Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (8): 1219-1231.doi: 10.3724/SP.J.1042.2020.01219
• Conceptual Framework • Next Articles
PAN Jing(), ZHANG Huiyuan, CHEN Donghao, XU Hongge
Received:
2020-02-11
Online:
2020-08-15
Published:
2020-06-28
Contact:
PAN Jing
E-mail:panj27@mail.sysu.edu.cn
CLC Number:
PAN Jing, ZHANG Huiyuan, CHEN Donghao, XU Hongge. Visual search in real world: The role of dynamic and static optical information[J]. Advances in Psychological Science, 2020, 28(8): 1219-1231.
[1] |
Bahle, B., Matsukura, M., & Hollingworth, A. (2018). Contrasting gist-based and template-based guidance during real-world visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 367-386.
doi: 10.1037/xhp0000468 URL pmid: 28795834 |
[2] |
Bingham, G. P., Schmidt, R. C., & Rosenblum, L. D. (1995). Dynamics and the orientation of kinematic forms in visual event recognition. Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1473-1493.
doi: 10.1037//0096-1523.21.6.1473 URL pmid: 7490589 |
[3] | Broadbent, D. E. (1991). A word before leaving. In D. E. Meyer & S. Kornblum (Eds.), Attention and performance XIV (pp. 863-879). Cambridge, MA: Bradford Books/MIT Press. |
[4] |
Brooks, D. I., Rasmussen, I. P., & Hollingworth, A. (2010). The nesting of search contexts within natural scenes: Evidence from contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1406-1418.
doi: 10.1037/a0019257 URL pmid: 20731525 |
[5] |
Cavanagh, P., Labianca, A. T., & Thornton, I. M. (2001). Attention-based visual routines: Sprites. Cognition, 80(1-2), 47-60.
URL pmid: 11245839 |
[6] |
De Vries, J. P., Hooge, I. T. C., Wertheim, A. H., & Verstraten, F. A. J. (2013). Background, an important factor in visual search. Vision Research, 86, 128-138.
doi: 10.1016/j.visres.2013.04.010 URL |
[7] |
Ding, X., Yin, J., Shui, R., Zhou, J., & Shen, M. (2017). Backward-walking biological motion orients attention to moving away instead of moving toward. Psychonomic Bulletin & Review, 24(2), 447-452.
doi: 10.3758/s13423-016-1083-9 URL pmid: 27368634 |
[8] |
Domini, F., Vuong, Q. C., & Caudek, C. (2002). Temporal integration in structure from motion. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 816-838.
URL pmid: 12190252 |
[9] |
Drew, T., Boettcher, S. E. P., & Wolfe, J. M. (2016). Searching while loaded: Visual working memory does not interfere with hybrid search efficiency but hybrid search uses working memory capacity. Psychonomic Bulletin & Review, 23(1), 201-212.
URL pmid: 26055755 |
[10] |
Drew, T., Boettcher, S. E. P., & Wolfe, J. M. (2017). One visual search, many memory searches: An eye-tracking investigation of hybrid search. Journal of Vision, 17(11), 5.
doi: 10.1167/17.11.5 URL pmid: 28892812 |
[11] |
Duncan, J. S., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458.
doi: 10.1037/0033-295x.96.3.433 URL pmid: 2756067 |
[12] | Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? Optimal foraging in guided visual search. Attention, Perception, & Psychophysics, 78(7), 2135-2151. |
[13] |
Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25(4), 249-263.
doi: 10.3758/bf03198804 URL pmid: 461085 |
[14] |
Foulsham, T., Chapman, C. S., Nasiopoulos, E., & Kingstone, A. (2014). Top-down and bottom-up aspects of active search in a real-world environment. Canadian Journal of Experimental Psychology, 68(1), 8-19.
doi: 10.1037/cep0000004 URL pmid: 24219246 |
[15] |
Foulsham, T., & Underwood, G. (2009). Does conspicuity enhance distraction? Saliency and eye landing position when searching for objects. The Quarterly Journal of Experimental Psychology, 62(6), 1088-1098.
doi: 10.1080/17470210802602433 URL pmid: 19142829 |
[16] |
Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals. British Journal of Psychology, 49(3), 182-194.
URL pmid: 13572790 |
[17] | Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc. (Original work published 1979). |
[18] | Gold, J. M., Tadin, D., Cook, S. C., & Blake, R. (2008). The efficiency of biological motion perception. Attention Perception & Psychophysics, 70(1), 88-95. |
[19] |
Henderson, J. M., & Hayes, T. R. (2017). Meaning-based guidance of attention in scenes as revealed by meaning maps. Nature Human Behaviour, 1(10), 743-747.
doi: 10.1038/s41562-017-0208-0 URL pmid: 31024101 |
[20] |
Henderson, J. M., Malcolm, G. L., & Schandl, C. (2009). Searching in the dark: Cognitive relevance drives attention in real-world scenes. Psychonomic Bulletin & Review, 16(5), 850-856.
URL pmid: 19815788 |
[21] |
Hickey, C., Chelazzi, L., Theeuwes, J., & Geng, J. J. (2014). Reward-priming of location in visual search. PLoS ONE, 9(7), e103372.
URL pmid: 25080218 |
[22] |
Hirai, M., & Hiraki, K. (2006). Visual search for biological motion: An event-related potential study. Neuroscience Letters, 403(3), 299-304.
URL pmid: 16716511 |
[23] |
Kamkar, S., Moghaddam, H. A., & Lashgari, R. (2018). Early visual processing of feature saliency tasks: A review of psychophysical experiments. Frontiers in Systems Neuroscience, 12, 54.
doi: 10.3389/fnsys.2018.00054 URL pmid: 30416433 |
[24] |
Kingstone, A., Smilek, D., & Eastwood, J. D. (2008). Cognitive ethology: A new approach for studying human cognition. British Journal of Psychology, 99, 317-340.
URL pmid: 17977481 |
[25] | Kingstone, A., Smilek, D., Ristic, J., Friesen, C. K., & Eastwood, J. D. (2003). Attention, researchers! It is time to take a look at the real world. Current Directions in Psychological Science, 12(5), 176-180. |
[26] |
Koch, C., & Ullman, S. (1987). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4(2), 115-141.
URL pmid: 4030421 |
[27] |
Koehler, K., Guo, F., Zhang, S., & Eckstein, M. P. (2014). What do saliency models predict. Journal of Vision, 14(3), 14-14.
doi: 10.1167/14.3.14 URL pmid: 24618107 |
[28] |
Kristjánsson, Á., Jóhannesson, Ó. I., & Thornton, I. M. (2014). Common attentional constraints in visual foraging. Plos One, 9(6), e100752.
URL pmid: 24964082 |
[29] |
Lee, Y. L., Lind, M., Bingham, N. & Bingham, G. P. (2012). Object recognition using metric shape. Vision Research, 69, 23-31.
doi: 10.1016/j.visres.2012.07.013 URL pmid: 22884632 |
[30] |
Lu, H., Tjan, B. S., & Liu, Z. (2017). Human efficiency in detecting and discriminating biological motion. Journal of Vision, 17(6), 4-4.
URL pmid: 28593248 |
[31] | Mayer, K. M., Riddell, H., & Lappe, M. (2019). Concurrent processing of optic flow and biological motion. Journal of Experimental Psychology: General, 148(11), 1938-1952. |
[32] |
Mayer, K. M., Vuong, Q. C., & Thornton, I. M. (2015). Do People “Pop Out”?. PLOS ONE, 10(10), e0139618.
doi: 10.1371/journal.pone.0139618 URL pmid: 26441221 |
[33] | Muchisky, M. M.. & Bingham, G. P. (2002). Trajectory forms as a source of information about events. Attention Perception & Psychophysics, 64(1), 15-31. |
[34] |
Nakayama, K., & Martini, P. (2011). Situating visual search. Vision Research, 51(13), 1526-1537.
URL pmid: 20837042 |
[35] |
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147.
URL pmid: 28661761 |
[36] | Pan, J. S., Bingham, N., & Bingham, G. P. (2013). Embodied memory: Effective and stable perception by combining optic flow and image structure. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1638-1651. |
[37] |
Pan, J. S., Bingham, N., & Bingham, G. P. (2017). Embodied memory allows accurate and stable perception of hidden objects despite orientation change. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1343-1358.
doi: 10.1037/xhp0000392 URL pmid: 28301185 |
[38] |
Pan, J. S., Bingham, N., Chen, C., & Bingham, G. P. (2017). Breaking camouflage and detecting targets require optic flow and image structure information. Applied Optics, 56(22), 6410-6418.
URL pmid: 29047842 |
[39] | Pan, J. S., Li, J., Chen, Z., Mangiaracina, E. A., Connell, C. S., Wu, H., ... Hassan, S. E. (2017). Motion-generated optical information allows event perception despite blurry vision in AMD and amblyopic patients. Journal of Vision, 17(12), 13-13. |
[40] |
Ruddle, R. A., & Lessels, S. (2006). For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychological Science, 17(6), 460-465.
doi: 10.1111/j.1467-9280.2006.01728.x URL pmid: 16771793 |
[41] |
Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112(4), 585-615.
doi: 10.1037/0096-3445.112.4.585 URL |
[42] | Seidl-Rathkopf, K. N., Turk-Browne, N. B., & Kastner, S. (2015). Automatic guidance of attention during real-world visual search. Attention Perception & Psychophysics, 77(6), 1881-1895. |
[43] |
Smith, A. D., Hood, B. M., & Gilchrist, I. D. (2008). Visual search and foraging compared in a large-scale search task . Cognitive Processing, 9(2), 121-126.
URL pmid: 18188627 |
[44] |
Smith, A. D., Hood, B. M., & Gilchrist, I. D. (2010). Probabilistic cuing in large-scale environmental search . Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 605-618.
URL pmid: 20438260 |
[45] |
Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5), 5-5.
doi: 10.1167/11.5.5 URL pmid: 21622729 |
[46] |
Theeuwes, J., Kramer, A. F., & Belopolsky, A. V. (2004). Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin & Review, 11(4), 697-702.
URL pmid: 15581120 |
[47] |
Todd, J. T., Tittle, J. S., & Norman, J. F. (1995). Distortions of three-dimensional space in the perceptual analysis of motion and stereo. Perception, 24(1), 75-86.
URL pmid: 7617420 |
[48] |
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766-786.
URL pmid: 17014302 |
[49] |
Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology, 8(2), 194-214.
doi: 10.1037//0096-1523.8.2.194 URL pmid: 6461717 |
[50] |
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
URL pmid: 7351125 |
[51] |
Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1), 15-48.
URL pmid: 3353475 |
[52] | Treisman, A., Sykes, M., & Gelade, G. (1977). Selective attention and stimulus integration. Attention and Performance VI, 333. |
[53] |
Van Boxtel, J. J., & Lu, H. (2011). Visual search by action category. Journal of Vision, 11(7), 19-19.
URL pmid: 21709212 |
[54] |
Vo, M. L., & Wolfe, J. M. (2012). When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 23-41.
URL pmid: 21688939 |
[55] |
Võ, M. L. H., & Wolfe, J. M. (2015). The role of memory for visual search in scenes. Annals of the New York Academy of Sciences, 1339(1), 72-81.
doi: 10.1111/nyas.2015.1339.issue-1 URL |
[56] |
Wang, L., Zhang, K., He, S., & Jiang, Y. (2010). Searching for life motion signals: Visual search asymmetry in local but not global biological-motion processing. Psychological Science, 21(8), 1083-1089.
doi: 10.1177/0956797610376072 URL |
[57] | Wickelgren, E. A. & Bingham, G. P. (2004). Perspective distortion of trajectory forms and perceptual constancy in visual event identification. Attention Perception & Psychophysics, 66, 629-641. |
[58] | Wickelgren, E. A., & Bingham, G.P. (2008). Trajectory forms as information for visual event recognition: 3D perspectives on path shape and speed profile. Attention Perception & Psychophysics, 70(2), 266-278. |
[59] |
Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin &. Review, 1, 202-238
doi: 10.3758/BF03200774 URL pmid: 24203471 |
[60] |
Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Sciences, 7(2), 70-76.
URL pmid: 12584025 |
[61] |
Wolfe, J. M., Boettcher, S. E. P., Josephs, E. L., Cunningham, C. A., & Drew, T. (2015). You look familiar, but I don’t care: Lure rejection in hybrid visual and memory search is not based on familiarity. Journal of Experimental Psychology: Human Perception and Performance, 41(6), 1576-1587.
doi: 10.1037/xhp0000096 URL pmid: 26191615 |
[62] | Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid foraging visual search. Attention, Perception, & Psychophysics, 81(3), 637-653. |
[63] | Wolfe, J. M., Cain, M. S., Ehinger, K. A., & Drew, T. (2015). Guided Search 5.0: Meeting the challenge of hybrid search and multiple-target foraging. Journal of Vision, 15(12), 1106-1106. |
[64] |
Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419-433.
URL pmid: 2527952 |
[65] | Wolfe, J. M., & Gancarz, G. (1997). Guided Search 3.0. In Basic and clinical applications of vision science (pp. 189-192). Dordrecht: Springer. |
[66] | Wolfe, J. M., & Gray, W. (2007). Guided search 4.0. Integrated models of cognitive systems, 99-119. |
[67] | Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058. |
[68] |
Wolfe, J. M., & van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121-124.
URL pmid: 20079642 |
[69] | Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14(4-8), 808-830. |
[70] |
Wu, C., Wick, F. A., & Pomplun, M. (2014). Guidance of visual attention by semantic information in real-world scenes. Frontiers in Psychology, 5, 54-54.
doi: 10.3389/fpsyg.2014.00054 URL pmid: 24567724 |
[71] |
Wu, H., Wang, X. M., & Pan, J. S. (2019). Perceiving blurry scenes with translational optic flow, rotational optic flow or combined optic flow. Vision Research, 158, 49-57.
URL pmid: 30796993 |
[1] | CHEN Xiaowen, CAI Wenshu, XIE Tong, FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders [J]. Advances in Psychological Science, 2020, 28(1): 98-109. |
[2] | Keyun Xin, Zhi Li. Visual working memory load does not affect the overall stimulus processing time in visual search [J]. Advances in Psychological Science, 2019, 27(suppl.): 33-33. |
[3] | Li Shen, Ruichen Hu, Xiangyong Yuan, Ying Wang, Yi Jiang. Cortical Tracking of Biological Motion Information [J]. Advances in Psychological Science, 2019, 27(suppl.): 80-80. |
[4] | Huiyuan Zhang, Jing Samantha Pan. Searching 3D objects in 3D scenes with perspective projection [J]. Advances in Psychological Science, 2019, 27(suppl.): 85-85. |
[5] | YU Mingyang, LI Fuhong, CAO Bihua. The advantage in recognition of happy faces and its cognitive neural mechanism [J]. Advances in Psychological Science, 2018, 26(2): 254-261. |
[6] | CHEN Airui, TANG Xiaoyu, WANG Aijun, ZHANG Ming. Experimental paradigms for discrete attention in visual domain [J]. Advances in Psychological Science, 2017, 25(6): 923-932. |
[7] | Jun Huang; Yan Yang; Ke Zhou; Xudong Zhao; Quan Zhou; Hong Zhu; Yifeng Zhou; Wu Zhou. Differential processing of global and local features in behaving monkeys [J]. Advances in Psychological Science, 2016, 24(Suppl.): 15-. |
[8] | WANG Na;REN Yanju. Oculomotor Inhibition of Return in Real World Scene Search [J]. Advances in Psychological Science, 2014, 22(4): 640-649. |
[9] | ZHAO Feifei;REN Yanju. Spatial Contextual Cueing Effect and Its Mechanisms [J]. Advances in Psychological Science, 2013, 21(7): 1173-1185. |
[10] | KANG Tinghu;FAN Xiaoyan. Visual Memory in the Process of Scene Perception [J]. Advances in Psychological Science, 2013, 21(12): 2136-2143. |
[11] | WEI Ping;KANG Guan-Lan. The Brain Mechanisms of Reward Cue in Triggering and Modulating Fronto-parietal Attentional Network in Visual Search [J]. , 2012, 20(6): 798-804. |
[12] |
ZHANG Bao . Re-examining the Role of Working Memory in Visual Search [J]. , 2012, 20(2): 228-239. |
[13] | ZHANG Ming;WANG Ai-Jun. Working Memory Content-based Attentional Capture and Suppression in the Visual Search [J]. Advances in Psychological Science, 2012, 20(12): 1899-1907. |
[14] |
WEI Ping;ZHOU Xiao-Lin . The Brain Mechanisms for Processing Heterogeneous Distracting Information Along Task-Relevant and -Irrelevant Dimensions in Visual Search [J]. , 2011, 19(6): 794-802. |
[15] | JIANG Yi;WANG Li. Biological Motion Perception: The Roles of Global Configuration and Local Motion [J]. , 2011, 19(3): 301-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||