Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (9): 1508-1524.doi: 10.3724/SP.J.1042.2020.01508
• Regular Articles • Previous Articles Next Articles
Received:
2019-10-31
Online:
2020-09-15
Published:
2020-07-24
Contact:
KU Yixuan
E-mail:kuyixuan@mail.sysu.edu.cn
CLC Number:
LI Wanru, KU Yixuan. The influence of acute stress on working memory: Physiological and psychological mechanisms[J]. Advances in Psychological Science, 2020, 28(9): 1508-1524.
[1] | 杜建政, 夏冰丽. (2009). 急性应激障碍(ASD)研究述评. 心理科学进展, 17(03), 482-488. |
[2] | 段海军, 王雪微, 王博韬, 王彤星, 张心如, 王子娟, 胡卫平. (2017). 急性应激: 诱发范式、测量指标及效果分析. 心理科学进展, 25(10), 1780-1790. |
[3] | 库逸轩. (2019). 工作记忆的认知神经机制. 生理学报, 71(1), 173-185. |
[4] | 刘志英, 库逸轩. (2017). 知觉表征精度对工作记忆中抑制干扰能力的影响. 心理学报, 49(10), 1247-1255. |
[5] | 罗跃嘉, 林婉君, 吴健辉, 秦绍正. (2013). 应激的认知神经科学研究. 生理科学进展, 44(5), 345-353. |
[6] | 甄珍, 秦绍正, 朱睿达, 封春亮, 刘超. (2017). 应激的脑机制及其对社会决策的影响探究. 北京师范大学学报 (自然科学版), 53(3), 372-378. |
[7] |
Antal, A., Fischer, T., Saiote, C., Miller, R., Chaieb, L., Wang, D. J. J., … Kirschbaum, C. (2014). Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure: TDCS Affects Stress Response. Human Brain Mapping, 35(8), 3750-3759.
doi: 10.1002/hbm.22434 URL pmid: 24382804 |
[8] |
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410-422.
URL pmid: 19455173 |
[9] |
Arnsten, A. F. T. (2015). Stress weakens prefrontal networks: Molecular insults to higher cognition. Nature Neuroscience, 18(10), 1376-1385.
URL pmid: 26404712 |
[10] |
Back, S. E., Waldrop, A. E., Saladin, M. E., Yeatts, S. D., Simpson, A., McRae, A. L., … Brady, K. T. (2008). Effects of gender and cigarette smoking on reactivity to psychological and pharmacological stress provocation. Psychoneuroendocrinology, 33(5), 560-568.
URL pmid: 18321653 |
[11] |
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839.
URL pmid: 14523382 |
[12] | Baddeley, A., & Hitch, G.(1974). Working Memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47-89). New York, America: Academic Press. |
[13] | Barsegyan, A., Mackenzie, S. M., Kurose, B. D., McGaugh, J. L., & Roozendaal, B. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences, 107(38), 16655-16660. |
[14] |
Becker, L., & Rohleder, N. (2019). Time course of the physiological stress response to an acute stressor and its associations with the primacy and recency effect of the serial position curve. PLoS ONE, 14(5), e0213883.
doi: 10.1371/journal.pone.0213883 URL |
[15] |
Bogdanov, M., & Schwabe, L. (2016). Transcranial Stimulation of the dorsolateral prefrontal cortex prevents stress-induced working memory deficits. Journal of Neuroscience, 36(4), 1429-1437.
URL pmid: 26818528 |
[16] | Bopp, K. L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(5), 223-233. |
[17] |
Bruder, G. E., Keilp, J. G., Xu, H., Shikhman, M., Schori, E., Gorman, J. M., & Gilliam, T. C. (2005). Catechol-O- Methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58(11), 901-907.
URL pmid: 16043133 |
[18] |
Bryant, R. A. (2010). Acute stress disorder as a predictor of posttraumatic stress disorder: A systematic review. The Journal of Clinical Psychiatry, 72(2), 233-239.
URL pmid: 21208593 |
[19] |
Buckert, M., Kudielka, B. M., Reuter, M., & Fiebach, C. J. (2012). The COMT Val158Met polymorphism modulates working memory performance under acute stress. Psychoneuroendocrinology, 37(11), 1810-1821.
URL pmid: 22503421 |
[20] |
Chamine, I., & Oken, B. S. (2016). Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation. The Journal of Alternative and Complementary Medicine, 22(9), 713-721.
doi: 10.1089/acm.2015.0349 URL pmid: 27355279 |
[21] |
Chong, R. Y., Uhart, M., McCaul, M. E., Johnson, E., & Wand, G. S. (2008). Whites have a more robust hypothalamic-pituitary-adrenal axis response to a psychological stressor than blacks. Psychoneuroendocrinology, 33(2), 246-254.
URL pmid: 18082975 |
[22] |
Cornelisse, S., Joëls, M., & Smeets, T. (2011). A randomized trial on mineralocorticoid receptor blockade in men: Effects on stress responses, selective attention, and memory. Neuropsychopharmacology, 36(13), 2720-2728.
doi: 10.1038/npp.2011.162 URL pmid: 21881569 |
[23] |
Cornelisse, S., van Stegeren, A. H., & Joëls, M. (2011). Implications of psychosocial stress on memory formation in a typical male versus female student sample. Psychoneuroendocrinology, 36(4), 569-578.
URL pmid: 20933337 |
[24] |
Cousijn, H., Rijpkema, M., Qin, S., van Wingen, G. A., & Fernández, G. (2012). Phasic deactivation of the medial temporal lobe enables working memory processing under stress. NeuroImage, 59(2), 1161-1167.
doi: 10.1016/j.neuroimage.2011.09.027 URL pmid: 21983180 |
[25] |
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.
doi: 10.1017/s0140525x01003922 URL pmid: 11515286 |
[26] |
Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158-1170.
URL pmid: 27896630 |
[27] |
Creswell, J. D., Dutcher, J. M., Klein, W. M. P., Harris, P. R., & Levine, J. M. (2013). Self-Affirmation improves problem-solving under stress. PLoS ONE, 8(5), e62593.
URL pmid: 23658751 |
[28] |
Deiber, M.-P., Missonnier, P., Bertrand, O., Gold, G., Fazio-Costa, L., Ibañez, V., & Giannakopoulos, P. (2007). Distinction between perceptual and attentional processing in working memory tasks: A study of phase-locked and induced oscillatory brain dynamics. Journal of Cognitive Neuroscience, 19(1), 158-172.
URL pmid: 17214572 |
[29] |
Duncko, R., Johnson, L., Merikangas, K., & Grillon, C. (2009). Working memory performance after acute exposure to the cold pressor stress in healthy volunteers. Neurobiology of Learning and Memory, 91(4), 377-381.
URL pmid: 19340949 |
[30] |
Elzinga, B. M., & Roelofs, K. (2005). Cortisol-induced impairments of working memory require acute sympathetic activation. Behavioral Neuroscience, 119(1), 98-103.
URL pmid: 15727516 |
[31] | Fletcher, P. C., & Henson, R. N. A. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124(5), 849-881. |
[32] |
Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17(5), 673-679.
URL pmid: 21037165 |
[33] |
Gärtner, M., Grimm, S., & Bajbouj, M. (2015). Frontal midline theta oscillations during mental arithmetic: Effects of stress. Frontiers in Behavioral Neuroscience, 9, 96.
URL pmid: 25941479 |
[34] |
Gärtner, M., Rohde-Liebenau, L., Grimm, S., & Bajbouj, M. (2014). Working memory-related frontal theta activity is decreased under acute stress. Psychoneuroendocrinology, 43, 105-113.
doi: 10.1016/j.psyneuen.2014.02.009 URL pmid: 24703176 |
[35] |
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129-135.
URL pmid: 22209601 |
[36] | Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. The Frontal Loves and Neuropsychiatric Illness (pp. 71-82). Washington, DC: American Psychiatric Publishing. |
[37] |
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485.
URL pmid: 7695894 |
[38] | Gründemann, D., Schechinger, B., Rappold, G. A., & Schömig, E. (1998). Molecular identification of the corticosterone- sensitive extraneuronal catecholamine transporter. Nature Neuroscience, 1(5), 3. |
[39] |
Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain connectivity related to working memory performance. Journal of Neuroscience, 26(51), 13338-13343.
doi: 10.1523/JNEUROSCI.3408-06.2006 URL pmid: 17182784 |
[40] | Henckens, M. J. A. G., van Wingen, G. A., Joels, M., & Fernandez, G. (2011). Time-dependent corticosteroid modulation of prefrontal working memory processing. Proceedings of the National Academy of Sciences, 108(14), 5801-5806. |
[41] |
Hermans, E. J., Henckens, M. J. A. G., Joëls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37(6), 304-314.
URL pmid: 24766931 |
[42] |
Hernaus, D., Quaedflieg, C. W. E. M., Offermann, J. S., Casales Santa, M. M., & van Amelsvoort, T. (2018). Neuroendocrine stress responses predict catecholamine- dependent working memory-related dorsolateral prefrontal cortex activity. Social Cognitive and Affective Neuroscience, 13(1), 114-123.
doi: 10.1093/scan/nsx122 URL pmid: 29087511 |
[43] |
Herrera, A. Y., Hodis, H. N., Mack, W. J., & Mather, M. (2017). Estradiol therapy after menopause mitigates effects of stress on cortisol and working memory. The Journal of Clinical Endocrinology & Metabolism, 102(12), 4457-4466.
doi: 10.1210/jc.2017-00825 URL pmid: 29106594 |
[44] |
Het, S., Ramlow, G., & Wolf, O. T. (2005). A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology, 30(8), 771-784.
URL pmid: 15919583 |
[45] |
Holtzman, C. W., Trotman, H. D., Goulding, S. M., Ryan, A. T., MacDonald, A. N., Shapiro, D. I., … Walker, E. F. (2013). Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience, 249, 172-191.
doi: 10.1016/j.neuroscience.2012.12.017 URL pmid: 23298853 |
[46] |
Hood, A., Pulvers, K., & Spady, T. J. (2013). Timing and gender determine if acute pain impairs working memory performance. The Journal of Pain, 14(11), 1320-1329.
URL pmid: 23972353 |
[47] |
Hood, A., Pulvers, K., Spady, T. J., Kliebenstein, A., & Bachand, J. (2015). Anxiety mediates the effect of acute stress on working memory performance when cortisol levels are high: A moderated mediation analysis. Anxiety, Stress, & Coping, 28(5), 545-562.
doi: 10.1080/10615806.2014.1000880 URL pmid: 25537070 |
[48] |
Hsieh, L.-T., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85, 721-729.
doi: 10.1016/j.neuroimage.2013.08.003 URL pmid: 23933041 |
[49] |
Human, R., Henry, M., Jacobs, W. J., & Thomas, K. G. F. (2018). Elevated cortisol leaves working memory unaffected in both men and women. Frontiers in Human Neuroscience, 12, 299.
URL pmid: 30087603 |
[50] |
Ishizuka, K., Hillier, A., & Beversdorf, D. Q. (2007). Effect of the Cold Pressor Test on memory and cognitive flexibility. Neurocase, 13(3), 154-157.
URL pmid: 17786773 |
[51] |
Itthipuripat, S., Wessel, J. R., & Aron, A. R. (2013). Frontal theta is a signature of successful working memory manipulation. Experimental Brain Research, 224(2), 255-262.
URL pmid: 23109082 |
[52] |
Jiang, C., & Rau, P.-L. P. (2017). Working memory performance impaired after exposure to acute social stress: The evidence comes from ERPs. Neuroscience Letters, 658, 137-141.
doi: 10.1016/j.neulet.2017.08.054 URL pmid: 28851617 |
[53] |
Joëls, M., Fernandez, G., & Roozendaal, B. (2011). Stress and emotional memory: A matter of timing. Trends in Cognitive Sciences, 15(6), 280-288.
doi: 10.1016/j.tics.2011.04.004 URL pmid: 21571575 |
[54] |
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The ‘Trier social stress test’ - A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1-2), 76-81.
URL pmid: 8255414 |
[55] |
Kuhlmann, S., Piel, M., & Wolf, O. T. (2005). Impaired memory retrieval after psychosocial stress in healthy young men. Journal of Neuroscience, 25(11), 2977-2982.
URL pmid: 15772357 |
[56] |
Lai, V., Theppitak, C., Makizuka, T., Higuchi, Y., Movahed, M., Kumudini, G., … Kumashiro, M. (2014). A normal intensity level of psycho-physiological stress can benefit working memory performance at high load. International Journal of Industrial Ergonomics, 44(3), 362-367.
doi: 10.1016/j.ergon.2013.11.015 URL |
[57] |
Lieberman, H. R., Farina, E. K., Caldwell, J., Williams, K. W., Thompson, L. A., Niro, P. J., … McClung, J. P. (2016). Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training. Physiology & Behavior, 165, 86-97.
URL pmid: 27374427 |
[58] | Lin, C. T., King, J. T., Fan, J. W., Appaji, A., & Prasad, M. (2018). The influence of acute stress on brain dynamics during task switching activities. IEEE Access, 6, 3249-3255. |
[59] |
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400.
doi: 10.1016/j.tics.2013.06.006 URL pmid: 23850263 |
[60] |
Luethi, M., Meier, B., & Sandi, C. (2009). Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men. Frontiers in Behavioral Neuroscience, 2, 5.
doi: 10.3389/neuro.08.005.2008 URL pmid: 19169362 |
[61] |
Luettgau, L., Schlagenhauf, F., & Sjoerds, Z. (2018). Acute and past subjective stress influence working memory and related neural substrates. Psychoneuroendocrinology, 96, 25-34.
URL pmid: 29879562 |
[62] |
Lupien, S. J., Gillin, C. J., & Hauger, R. L. (1999). Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose-response study in humans. Behavioral Neuroscience, 113(3), 420-430.
doi: 10.1037//0735-7044.113.3.420 URL pmid: 10443770 |
[63] |
Martens, M. A., Antley, A., Freeman, D., Slater, M., Harrison, P. J., & Tunbridge, E. M. (2019). It feels real: Physiological responses to a stressful virtual reality environment and its impact on working memory. Journal of Psychopharmacology, 33(10), 1264-1273.
doi: 10.1177/0269881119860156 URL pmid: 31294651 |
[64] |
Mcewen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032(1), 1-7.
doi: 10.1196/annals.1314.001 URL |
[65] | Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. |
[66] |
Miller, R., Weckesser, L. J., Smolka, M. N., Kirschbaum, C., & Plessow, F. (2015). Hydrocortisone accelerates the decay of iconic memory traces: On the modulation of executive and stimulus-driven constituents of sensory information maintenance. Psychoneuroendocrinology, 53, 148-158.
URL pmid: 25618593 |
[67] |
Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156-185.
URL pmid: 18824212 |
[68] |
Mohan, A., Sharma, R., & Bijlani, R. L. (2011). Effect of meditation on stress-induced changes in cognitive functions. Journal of Alternative and Complementary Medicine, 17(3), 207-212.
doi: 10.1089/acm.2010.0142 URL |
[69] |
Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142(8), 831-864.
URL pmid: 26963369 |
[70] |
Morgan, C. A., Doran, A., Steffian, G., Hazlett, G., & Southwick, S. M. (2006). Stress-induced deficits in working memory and visuo-constructive abilities in special operations soldiers. Biological Psychiatry, 60(7), 722-729.
doi: 10.1016/j.biopsych.2006.04.021 URL pmid: 16934776 |
[71] |
Morgan, C. A., Wang, S., Mason, J., Southwick, S. M., Fox, P., Hazlett, G., … Greenfield, G. (2000). Hormone profiles in humans experiencing military survival training. Biological Psychiatry, 47(10), 891-901.
URL pmid: 10807962 |
[72] |
Mujica-Parodi, L. R., Renelique, R., & Taylor, M. K. (2009). Higher body fat percentage is associated with increased cortisol reactivity and impaired cognitive resilience in response to acute emotional stress. International Journal of Obesity, 33(1), 157-165.
URL pmid: 19015661 |
[73] | Nelson, R. J.(2005a). The endocrine system. In: An introduction to behavioral endocrinology (3rd ed., pp. 41-107). Sunderland, MA: Sinauer Associates. |
[74] | Nelson, R. J.(2005b). Stress. In: An introduction to behavioral endocrinology (3rd ed., pp. 669-720). Sunderland: MA: Sinauer Associates. |
[75] |
Niemegeers, P., de Boer, P., Schuermans, J., Dumont, G. J. H., Coppens, V., Spittaels, K., … Morrens, M. (2019). Digging deeper in the differential effects of inflammatory and psychosocial stressors in remitted depression: Effects on cognitive functioning. Journal of Affective Disorders, 245, 356-363.
URL pmid: 30423462 |
[76] |
Oei, N. Y. L., Everaerd, W. T. A. M., Elzinga, B. M., van Well, S., & Bermond, B. (2006). Psychosocial stress impairs working memory at high loads: An association with cortisol levels and memory retrieval. Stress, 9(3), 133-141.
doi: 10.1080/10253890600965773 URL pmid: 17035163 |
[77] |
Oei, N. Y. L., Veer, I. M., Wolf, O. T., Spinhoven, P., Rombouts, S. A. R. B., & Elzinga, B. M. (2012). Stress shifts brain activation towards ventral ‘affective’ areas during emotional distraction. Social Cognitive and Affective Neuroscience, 7(4), 403-412.
URL pmid: 21498384 |
[78] |
Oei, N. Y. L., Tollenaar, M. S., Spinhoven, P., & Elzinga, B. M. (2009). Hydrocortisone reduces emotional distracter interference in working memory. Psychoneuroendocrinology, 34(9), 1284-1293.
URL pmid: 19398277 |
[79] |
Olver, J. S., Pinney, M., Maruff, P., & Norman, T. R. (2015). Impairments of spatial working memory and attention following acute psychosocial stress. Stress and Health, 31(2), 115-123.
doi: 10.1002/smi.2533 URL pmid: 24395182 |
[80] |
Ponce, P., del Arco, A., & Loprinzi, P. (2019). Physical activity versus psychological stress: effects on salivary cortisol and working memory performance. Medicina, 55(5), 119.
doi: 10.3390/medicina55050119 URL |
[81] |
Porcelli, A. J., Cruz, D., Wenberg, K., Patterson, M. D., Biswal, B. B., & Rypma, B. (2008). The effects of acute stress on human prefrontal working memory systems. Physiology & Behavior, 95(3), 282-289.
doi: 10.1016/j.physbeh.2008.04.027 URL pmid: 18692209 |
[82] |
Pryce, C. R. (2008). Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter- species and intra-species differences. Brain Research Reviews, 57(2), 596-605.
doi: 10.1016/j.brainresrev.2007.08.005 URL pmid: 17916381 |
[83] |
Qi, M., Gao, H., Guan, L., Liu, G., & Yang, J. (2016). Subjective stress, salivary cortisol, and electrophysiological responses to psychological stress. Frontiers in Psychology, 7, 229.
doi: 10.3389/fpsyg.2016.00229 URL pmid: 26925026 |
[84] |
Qi, M., Gao, H., & Liu, G. (2018). The effect of mild acute psychological stress on attention processing: An ERP study. Experimental Brain Research, 236(7), 2061-2071.
doi: 10.1007/s00221-018-5283-6 URL pmid: 29748696 |
[85] |
Qin, S., Cousijn, H., Rijpkema, M., Luo, J., Franke, B., Hermans, E. J., & Fernández, G. (2012). The effect of moderate acute psychological stress on working memory- related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Frontiers in Integrative Neuroscience, 6, 16.
URL pmid: 22593737 |
[86] |
Qin, S., Hermans, E. J., van Marle, H. J. F., Luo, J., & Fernández, G. (2009). Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biological Psychiatry, 66(1), 25-32.
doi: 10.1016/j.biopsych.2009.03.006 URL pmid: 19403118 |
[87] |
Quesada, A. A., Wiemers, U. S., Schoofs, D., & Wolf, O. T. (2012). Psychosocial stress exposure impairs memory retrieval in children. Psychoneuroendocrinology, 37(1), 125-136.
URL pmid: 21696892 |
[88] |
Ranganath, C., DeGutis, J., & D’Esposito, M. (2004). Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Cognitive Brain Research, 20(1), 37-45.
doi: 10.1016/j.cogbrainres.2003.11.017 URL pmid: 15130587 |
[89] |
Renner, K. H., & Beversdorf, D. Q. (2010). Effects of naturalistic stressors on cognitive flexibility and working memory task performance. Neurocase, 16(4), 293-300.
URL pmid: 20169503 |
[90] |
Robinson, S. J., Sünram-Lea, S. I., Leach, J., & Owen-Lynch, P. J. (2008). The effects of exposure to an acute naturalistic stressor on working memory, state anxiety and salivary cortisol concentrations. Stress, 11(2), 115-124.
doi: 10.1080/10253890701559970 URL pmid: 18311600 |
[91] |
Roozendaal, B., Hahn, E. L., Nathan, S. V., de Quervain, D. J. F., & McGaugh, J. L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. Journal of Neuroscience, 24(37), 8161-8169.
doi: 10.1523/JNEUROSCI.2574-04.2004 URL pmid: 15371517 |
[92] |
Sänger, J., Bechtold, L., Schoofs, D., Blaszkewicz, M., & Wascher, E. (2014). The influence of acute stress on attention mechanisms and its electrophysiological correlates. Frontiers in Behavioral Neuroscience, 8, 353.
URL pmid: 25346669 |
[93] |
Schoofs, D., Pabst, S., Brand, M., & Wolf, O. T. (2013). Working memory is differentially affected by stress in men and women. Behavioural Brain Research, 241, 144-153.
doi: 10.1016/j.bbr.2012.12.004 URL pmid: 23238042 |
[94] |
Schoofs, D., Preuß, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33(5), 643-653.
doi: 10.1016/j.psyneuen.2008.02.004 URL pmid: 18359168 |
[95] |
Schoofs, D., Wolf, O. T., & Smeets, T. (2009). Cold pressor stress impairs performance on working memory tasks requiring executive functions in healthy young men. Behavioral Neuroscience, 123(5), 1066-1075.
doi: 10.1037/a0016980 URL pmid: 19824773 |
[96] |
Schwabe, L., Haddad, L., & Schachinger, H. (2008). HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology, 33(6), 890-895.
URL pmid: 18403130 |
[97] |
Schwabe, L., & Wolf, O. T. (2010). Emotional modulation of the attentional blink: Is there an effect of stress? Emotion, 10(2), 283-288.
doi: 10.1037/a0017751 URL pmid: 20364906 |
[98] |
Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., … Schweinsburg, B. C. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141(1), 105-140.
doi: 10.1037/a0038039 URL pmid: 25365762 |
[99] |
Shackman, A. J., Maxwell, J. S., McMenamin, B. W., Greischar, L. L., & Davidson, R. J. (2011). Stress potentiates early and attenuates late stages of visual processing. Journal of Neuroscience, 31(3), 1156-1161.
doi: 10.1523/JNEUROSCI.3384-10.2011 URL pmid: 21248140 |
[100] |
Shansky, R. M. (2019). Are hormones a “female problem” for animal research? Science, 364(6443), 825-826.
URL pmid: 31147505 |
[101] |
Shields, G. S., Bonner, J. C., & Moons, W. G. (2015). Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting. Psychoneuroendocrinology, 58, 91-103.
doi: 10.1016/j.psyneuen.2015.04.017 URL pmid: 25973565 |
[102] |
Shields, G. S., Sazma, M. A., McCullough, A. M., & Yonelinas, A. P. (2017). The effects of acute stress on episodic memory: A meta-analysis and integrative review. Psychological Bulletin, 143(6), 636-675.
doi: 10.1037/bul0000100 URL pmid: 28368148 |
[103] |
Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651-668.
doi: 10.1016/j.neubiorev.2016.06.038 URL pmid: 27371161 |
[104] |
Shields, G. S., Trainor, B. C., Lam, J. C. W., & Yonelinas, A. P. (2016). Acute stress impairs cognitive flexibility in men, not women. Stress, 19(5), 542-546.
doi: 10.1080/10253890.2016.1192603 URL pmid: 27230831 |
[105] |
Smeets, T. (2011). Acute stress impairs memory retrieval independent of time of day. Psychoneuroendocrinology, 36(4), 495-501.
doi: 10.1016/j.psyneuen.2010.08.001 URL pmid: 20800361 |
[106] |
Smeets, T., Jelicic, M., & Merckelbach, H. (2006). The effect of acute stress on memory depends on word valence. International Journal of Psychophysiology, 62(1), 30-37.
doi: 10.1016/j.ijpsycho.2005.11.007 URL pmid: 16388863 |
[107] |
Smyth, J., Zawadzki, M., & Gerin, W. (2013). Stress and disease: A structural and functional analysis: Chronic stress and health. Social and Personality Psychology Compass, 7(4), 217-227.
doi: 10.1111/spco.2013.7.issue-4 URL |
[108] |
Stauble, M. R., Thompson, L. A., & Morgan, G. (2013). Increases in cortisol are positively associated with gains in encoding and maintenance working memory performance in young men. Stress-the International Journal on the Biology of Stress, 16(4), 402-410.
doi: 10.3109/10253890.2013.780236 URL |
[109] |
Subhani, A. R., Kamel, N., Mohamad Saad, M. N., Nandagopal, N., Kang, K., & Malik, A. S. (2018). Mitigation of stress: New treatment alternatives. Cognitive Neurodynamics, 12(1), 1-20.
doi: 10.1007/s11571-017-9460-2 URL pmid: 29435084 |
[110] |
Taverniers, J., Van Ruysseveldt, J., Smeets, T., & von Grumbkow, J. (2010). High-intensity stress elicits robust cortisol increases, and impairs working memory and visuo-spatial declarative memory in Special Forces candidates: A field experiment. Stress, 13(4), 324-334.
doi: 10.3109/10253891003642394 URL |
[111] |
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107(3), 411-429.
doi: 10.1037/0033-295x.107.3.411 URL pmid: 10941275 |
[112] |
Terfehr, K., Wolf, O. T., Schlosser, N., Fernando, S. C., Otte, C., Muhtz, C., … Wingenfeld, K. (2011). Hydrocortisone impairs working memory in healthy humans, but not in patients with major depressive disorder. Psychopharmacology, 215(1), 71-79.
URL pmid: 21161185 |
[113] |
van Ast, V. A., Spicer, J., Smith, E. E., Schmer-Galunder, S., Liberzon, I., Abelson, J. L., & Wager, T. D. (2014). Brain mechanisms of social threat effects on working memory. Cerebral Cortex, 26(2), 544-556.
URL pmid: 25249408 |
[114] |
van Marle, H. J. F., Hermans, E. J., Qin, S., & Fernández, G. (2009). From specificity to sensitivity: How acute stress affects amygdala processing of biologically salient stimuli. Biological Psychiatry, 66(7), 649-655.
URL pmid: 19596123 |
[115] |
Veltman, D. J., Rombouts, S. A. R. B., & Dolan, R. J. (2003). Maintenance versus manipulation in verbal working memory revisited: An fMRI study. NeuroImage, 18(2), 247-256.
doi: 10.1016/s1053-8119(02)00049-6 URL pmid: 12595179 |
[116] | Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive Affective & Behavioral Neuroscience, 3(4), 255-274. |
[117] | Wang, J., Rao, H., Wetmore, G. S., Furlan, P. M., Korczykowski, M., Dinges, D. F., & Detre, J. A. (2005). Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proceedings of the National Academy of Sciences, 102(49), 17804-17809. |
[118] |
Weckesser, L. J., Alexander, N. C., Kirschbaum, C., Mennigen, E., & Miller, R. (2016). Hydrocortisone counteracts adverse stress effects on dual-task performance by improving visual sensory processes. Journal of Cognitive Neuroscience, 28(11), 1784-1803.
URL pmid: 27378327 |
[119] |
Weerda, R., Muehlhan, M., Wolf, O. T., & Thiel, C. M. (2010). Effects of acute psychosocial stress on working memory related brain activity in men. Human Brain Mapping, 31(9), 1418-1429.
URL pmid: 20127868 |
[120] |
Wells, E. L., Kofler, M. J., Soto, E. F., Schaefer, H. S., & Sarver, D. E. (2018). Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Research in Developmental Disabilities, 72, 166-178.
doi: 10.1016/j.ridd.2017.10.024 URL pmid: 29156389 |
[121] |
Wingenfeld, K., & Wolf, O. T. (2015). Effects of cortisol on cognition in major depressive disorder, posttraumatic stress disorder and borderline personality disorder—2014 Curt Richter Award Winner. Psychoneuroendocrinology, 51, 282-295.
URL pmid: 25462901 |
[122] |
Wingenfeld, K., Wolf, S., Krieg, J.-C., & Lautenbacher, S. (2011). Working memory performance and cognitive flexibility after dexamethasone or hydrocortisone administration in healthy volunteers. Psychopharmacology, 217(3), 323-329.
doi: 10.1007/s00213-011-2286-4 URL pmid: 21484237 |
[123] |
Wirth, M. M. (2015). Hormones, Stress, and Cognition: The Effects of Glucocorticoids and Oxytocin on Memory. Adaptive Human Behavior and Physiology, 1(2), 177-201.
URL pmid: 25893159 |
[124] |
Woodcock, E. A., Greenwald, M. K., Khatib, D., Diwadkar, V. A., & Stanley, J. A. (2019). Pharmacological stress impairs working memory performance and attenuates dorsolateral prefrontal cortex glutamate modulation. NeuroImage, 186, 437-445.
doi: 10.1016/j.neuroimage.2018.11.017 URL pmid: 30458306 |
[125] |
Yurtsever, T., Schilling, T. M., Köelsch, M., Turner, J. D., Meyer, J., Schächinger, H., & Schote, A. B. (2016). The acute and temporary modulation of PERIOD genes by hydrocortisone in healthy subjects. Chronobiology International, 33(9), 1222-1234.
doi: 10.1080/07420528.2016.1211668 URL pmid: 27485028 |
[126] |
Zandara, M., Garcia-Lluch, M., Pulopulos, M. M., Hidalgo, V., Villada, C., & Salvador, A. (2016). Acute stress and working memory: The role of sex and cognitive stress appraisal. Physiology & Behavior, 164, 336-344.
doi: 10.1016/j.physbeh.2016.06.022 URL pmid: 27321755 |
[127] |
Zhao, L.-Y., Shi, J., Zhang, X.-L., Epstein, D. H., Zhang, X.-Y., Liu, Y., … Lu, L. (2010). Stress enhances retrieval of drug-related memories in abstinent heroin addicts. Neuropsychopharmacology, 35(3), 720-726.
doi: 10.1038/npp.2009.179 URL pmid: 19890257 |
[128] |
Zylberberg, A. (2009). Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model. Frontiers in Computational Neuroscience, 3, 4.
doi: 10.3389/neuro.10.004.2009 URL pmid: 19325713 |
[1] | WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping. Modulating working memory related-oscillation via entrainment of neural oscillation [J]. Advances in Psychological Science, 2022, 30(4): 802-816. |
[2] | CHEN Xingming, FU Tong, LIU Chang, ZHANG Bin, FU Yunfa, LI Enze, ZHANG Jian, CHEN Shengqiang, DANG Caiping. Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments [J]. Advances in Psychological Science, 2022, 30(2): 255-274. |
[3] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
[4] | YAN Wan-Sen, LIU Su-Jiao, ZHANG Ran-Ran, XU Peng. The susceptibility of compulsive traits and neural substrates of the prefrontal and anti-reward systems implicated in drug addiction [J]. Advances in Psychological Science, 2021, 29(8): 1345-1357. |
[5] | WU Lili, CHENG Gang, ZHANG Dajun. The effect of repeated acute stress on aggressive behavior and its regulation mechanisms [J]. Advances in Psychological Science, 2021, 29(8): 1358-1370. |
[6] | WANG Chundi, WANG Da-hui. Capacity and maintenance mechanism of vibrotactile working memory [J]. Advances in Psychological Science, 2021, 29(7): 1141-1148. |
[7] | ZHANG Zhao, ZHANG Liwei, GONG Ran. The filtering efficiency in visual working memory [J]. Advances in Psychological Science, 2021, 29(4): 635-651. |
[8] | DING Linjie, LI Xu, YIN Shufei. Positivity effects in working memory: The effects of emotional valence and task relevance [J]. Advances in Psychological Science, 2021, 29(4): 652-664. |
[9] | HUANG Zhijing, LI Xu. Processing of emotional information in working memory in major depressive disorder [J]. Advances in Psychological Science, 2021, 29(2): 252-267. |
[10] | XIE Tingting, WANG Lijuan, WANG Tianze. How is limb movement information stored in working memory? [J]. Advances in Psychological Science, 2021, 29(1): 93-101. |
[11] | RAN Guangming, LI Rui, ZHANG Qi. Neural mechanism underlying recognition of dynamic emotional faces in social anxiety [J]. Advances in Psychological Science, 2020, 28(12): 1979-1988. |
[12] | Mengjiao Xu, Yingtao Fu, Jiahan Yu, Ping Zhu, Mowei Shen, Hui Chen. Source information is inherently linked to working memory representation for auditory but not for visual stimuli [J]. Advances in Psychological Science, 2019, 27(suppl.): 24-24. |
[13] | Haoyue Ji, Li Wang, Yi Jiang. Gaze Cues Stored in Working Memory Trigger Automatic Attentional Orienting [J]. Advances in Psychological Science, 2019, 27(suppl.): 29-29. |
[14] | Keyun Xin, Zhi Li. Visual working memory load does not affect the overall stimulus processing time in visual search [J]. Advances in Psychological Science, 2019, 27(suppl.): 33-33. |
[15] | Jing Zhou, Ling Li. Continuous Theta Burst Stimulation over the prefrontal cortex reveals its role in prospective memory and working memory dual-task [J]. Advances in Psychological Science, 2019, 27(suppl.): 51-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||