu, ZHAO Jing, BI Hongyan. Effects of action video games on reading skills of individuals with developmental dyslexia and its internal mechanisms [J]. Advances in Psychological Science, 2021, 29(6): 1000-1009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||