Advances in Psychological Science ›› 2018, Vol. 26 ›› Issue (6): 1031-1040.doi: 10.3724/SP.J.1042.2018.01031
• Regular Articles • Previous Articles Next Articles
LI Taotao1, HU Jinsheng1(), WANG Qi1, LI Chengshi1, LI Songze1, HE Jianqing1, LI Chenyang1, LIU Shuqing2
Received:
2017-04-06
Online:
2018-06-10
Published:
2018-04-28
Contact:
HU Jinsheng
E-mail:hu_jinsheng@126.com
CLC Number:
LI Taotao, HU Jinsheng, WANG Qi, LI Chengshi, LI Songze, HE Jianqing, LI Chenyang, LIU Shuqing. Audiovisual temporal integration in autism spectrum disorders[J]. Advances in Psychological Science, 2018, 26(6): 1031-1040.
[1] |
Altieri, N. (2014). Multisensory integration, learning, and the predictive coding hypothesis. Frontiers in Psychology, 5( 2), 257.
doi: 10.3389/fpsyg.2014.00257 URL pmid: 2471588424715884 |
[2] | American Psychiatric Association.(2013). Diagnostic and statistical manual of mental disorders (DSM-5®) (5th ed.). Washington, DC: American Psychiatric Publishing. |
[3] |
Baum S. H., Stevenson R. A., & Wallace M. T . ( 2015). Testing sensory and multisensory function in children with autism spectrum disorder. Journal of Visualized Experiments, ( 98), e52677.
doi: 10.3791/52677 URL pmid: 25938209 |
[4] |
Beauchamp M. S., Nath A. R., & Pasalar S . ( 2010). fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the Mcgurk effect. Journal of Neuroscience, 30( 7), 2414-2417.
doi: 10.1523/JNEUROSCI.4865-09.2010 URL pmid: 20164324 |
[5] |
Bebko J. M., Weiss J. A., Demark J. L., & Gomez P . ( 2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47( 1), 88-98.
doi: 10.1111/j.1469-7610.2005.01443.x URL pmid: 16405645 |
[6] |
Binder, M. (2015). Neural correlates of audiovisual temporal processing-Comparison of temporal order and simultaneity judgments. Neuroscience, 300, 432-447.
doi: 10.1016/j.neuroscience.2015.05.011 URL pmid: 25982561 |
[7] | Brock J., Brown C. C., Boucher J., & Rippon G . ( 2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14( 2), 209-224. |
[8] |
Collignon O., Charbonneau G., Peters F., Nassim M., Lassonde M., Lepore F., .. Bertone A . ( 2013). Reduced multisensory facilitation in persons with autism. Cortex, 49( 6), 1704-1710.
doi: 10.1016/j.cortex.2012.06.001 URL pmid: 22818902 |
[9] |
Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window- of-integration model. Journal of Cognitive Neuroscience, 16( 6), 1000-1009.
doi: 10.1162/0898929041502733 URL pmid: 15298787 |
[10] |
Cuppini C., Ursino M., Magosso E., Ross L. A., Foxe J. F., & Molholm S . ( 2017). A computational analysis of neural mechanisms underlying the maturation of multisensory speech integration in neurotypical children and those on the autism spectrum. Frontiers in Human Neuroscience, 11, 518.
doi: 10.3389/fnhum.2017.00518 URL pmid: 5670153 |
[11] |
de Boer-Schellekens L., Eussen M., & Vroomen J . ( 2013). Diminished sensitivity of audiovisual temporal order in autism spectrum disorder. Frontiers in Integrative Neuroscience, 7, 8.
doi: 10.3389/fnint.2013.00008 URL pmid: 23450453 |
[12] |
de Boer-Schellekens L., Keetels M., Eussen M., & Vroomen J . ( 2013). No evidence for impaired multisensory integration of low-level audiovisual stimuli in adolescents and young adults with autism spectrum disorders. Neuropsychologia, 51( 14), 3004-3013.
doi: 10.1016/j.neuropsychologia.2013.10.005 URL pmid: 24157536 |
[13] |
Dinstein I., Heeger D. J., Lorenzi L., Minshew N. J., Malach R., & Behrmann M . ( 2012). Unreliable evoked responses in autism. Neuron, 75( 6), 981-991.
doi: 10.1016/j.neuron.2012.07.026 URL pmid: 22998867 |
[14] |
Donohue S. E., Woldorff M. G., & Mitroff S. R . ( 2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72( 4), 1120-1129.
doi: 10.3758/APP.72.4.1120 URL pmid: 20436205 |
[15] |
Doyle-Thomas K. A. R., Goldberg J., Szatmari P., & Hall, G. B. C. (2013). Neurofunctional underpinnings of audiovisual emotion processing in teens with autism spectrum disorders. Frontiers in Psychiatry, 4, 48.
doi: 10.3389/fpsyt.2013.00048 URL pmid: 23750139 |
[16] |
Foss-Feig J. H., Kwakye L. D., Cascio C. J., Burnette C. P., Kadivar H., Stone W. L., & Wallace M. T . ( 2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203( 2), 381-389.
doi: 10.1007/s00221-010-2240-4 URL |
[17] |
Fujisaki W., Shimojo S., Kashino M., & Nishida S. Y . ( 2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7( 7), 773-778.
doi: 10.1038/nn1268 URL pmid: 15195098 |
[18] |
Glessner J. T., Wang K., Cai G. Q., Korvatska O., Kim C. E., Wood S., .. Hakonarson H . ( 2009). Autism genome- wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459( 7246), 569-573.
doi: 10.1038/nature07953 URL pmid: 19404257 |
[19] |
Greenfield K., Ropar D., Smith A. D., Carey M., & Newport R . ( 2015). Visuo-tactile integration in autism: Atypical temporal binding may underlie greater reliance on proprioceptive information. Molecular Autism, 6( 1), 51.
doi: 10.1186/s13229-015-0045-9 URL pmid: 4570750 |
[20] |
Grossman R. B., Steinhart E., Mitchell T., & McIlvane W . ( 2015). “Look who's talking!” Gaze patterns for implicit and explicit audio-visual speech synchrony detection in children with high-functioning autism. Autism Research, 8( 3), 307-316.
doi: 10.1002/aur.1447 URL pmid: 25620208 |
[21] |
Hairston W. D., Burdette J. H., Flowers D. L., Wood F. B., & Wallace M. T . ( 2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166( 3-4), 474-480.
doi: 10.1007/s00221-005-2387-6 URL pmid: 16028030 |
[22] |
Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36( 1), 5-25.
doi: 10.1007/s10803-005-0039-0 URL pmid: 16450045 |
[23] |
Hillock A. R., Powers A. R., & Wallace M. T . ( 2011). Binding of sights and sounds: Age-related changes in multisensory temporal processing. Neuropsychologia, 49( 3), 461-467.
doi: 10.1016/j.neuropsychologia.2010.11.041 URL pmid: 21134385 |
[24] |
Hillock-Dunn, A., & Wallace, M. T . ( 2012). Developmental changes in the multisensory temporal binding window persist into adolescence. Developmental Science, 15( 5), 688-696.
doi: 10.1111/j.1467-7687.2012.01171.x URL pmid: 4013750 |
[25] |
Hocking, J., & Price, C. J . ( 2008). The role of the posterior superior temporal sulcus in audiovisual processing. Cerebral Cortex, 18( 10), 2439-2449.
doi: 10.1093/cercor/bhn007 URL pmid: 2536697 |
[26] |
Kwakye L. D., Foss-Feig J. H., Cascio C. J., Stone W. L., & Wallace M. T . ( 2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129.
doi: 10.3389/fnint.2010.00129 URL pmid: 3024004 |
[27] |
Laasonen M., Service E., & Virsu V. J . ( 2001). Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cognitive, Affective, & Behavioral Neuroscience, 1( 4), 394-410.
doi: 10.3758/CABN.1.4.394 URL pmid: 12467091 |
[28] |
Lewkowicz, D. J., & Flom, R. (2014). The audiovisual temporal binding window narrows in early childhood. Child Development, 85( 2), 685-694.
doi: 10.1111/cdev.12142 URL pmid: 23888869 |
[29] |
Megnin O., Flitton A., Jones C. R. G., de Haan M., Baldeweg T., & Charman T . ( 2012). Audiovisual speech integration in autism spectrum disorders: ERP evidence for atypicalities in lexical-semantic processing. Autism Research, 5( 1), 39-48.
doi: 10.1002/aur.231 URL pmid: 3586407 |
[30] |
Noel J. P., De Niear M. A., Stevenson R., Alais D., & Wallace M. T . ( 2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10( 1), 121-129.
doi: 10.1002/aur.1633 URL pmid: 27156926 |
[31] |
O’Connor, K. (2012). Auditory processing in autism spectrum disorder: A review. Neuroscience & Biobehavioral Reviews, 36( 2), 836-854.
doi: 10.1016/j.neubiorev.2011.11.008 URL pmid: 22155284 |
[32] |
Patten E., Watson L. R., & Baranek G. T . ( 2014). Temporal synchrony detection and associations with language in young children with ASD. Autism Research and Treatment, 2014, Article ID 678346.
doi: 10.1155/2014/678346 URL pmid: 4295130 |
[33] |
Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16( 10), 504-510.
doi: 10.1016/j.tics.2012.08.009 URL pmid: 22959875 |
[34] |
Powers A. R., Hevey M. A., & Wallace M. T . ( 2012). Neural correlates of multisensory perceptual learning. Journal of Neuroscience, 32( 18), 6263-6274.
doi: 10.1523/JNEUROSCI.6138-11.2012 URL pmid: 3366559 |
[35] |
Powers A. R., Hillock A. R., & Wallace M. T . ( 2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29( 39), 12265-12274.
doi: 10.1523/JNEUROSCI.3501-09.2009 URL pmid: 2771316 |
[36] |
Rippon G., Brock J., Brown C., & Boucher J . ( 2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63( 2), 164-172.
doi: 10.1016/j.ijpsycho.2006.03.012 URL pmid: 16820239 |
[37] |
Rubenstein, J. L. R., & Merzenich, M. M . ( 2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2( 5), 255-267.
doi: 10.1034/j.1601-183X.2003.00037.x URL pmid: 14606691 |
[38] |
Russo N., Foxe J. J., Brandwein A. B., Altschuler T., Gomes H., & Molholm S . ( 2010). Multisensory processing in children with autism: High-density electrical mapping of auditory-somatosensory integration. Autism Research, 3( 5), 253-267.
doi: 10.1002/aur.152 URL pmid: 20730775 |
[39] |
Russo N., Zecker S., Trommer B., Chen J. L., & Kraus N . ( 2009). Effects of background noise on cortical encoding of speech in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39( 8), 1185-1196.
doi: 10.1007/s10803-009-0737-0 URL pmid: 19353261 |
[40] |
Shams L., Kamitani Y., & Shimojo S . ( 2002). Visual illusion induced by sound. Cognitive Brain Research, 14( 1), 147-152.
doi: 10.1016/S0926-6410(02)00069-1 URL pmid: 12063138 |
[41] |
Shi Z. H., Chen L. H., & Müller H. J . ( 2010). Auditory temporal modulation of the visual Ternus effect: The influence of time interval. Experimental Brain Research, 203( 4), 723-735.
doi: 10.1007/s00221-010-2286-3 URL pmid: 20473749 |
[42] |
Stevenson R. A., Fister J. K., Barnett Z. P., Nidiffer A. R., & Wallace M. T . ( 2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219( 1), 121-137.
doi: 10.1007/s00221-012-3072-1 URL pmid: 3526341 |
[43] |
Stevenson R. A., Segers M., Ferber S., Barense M. D., Camarata S., & Wallace M. T . ( 2016). Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Research, 9( 7), 720-738.
doi: 10.1002/aur.1566 URL pmid: 26402725 |
[44] |
Stevenson R. A., Siemann J. K., Brown S. T., Woynaroski T. G., Segers M., Bebko J., & Wallace M . ( 2013). Atypical multisensory integration in Autism Spectrum Disorders: Cascading impacts of altered temporal processing. Multisensory Research, 26, 25.
doi: 10.1163/22134808-000S0015 URL |
[45] |
Stevenson R. A., Siemann J. K., Schneider B. C., Eberly H. E., Woynaroski T. G., Camarata S. M., & Wallace M. T . ( 2014). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience, 34( 3), 691-697.
doi: 10.1523/JNEUROSCI.3615-13.2014 URL pmid: 3891950 |
[46] |
Stevenson R. A., Siemann J. K., Woynaroski T. G., Schneider B. C., Eberly H. E., Camarata S. M., & Wallace M. T . ( 2014). Evidence for diminished multisensory integration in autism spectrum disorders. Journal of Autism and Developmental Disorders, 44( 12), 3161-3167.
doi: 10.1007/s10803-014-2179-6 URL pmid: 25022248 |
[47] |
Stevenson R. A., VanDerKlok R. M., Pisoni D. B., & James T. W . ( 2011). Discrete neural substrates underlie complementary audiovisual speech integration processes. NeuroImage, 55( 3), 1339-1345.
doi: 10.1016/j.neuroimage.2010.12.063 URL pmid: 3057325 |
[48] |
Stevenson, R. A., & Wallace, M. T . ( 2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227( 2), 249-261.
doi: 10.1007/s00221-013-3507-3 URL |
[49] |
Stevenson R. A., Zemtsov R. K., & Wallace M. T . ( 2012). Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. Journal of Experimental Psychology: Human Perception and Performance, 38( 6), 1517-1529.
doi: 10.1037/a0027339 URL pmid: 3795069 |
[50] |
Turi M., Karaminis T., Pellicano E., & Burr D . ( 2016). No rapid audiovisual recalibration in adults on the autism spectrum. Scientific Reports, 6, 21756.
doi: 10.1038/srep21756 URL pmid: 4761981 |
[51] |
van der Burg E., Alais D., & Cass J . ( 2013). Rapid recalibration to audiovisual asynchrony. Journal of Neuroscience, 33( 37), 14633-14637.
doi: 10.1523/JNEUROSCI.1182-13.2013 URL pmid: 24027264 |
[52] |
van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065.
doi: 10.1037/0096-1523.34.5.1053 URL pmid: 18823194 |
[53] |
Vatakis, A., & Spence, C. (2006). Audiovisual synchrony perception for music, speech, and object actions. Brain Research, 1111( 1), 134-142.
doi: 10.1016/j.brainres.2006.05.078 URL pmid: 16876772 |
[54] |
Vroomen J., Keetels M., De Gelder B., & Bertelson P . ( 2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cognitive Brain Research, 22( 1), 32-35.
doi: 10.1016/j.cogbrainres.2004.07.003 URL pmid: 15561498 |
[55] |
Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, & Psychophysics, 72( 4), 871-884.
doi: 10.3758/APP.72.4.871 URL pmid: 20436185 |
[56] |
Wallace, M. T., & Stevenson, R. A . ( 2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123.
doi: 10.1016/j.neuropsychologia.2014.08.005 URL pmid: 25128432 |
[57] |
Williams, E. L., & Casanova, M. F . ( 2010). Autism and dyslexia: A spectrum of cognitive styles as defined by minicolumnar morphometry. Medical Hypotheses, 74( 1), 59-62.
doi: 10.1016/j.mehy.2009.08.003 URL pmid: 19713047 |
[1] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[2] | WANG Runzhou, BI Hongyan. A possible mechanism for the audiovisual temporal integration deficits in developmental dyslexia: Impaired ability in audiovisual temporal recalibration [J]. Advances in Psychological Science, 2022, 30(12): 2764-2776. |
[3] | WANG Lin, WANG Zhidan, WANG Hongjing. The neural mechanisms of developmental motor disorders in children with autism spectrum disorder [J]. Advances in Psychological Science, 2021, 29(7): 1239-1250. |
[4] | HUO Chao, LI Zuoshan, MENG Jing. Empathy interventions for individuals with autism spectrum disorders: Giving full play to strengths or making up for weaknesses? [J]. Advances in Psychological Science, 2021, 29(5): 849-863. |
[5] | JIA Lei, XU Yu-fan, WANG Cheng, REN Jun, WANG Jun. Gamma oscillation: An important biomarker reflecting multisensory integration deficits in autism spectrum disorders [J]. Advances in Psychological Science, 2021, 29(1): 31-44. |
[6] | ZHAO Xiaoning, HU Jinsheng, LI Songze, LIU Xi, LIU Qiongyang, WU Na. Early predication of autism spectrum disorders based on eye movement studies [J]. Advances in Psychological Science, 2019, 27(2): 301-311. |
[7] | BAI Xiaoyu, Tawanda S. Mutusva, ZHU Zhuohong. PEAK relational training system for children with autism: A novel application based on relational frame theory [J]. Advances in Psychological Science, 2019, 27(11): 1896-1905. |
[8] | SU Yi (ESTHER). Acquisition of core Chinese grammar in preschool children with autism spectrum disorders [J]. Advances in Psychological Science, 2018, 26(3): 391-399. |
[9] | LIN Yiqi, WANG Xi, PENG Kaiping, NI Shiguang. Virtual reality technology in the psychological treatment for autism spectrum disorders: An systematic review [J]. Advances in Psychological Science, 2018, 26(3): 518-526. |
[10] | WANG Fenfen, ZHU Zhuohong. Relational frame theory: It’s application in children with autism spectrum disorders [J]. Advances in Psychological Science, 2017, 25(8): 1321-1326. |
[11] | MENG Jing; SHEN Lin. Empathy in individuals with autism spectrum disorder: Symptoms, theories and neural mechanisms [J]. Advances in Psychological Science, 2017, 25(1): 59-66. |
[12] | WANG Qi; HU Jinsheng; LI Chengshi; LI Songze; . The emotional prosody recognition in autism spectrum disorders [J]. Advances in Psychological Science, 2016, 24(9): 1377-1390. |
[13] | WU Wen-Jiao; ZHANG Peng. Biological basis of autism spectrum disorders [J]. Advances in Psychological Science, 2016, 24(5): 739-752. |
[14] | ZHANG Fen; WANG Suiping; YANG Juanhua; FENG Gangyi. Atypical Brain Functional Connectivity in Autism Spectrum Disorders [J]. Advances in Psychological Science, 2015, 23(7): 1196-1204. |
[15] | YUAN Xiang-Yong;HUANG Xi-Ting. Temporal Recalibration in Multisensory Integration [J]. , 2011, 19(5): 692-700. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||