Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (9): 1409-1425.doi: 10.3724/SP.J.1042.2020.01409
• Editor-In-Chief Invited • Next Articles
Received:
2020-03-27
Online:
2020-09-15
Published:
2020-07-24
Contact:
XU Wei
E-mail:xuwei11@zju.edu.cn
CLC Number:
XU Wei, GE Liezhong. Engineering psychology in the era of artificial intelligence[J]. Advances in Psychological Science, 2020, 28(9): 1409-1425.
第一次浪潮(上世纪50~70年代) | 第二次浪潮(上世纪80~90年代) | 第三次浪潮(2006年~ ) | |
---|---|---|---|
主要技术和方法 | 早期“符号主义和联结主义”学派, 产生式系统, 知识推理, 专家系统 | 统计模型在语音识别、机器翻译的研究, 神经网络的初步应用, 专家系统 | 深度学习技术在语音识别、数据挖掘、自然语言处理、模式识别等方面的突破, 大数据, 计算力等 |
用户需求 | 无法满足 | 无法满足 | 开始提供有用的、解决实际问题的AI应用解决方案 |
工作重点 | 技术探索 | 技术提升 | 技术提升, 应用落地场景, 伦理化设计, 前端应用, 人机交互技术等 |
阶段特征 | 学术主导 | 学术主导 | 技术提升+应用+以人为中心 |
第一次浪潮(上世纪50~70年代) | 第二次浪潮(上世纪80~90年代) | 第三次浪潮(2006年~ ) | |
---|---|---|---|
主要技术和方法 | 早期“符号主义和联结主义”学派, 产生式系统, 知识推理, 专家系统 | 统计模型在语音识别、机器翻译的研究, 神经网络的初步应用, 专家系统 | 深度学习技术在语音识别、数据挖掘、自然语言处理、模式识别等方面的突破, 大数据, 计算力等 |
用户需求 | 无法满足 | 无法满足 | 开始提供有用的、解决实际问题的AI应用解决方案 |
工作重点 | 技术探索 | 技术提升 | 技术提升, 应用落地场景, 伦理化设计, 前端应用, 人机交互技术等 |
阶段特征 | 学术主导 | 学术主导 | 技术提升+应用+以人为中心 |
工程心理学特征 | 自动化 | 半自主化(针对特定场景、任务) | 全自主化 |
---|---|---|---|
实例: 一般办公软件, 自动化生产线, 自动化飞机驾驶舱 | 实例: 智能音箱, 智能决策系统, 自动驾驶车(L2及以上) | 实例: 科幻电影《终结者》中的Skynet机器人 | |
感应环境的能力 | 比较有限 | 先进的多模态感应 | 更先进的多模态感应 |
认知能力(知觉整合、模式识别、学习、推理、决策等) | 没有 | 有部分 | 有 (包括自主设定目标、调整策略、资源分配等) |
执行操作的能力 | 人工激活操作, 根据预定不变的规则执行操作 | 人工激活操作, 独立执行操作 | 自主激活操作、独立执行操作等 |
对不可预测环境的自适应能力 | 没有 | 有部分 | 有 |
系统操作结果 | 具确定性 | 具不确定性 | 具不确定性 |
系统运行中对人工操作的需求 | 需要(特别是设计无法预料的操作场景, 非正常、应急状态) | 需要(设计无法预料的操作场景,非正常、应急状态) | 一般不需要(人应是系统最终决策者) |
工程心理学特征 | 自动化 | 半自主化(针对特定场景、任务) | 全自主化 |
---|---|---|---|
实例: 一般办公软件, 自动化生产线, 自动化飞机驾驶舱 | 实例: 智能音箱, 智能决策系统, 自动驾驶车(L2及以上) | 实例: 科幻电影《终结者》中的Skynet机器人 | |
感应环境的能力 | 比较有限 | 先进的多模态感应 | 更先进的多模态感应 |
认知能力(知觉整合、模式识别、学习、推理、决策等) | 没有 | 有部分 | 有 (包括自主设定目标、调整策略、资源分配等) |
执行操作的能力 | 人工激活操作, 根据预定不变的规则执行操作 | 人工激活操作, 独立执行操作 | 自主激活操作、独立执行操作等 |
对不可预测环境的自适应能力 | 没有 | 有部分 | 有 |
系统操作结果 | 具确定性 | 具不确定性 | 具不确定性 |
系统运行中对人工操作的需求 | 需要(特别是设计无法预料的操作场景, 非正常、应急状态) | 需要(设计无法预料的操作场景,非正常、应急状态) | 一般不需要(人应是系统最终决策者) |
工程心理学特征 | 人机交互 | 人机组队 |
---|---|---|
主动性 | 只有人主动地启动任务、行动, 机器被动接受 | 人机双方均可主动地启动任务和行动 |
方向性 | 只有人对机器的单向信任、情景意识、决策 | 人机双向的信任、情景意识、意图, 分享的决策控制权(人应拥有最终控制权) |
互补性 | 人与机之间无智能互补 | 机器智能(模式识别、推理等能力)与人的生物智能(人的信息加工等能力)之间的互补, 优化智能系统设计 |
预测性 | 只有人类操作员拥有这些特征 | 人机双方借助行为、情景意识等模型, 预测对方行为、环境和系统的状态 |
自适应性 | 只有人类操作员拥有这些特征 | 人机双向适应对方以及操作场景的行为 |
目标性 | 只有人类操作员拥有这些特征 | 人机双向均可设置或调整目标 |
替换性 | 机器借助于自动化等技术主要替换人的体力任务 | 机器可以替换人的认知、体力任务(人机双向可主动或被动地接管、委派任务) |
合作性 | 有限的人机合作 | 更大范围的人机合作 |
工程心理学特征 | 人机交互 | 人机组队 |
---|---|---|
主动性 | 只有人主动地启动任务、行动, 机器被动接受 | 人机双方均可主动地启动任务和行动 |
方向性 | 只有人对机器的单向信任、情景意识、决策 | 人机双向的信任、情景意识、意图, 分享的决策控制权(人应拥有最终控制权) |
互补性 | 人与机之间无智能互补 | 机器智能(模式识别、推理等能力)与人的生物智能(人的信息加工等能力)之间的互补, 优化智能系统设计 |
预测性 | 只有人类操作员拥有这些特征 | 人机双方借助行为、情景意识等模型, 预测对方行为、环境和系统的状态 |
自适应性 | 只有人类操作员拥有这些特征 | 人机双向适应对方以及操作场景的行为 |
目标性 | 只有人类操作员拥有这些特征 | 人机双向均可设置或调整目标 |
替换性 | 机器借助于自动化等技术主要替换人的体力任务 | 机器可以替换人的认知、体力任务(人机双向可主动或被动地接管、委派任务) |
合作性 | 有限的人机合作 | 更大范围的人机合作 |
[1] | 范俊君, 田丰, 杜一, 刘正捷, 戴国忠. (2018). 智能时代人机交互的一些思考. 中国科学: 信息科学, 48(4), 361-375. |
[2] | 葛列众, 李宏汀, 王笃明. (2012) 工程心理学. 北京: 中国人民大学出版社. |
[3] | 葛列众, 李宏汀, 王笃明. (2017). 工程心理学. 上海: 华东师范大学出版社. |
[4] | 葛列众, 许为. (2020). 用户体验: 理论和实践. 北京: 中国人民大学出版社. |
[5] | 刘烨, 汪亚珉, 卞玉龙, 任磊, 禤宇明. (2018). 面向智能时代的人机合作心理模型, 中国科学: 信息科学, 48(4), 376-389. |
[6] | 李彦宏. (2017). 智能革命: 迎接人工智能时代的社会、经济与文化变革. 北京: 中信出版集团. |
[7] | 百度. (2019). 2019 AI -人机交互趋势研究, 百度人工智能交互设计院(AIID). |
[8] | 石玉生, 黄伟芬, 田志强. (2017). 团队情景意识的概念、模型及测量方法. 航天医学与医学工程. 6, 463-468. |
[9] | 王巍, 黄晓丹, 赵继军, 申艳光. (2014). 隐式人机交互. 信息与控制, 43(1), 101-109. |
[10] | 孙向红, 吴昌旭, 张亮, 瞿炜娜. (2011). 工程心理学作用、地位和进展. 中国科学院院刊, 26(6), 650-660. |
[11] | 许为. (2003a). 自动化飞机驾驶舱中人-自动化系统交互作用的心理学研究. 心理科学, 26(3), 523-524. |
[12] | 许为. (2003b). 以用户为中心设计: 人机工效学的机遇和挑战. 人类工效学, 9(4), 8-11. |
[13] | 许为. (2005). 人-计算机交互作用研究和应用新思路的探讨. 人类工效学, 11(4), 37-40. |
[14] | 许为. (2017). 再论以用户为中心的设计: 新挑战和新机遇. 人类工效学, 23(1), 82-86. |
[15] | 许为. (2019a). 三论以用户为中心的设计: 智能时代的用户体验和创新设计. 应用心理学, 25(1), 3-17. |
[16] | 许为. (2019b). 四论以用户为中心的设计: 以人为中心的人工智能. 应用心理学, 25(4), 291-305. |
[17] | 许为. (2020). 五论以用户为中心的设计: 从自动化到智能时代的自主化以及自动驾驶车. 应用心理学, 26(2), 108-129. |
[18] | 许为, 葛列众. (2018). 人因学发展的新取向. 心理科学进展, 26(9), 1521-1534. |
[19] | 岳玮宁, 董士海, 王悦, 汪国平, 王衡, 陈文广. (2002). 普适计算的人机交互框架研究. 计算机学报, 27(12), 1657-1664. |
[20] | 朱祖祥. (2003). 工程心理学教程. 北京: 人民教育出版社. |
[21] | 张小龙, 吕菲, 程时伟. (2018). 智能时代的人机交互范式. 中国科学: 信息科学, 48(4), 406-418. |
[22] | Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., … Horvitz, E. (2019). Guidelines for human-AI interaction. CHI 2019, May 49, 2019, Glasgow, Scotland, UK. |
[23] |
Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6), 775-779.
doi: 10.1016/0005-1098(83)90046-8 URL |
[24] |
Baker, A. L., Phillips, E. K., Ullman, D., & Keebler, J. R. (2018). Toward an understanding of trust repair in human- robot interaction: Current research and future directions. ACM Trans. Interact. Intell. Syst. 8, 4, Article 30, 30 pages. https://doi.org/10.1145/3181671. .
URL pmid: 28966875 |
[25] | Bathaee, Y. (2018). The artificial intelligence black box and the failure of intent and causation. Harvard Journal of Law & Technology, 31(2), 890-938. |
[26] | Brandt, S. L., Lachter, J., Russell, R., & Shively, R. J. (2018). A human-autonomy teaming approach for a flight-following task. In C. Baldwin (ed.), Advances in Neuroergonomics and Cognitive Engineering, Advances in Intelligent Systems and Computing, Springer International Publishing AG. doi: 10.1007/978-3-319-60642-22. |
[27] | Brill, J. C., Cummings, M. L., Evans, A. W. III., Hancock, P. A., Lyons, J. B., & Oden, K. (2018). Navigating the advent of human-machine teaming. Proceedings of the Human Factors and Ergonomics Society 2018 Annual Meeting (pp.455-459). |
[28] | Burns, C. M., & Hajdukiewicz, J.(2004). Ecological Interface Design. CRC Press. |
[29] |
Calhoun, G. L., Ruff, H. A., Behymer, K. J., & Frost, E. M. (2018). Human-autonomy teaming interface design considerations for multi-unmanned vehicle control. Theoretical Issues in Ergonomics Science, 19(3), 321-352.
doi: 10.1080/1463922X.2017.1315751 URL |
[30] | CARAVAN. (2018). CARAVAN public opinion poll: Driverless cars. Report from Advocates for Highway and Auto Safety: https://saferoads.org/wp-content/uploads/2018/ 01/AV-Poll-Report-January-2018-FINAL.pdf |
[31] | Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale: Lawrence Erlbaum Associates. |
[32] | Chen, J. Y. C., & Barnes, M. (2014). Human-agent teaming for multirobot control: A review of human factors issues. IEEE Transactions on Human-Machine Systems, 44(1), 13-29. |
[33] | Chen, J. Y. C., Lakhmani, S. G., Stowers, K., Selkowitz, A. R., Wright, J. L., & Barnes, M.(2017). Situation awareness- based agent transparency and human-autonomy teaming effectiveness. Theoretical Issues in Ergonomics Science, 19(3), 259-282. https://doi.org/10.1080/1463922X.2017. 1315750. |
[34] |
de Visser, E. J., Pak, R., & Shaw, T. H. (2018). From automation to autonomy: The importance of trust repair in human- machine interaction, Ergonomics, 61(10), 1409-1427. doi: 10.1080/00140139.2018.1457725.
URL pmid: 29578376 |
[35] | Donahoe, E. (2018). Human centered AI: Building trust, democracy and human rights by design. An overview of Stanford’s global digital policy incubator and the XPRIZE foundation’s June 11th Event. Stanford Global Digital Policy Incubator (GDPi). |
[36] | Endsley, M. R., & Jones, D. G.(2012) Designing for situation awareness: An approach to user-centered design (2nd edition). London: CRC Press. |
[37] | Endsley, M. R. (2015). Autonomous horizons: System autonomy in the air force - A path to the future (Autonomo us Horizons No. AF/ST TR 15-01). Washington D.C. Approved for Public Release. |
[38] |
Endsley, M. R. (2017). From here to autonomy: Lessons learned from human-automation research. Human Factors, 59(1), 5-27. doi: 10.1177/0018720816681350.
URL pmid: 28146676 |
[39] | Endsley, M. R. (2018). Situation awareness in future autonomous vehicles: Beware of the unexpected. Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), IEA 2018, published by Springer. |
[40] | Foyle, D. C., & Hooey, B. L.(2007). Human Performance Modeling in Aviation. London: CRC Press. |
[41] | Fridman, L. (2018). Human-centered autonomous vehicle systems: Principles of effective shared autonomy. MIT HCAV Research Program: https://arxiv.org/pdf/1810.01835.pdf. |
[42] | Fu, X. L., Cai, L. H., Liu, Y., Jia, J., Chen, W. F., Yi, Z., … Wu, C. X. (2014). A computational cognition model of perception, memory, and judgment. Science China Information Science, 57, 1-15. |
[43] | Garlan, D., Siewiorek, D. P., Smailagic, A., & Steenkiste, P. (2002). Project aura: Toward distraction-free pervasive computing. IEEE Pervasive Computing, 1(2), 22-31. |
[44] | Grubb, P. L., Miller, L. C., Nelson, W. T., Warm, J. S., Dember, W. N., & Davies, D. R. (1994). Cognitive failure and perceived workload in vigilance performance. In M. Mouloua & R. Parasuraman (Eds.), Human performance in automated systems: Current research and trends,(pp. 115-121). Hillsdale, NJ: Lawrence Erlbaum. |
[45] | Gunning, D. (2017). Explainable Artificial Intelligence (XAI) at DARPA. https://www.darpa.mil/attachments/XAIProgram Update. pdf. |
[46] |
Hancock, P. A. (2013). In search of vigilance: The problem of iatrogenically created psychological phenomena. American Psychologist, 68, 97-109.
doi: 10.1037/a0030214 URL pmid: 23088439 |
[47] |
Hancock, P. A. (2019). Some pitfalls in the promises of automated and autonomous vehicles. Ergonomics, 62(4), 479-495. doi: 10.1080/00140139.2018.1498136.
doi: 10.1080/00140139.2018.1498136 URL pmid: 30024303 |
[48] | HFES (Human Factors and Ergonomics Society). (2018). HFES policy statement on autonomous and semiautonomous vehicles. https://www.hfes.org/public-policy/hfes-public- policy/ hfes-policy-statement-on-autonomous-and-semiautonomous- vehicles. |
[49] | Ho, N., Johnson, W., Panesar, K., Wakeland, K., Sadler, G., Wilso xn, N., … Brandt, S. (2017). Application of human- autonomy teaming to an advanced ground station for reduced crew operations. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), August, 2017. doi: 10.1109/ DASC.2017.8102124. |
[50] | Hoffman, R., Mueller, S. T., & Klein, G. (2017). Explaining explanation, part 2: Empirical foundations. IEEE Intelligent Systems, July/August, 78-86. |
[51] | Hollnagel, E., & Woods, D.(2005). Joint cognitive systems: Foundations of cognitive systems engineering London: CRC Press Foundations of cognitive systems engineering. London: CRC Press. |
[52] | IEEE. (2019). Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems. The Institute of Electrical and Electronics Engineers (IEEE), Incorporated. |
[53] | ISO (International Organization for Standardization). (2019). Ergonomics of human-system interaction - Part 810: Human-system Issues of Robotic, Intelligent and Autonomous Systems (version for review). |
[54] | Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. |
[55] | Kaber, D. B. (2018). A conceptual framework of autonomous and automated agents. Theoretical Issues in Ergonomics Science, 19(4), 406-430. doi: 10.1080/1463922X.2017. 1363314. |
[56] | Kaur, H., Williams, A. C., & Lasecki, W. S. (2019). Building shared mental models between humans and AI for effective collaboration. CHI’19, May 2019, Glasgow, Scotland. |
[57] | Kistan, T., Gardi, A., & Sabatini, R. (2018). Machine learning and cognitive ergonomics in air traffic management: Recent developments and considerations for certification. Aerospace, 5, 103. doi: 10.3390/aerospace5040103. |
[58] | Kitchin, J., & Baber, C. (2016). A comparison of shared and distributed situation awareness in teams through the use of agent-based modelling. Theoretical Issues in Ergonomics Science, 17(1), 8-41. doi: 10.1080/1463922X.2015. 1106616. |
[59] | Koene, A., Dowthwaite, L., & Seth, S. (2018). IEEE P7003TM standard for algorithmic bias considerations. 2018 ACM/ IEEE International Workshop on Software Fairness, FairWare’18, May 2018, Gothenburg, Sweden. 38-41. |
[60] | Li, F. F., & Etchemendy, J. (2018). A common goal for the brightest minds from Stanford and beyond: Putting humanity at the center of AI. Stanford Human-Centered AI Center Site: https://hai.stanford.edu/news/introducing- stanfords-human-centered-ai-initiative. |
[61] | Lombrozo, T. (2012). Explanation and abductive inference. Oxford Handbook of Thinking and Reasoning, 260-276. |
[62] | Madhavan, P., & Wiegmann, D. A. (2007). Similarities and differences between human-human and human-automation trust: An integrative review. Theoretical Issues in Ergonomics Science, 8(4), 277-301. |
[63] | Madni, A. M., & Madni, C. C. (2018). Architectural framework for exploring adaptive human-machine teaming options in simulated dynamic environments. Systems, 6(44), 1-17. doi: 10.3390/systems6040044. |
[64] | McNeese, N. J., Demir, M., Chiou, E., & Cooke, N. J. (2019). Understanding the role of trust in human-autonomy teaming. Proceedings of the 52nd Hawaii International Conference on System Sciences (pp.254-263). |
[65] |
Mercado, J. E., Rupp, M. A., Chen, J. Y. C., Barnes, M. J., Barber, D., & Procci, K. (2016). Intelligent agent transparency in human-agent teaming for multi-UxV management. Human Factors, 58(3), 401-415.
doi: 10.1177/0018720815621206 URL pmid: 26867556 |
[66] | Mumaw, R. J., Boonman, D., Griffin, J., & Xu, W. (1999). Training and design approaches for enhancing automation awareness (Boeing Document D6-82577), December, 1999. |
[67] | Muslim, H., & Itoh, M. (2019). A theoretical framework for designing human-centered automotive automation systems. Cognition, Technology & Work, 21, 685-697. doi: 10.1007/s10111- 018-0509-8. |
[68] | Navarro, J. (2018). A state of science on highly automated driving. Theoretical Issues in Ergonomics Science, 20(3), 366-296. doi: 10.1080/1463922X.2018.1439544. |
[69] |
NTSB. (2017). Collision between a car operating with automated vehicle control systems and a tractor-semitrailor truck near Williston, Florida, May 7, 2016. Accidents Report, by National Transportation Safety Board (NTSB) 2017, Washington, DC.
URL pmid: 24546804 |
[70] |
Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse and abuse. Human Factors, 39, 230-253.
doi: 10.1518/001872097778543886 URL |
[71] | Parasuraman, R., & Rizzo, M. (2006) Neuroergonomics: The brain at work. Oxford: Oxford University Press The brain at work. Oxford: Oxford University Press. |
[72] | Prada, R., & Paiva, A. (2014). Human-agent interaction: Challenges for bringing humans and agents together. https://www.semanticscholar.org/paper/Human-Agent-Interaction-%3A-Challenges-for-Bringing-Prada-Paiva/ebe7774c91eaa3faa4009a58eb3087e930c7cdd5 |
[73] |
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486.
doi: 10.1038/s41586-019-1138-y URL pmid: 31019318 |
[74] | Ramaraj, P., Sahay, S., Kumar, S. H., Lasecki, W., & Laird, J. E. (2019). Towards using transparency mechanisms to build better mental models. Advances in Cognitive Systems, 7, 1-6. |
[75] |
Salmon, P. M. (2019). The horse has bolted! Why human factors and ergonomics has to catch up with autonomous vehicles (and other advanced forms of automation). Ergonomics, 62(4), 502-504. doi: 10.1080/00140139.2018. 1563333.
doi: 10.1080/00140139.2018.1563333 URL pmid: 30957703 |
[76] |
Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors, 48(2), 362-380.
URL pmid: 16884055 |
[77] |
Sarter, N. B., & Woods, D. D. (1995). How in the world did we ever get into that mode: Mode error and awareness in supervisory control. Human Factors, 37(1), 5-19. doi: 1518/001872095779049516.
doi: 10.1518/001872095779049516 URL |
[78] | Sarter, N. B., Wickens, C. D., Mumaw, R. J., Kimball, S., Marsh, R., & Xu, W. (2003). Modern flight deck automation: Pilots’ mental model and monitoring patterns and performance. Conference: 12th International Symposium on Aviation Psychology, August 2003, At: Dayton OH, United States. |
[79] | Santamaria, T., & Nathan-Roberts, D. (2017). Personality measurement and design in human-robot interaction: A systematic and critical review. Proceedings of the Human Factors and Ergonomics Society 2017 Annual Meeting (pp. 853-857). |
[80] |
Scheutz, M., DeLoach, S. A., & Adams, J. A. (2017). A framework for developing and using shared mental models in human-agent teams. Journal of Cognitive Engineering and Decision Making, 11(3), 203-224. doi: 10.1177/ 1555343416682891.
doi: 10.1177/1555343416682891 URL |
[81] | Shively, R. J., Lachter, J., Brandt, S. L., Matessa, M., Battiste, V., & Johnson, W. W. (2018). Why human-autonomy teaming? International Conference on Applied Human Factors and Ergonomics, May 2018. doi: 10.1007/978- 3-319-60642-2_1. |
[82] | Stanton, N. A. (2016). Distributed situation awareness. Theoretical Issues in Ergonomics Science, 17(1), 1-7. doi: 10.1080/1463922X.2015.1106615. |
[83] |
Stanton, N. A., Salmon, P. M., Walker, G. H., Salas, E., & Hancock, P. A. (2017). State-of-science: situation awareness in individuals, teams and systems. Ergonomics, 60(4), 449-466. doi: 10.1080/00140139.2017.1278796.
URL pmid: 28051356 |
[84] | Strauch, B. (2017). Ironies of automation: Still unresolved after all these years. IEEE Transactions on Human-Machine Systems, 99, 1-15. doi: 10.1109/THMS.2017.2732506 |
[85] | van den Broek, J., Schraagen, J. M. C., te Brake, G. M., & van Diggelin, J. (2017). Approaching full autonomy in the maritime domain: Paradigm choices and human factors challenges. In Proceedings of the MTEC, Singapore, 26- 28 April 2017. |
[86] | van den Bosch, K., & Bronkhorst, A. W. (2018). Human-AI cooperation to benefit military decision making. Technical Evaluation Report. NATO STO, https://www.researchgate. net/publication/325718292_Human-AI_Cooperation_to_Benefit_Military_Decision_Making. |
[87] | Vicente, K. J. (1999). Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-Based Work. Hillsdale, NJ: Erlbaum. |
[88] |
Vu K-P, L., Lachter, J., Battiste, V., & Strybel, T. (2018). Single pilot operations in domestic commercial aviation. Human Factors, 60(6), 755-762. https://doi.org/10.1177/ 0018720818791372.
URL pmid: 29617161 |
[89] | Woods, D. D., Leveson, N., & Hollnagel, E. (2012). Resilience engineering: Concepts and precepts. Aldershot, UK: Ashgate Publishing. |
[90] |
Wu, C. (2018). The five key questions of human performance modeling. International Journal of Industrial Ergonomics, 63, 3-6. https://doi.org/10.1016/j.ergon.2016.05.007.
URL pmid: 29531424 |
[91] |
Xu, W. (2007). Identifying problems and generating recommendations for enhancing complex systems: Applying the abstraction hierarchy framework as an analytical tool. Human Factors, 49(6), 975-994.
URL pmid: 18074698 |
[92] |
Xu, W., Furie, D., Mahabhaleshwar, M., Suresh, B., & Chouhan, H. (2019). Applications of an interaction, process, integration, and intelligence (IPII) design approach for ergonomics solutions. Ergonomics. 62(7), 954-980. doi. org/10.1080/00140139.2019.1588996.
URL pmid: 30836051 |
[93] | Xu, W. (2019). Toward human-centered AI: A perspective from human-computer interaction. ACM Interactions, 26(4), 42-46. |
[94] | Xu, W. (2021). From automation to autonomy and autonomous vehicles: Challenges and opportunities for human-computer interaction. ACM Interactions (to be appeared on No.1). |
[95] |
Zhao, G. Z., & Wu, C. X. (2013). Effectiveness and acceptance of the intelligent speeding prediction system (ISPS). Accident Analysis and Prevention, 52, 19-28. doi: 10. 1016/j.aap.2012.12.013.
URL pmid: 23298705 |
[1] | JIN Fei. How sharing on social media influences consumer choices [J]. Advances in Psychological Science, 2022, 30(8): 1785-1793. |
[2] | FANG Hui, FU Huijian, ZHANG Huijun. The “double-edged sword” effect of competence frustration and intervention strategies: Behavioral and cognitive neuroscience perspectives [J]. Advances in Psychological Science, 2022, 30(5): 1005-1017. |
[3] | YIN Kui, ZHAO Jing, LI Can, WANG Honglei, WANG Chongfeng. The formation mechanisms of leader empowering behavior [J]. Advances in Psychological Science, 2021, 29(6): 1097-1110. |
[4] | XIE Zhipeng, ZHAO Jing, WANG Tao. Do consumers always prefer a smiley face? Effects of product “facial” expressions on consumer attitude [J]. Advances in Psychological Science, 2020, 28(8): 1256-1272. |
[5] | WANG Haixia, JIA Huiyuan, SUN Hailong, LI Aimei. Constant connectivity attenuates autonomy: Mechanism and consequences [J]. Advances in Psychological Science, 2019, 27(11): 1802-1811. |
[6] | Wei XU, Liezhong GE. New trends in human factors [J]. Advances in Psychological Science, 2018, 26(9): 1521-1534. |
[7] | WU Cai-Zhi, RONG Shuo, ZHU Fang-Ting, CHEN Yan, GUO Yong-Yu. Basic psychological need and its satisfaction [J]. Advances in Psychological Science, 2018, 26(6): 1063-1073. |
[8] | LIU Chen-Ling; WANG Yun. Client Motivation: An Integration of Theory and Practice in Counseling and Psychotherapy [J]. Advances in Psychological Science, 2016, 24(2): 261-269. |
[9] | ZHANG Lange; WANG Lei; ZHANG Yinglan; KOU Yu. Differential Motivation and Consequences of Autonomy-Oriented and Dependency-Oriented Intergroup Helping [J]. Advances in Psychological Science, 2015, 23(9): 1658-1667. |
[10] | YANG Ying; KOU Yu. Individuals’ Well-Being in Prosocial Interaction: The Role of Autonomy [J]. Advances in Psychological Science, 2015, 23(7): 1226-1235. |
[11] | ZHOU Yong; ZENG Yan; YANG Jiazhong; SHI Rong; WANG Quangchuan. A Computational Approach to Air Traffic Controller Situation Awareness Based on Multi-sensor Data [J]. Advances in Psychological Science, 2015, 23(11): 1879-1885. |
[12] | WANG Yi-Fu;QIN Qi-Wen;ZHANG Jian-Ren. The Construct, Measurement and Correlational Researches for Work Autonomy in the Productive Enterprises [J]. , 2012, 20(7): 1062-1067. |
[13] | WANG Cheng;YOU Wen-Ping;ZHANG Qing-Fang. Cognitive Mechanism of Handwritten Production [J]. Advances in Psychological Science, 2012, 20(10): 1560-1572. |
[14] | LI Wan-Yu;KOU Yu. The Formation and Development of Filial Piety: A View of Parent-Child Interaction among Different Cultures [J]. , 2011, 19(7): 1069-1075. |
[15] | LAI Dan-Feng;WU Xin-Chun. Teachers’ Motivating Style: Perspective of Self-determination Theory [J]. , 2011, 19(4): 580-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||