心理科学进展 ›› 2025, Vol. 33 ›› Issue (2): 291-304.doi: 10.3724/SP.J.1042.2025.0291 cstr: 32111.14.2025.0291
收稿日期:
2024-05-31
出版日期:
2025-02-15
发布日期:
2024-12-06
通讯作者:
封叶, E-mail: echofy@blcu.edu.cn基金资助:
QI Ruiying, FENG Ye(), SI Fuzhen
Received:
2024-05-31
Online:
2025-02-15
Published:
2024-12-06
摘要:
在语言表型与神经机制之间寻找对应关系, 即所谓的映射问题(the mapping problem), 是当前研究的一大热点。其中, 句法解析的神经机制尤具挑战性, 这涉及到如何在神经活动中识别出对应于句法结构构建的过程, 是人类语言能力之谜破题的关键。近期神经振荡活动的相关研究不仅为句法解析过程中句法加工的心理现实性提供了有力证据, 也展示了利用神经振荡来阐释句法解析过程的神经编码活动的可行性。而理论语言学最简方案有关句法计算的理论模型可以与神经科学中有关神经振荡的实验研究相互印证, 通过此类研究可以窥探句法构建的时间进程。未来研究可集中于四方面:神经振荡与句法加工的更细粒度对齐; 神经振荡的发生机制及其生物学意义; 儿童语言发展过程中神经振荡的变化模式; 语言障碍神经生理基础及其康复应用。
中图分类号:
戚睿盈, 封叶, 司富珍. (2025). 神经振荡:窥探句法解析的时间进程. 心理科学进展 , 33(2), 291-304.
QI Ruiying, FENG Ye, SI Fuzhen. (2025). Neural oscillations: Exploring the temporal dynamics of syntactic parsing. Advances in Psychological Science, 33(2), 291-304.
模型简称 | 核心概念 | 三分框架 | 粒度 | 出处 | ||
---|---|---|---|---|---|---|
实现层 | 算法层 | 计算层 | ||||
ROSE | 交叉频率耦合 | 语言功能区神经集群随时间变化的渐进激活 | 全频段活动 | 合并操作 | 细 | Murphy, |
CNAL | 神经流形 | δ, θ, γ活动 | 语义组合 | 细 | Martin, | |
SMMM | 记忆维持 | δ活动 | 句法预测 | 粗 | Ding, | |
DORA | 符号−联结主义 | δ活动 | 论元结构 | 粗 | Martin & Doumas, | |
VS-BIND | 符号−联结主义 | θ-γ耦合 | 邻接依存 | 粗 | Calmus et al., |
表1 以神经振荡为基的句法解析模型汇总
模型简称 | 核心概念 | 三分框架 | 粒度 | 出处 | ||
---|---|---|---|---|---|---|
实现层 | 算法层 | 计算层 | ||||
ROSE | 交叉频率耦合 | 语言功能区神经集群随时间变化的渐进激活 | 全频段活动 | 合并操作 | 细 | Murphy, |
CNAL | 神经流形 | δ, θ, γ活动 | 语义组合 | 细 | Martin, | |
SMMM | 记忆维持 | δ活动 | 句法预测 | 粗 | Ding, | |
DORA | 符号−联结主义 | δ活动 | 论元结构 | 粗 | Martin & Doumas, | |
VS-BIND | 符号−联结主义 | θ-γ耦合 | 邻接依存 | 粗 | Calmus et al., |
[1] |
陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. (2022). 节律在听觉言语理解中的作用. 心理科学进展, 30(8), 1818-1831.
doi: 10.3724/SP.J.1042.2022.01818 |
[2] | 胡瑞晨, 袁佩君, 蒋毅, 王莹. (2019). 时间结构信息在人类知觉中的作用及其脑机制. 生理学报, 71(1), 105-116. |
[3] | 姜孟. (2009). 句法自治: 争鸣与证据. 外国语文, 25(3), 79-86. |
[4] | 马宝鹏, 庄会彬. (2022). 二十年来韵律-句法接口研究的回顾与启示. 外国语, 45(1), 56-66. |
[5] | 司富珍. (2024). 语言与人脑科学研究中的“伽利略谜题”. 外国语, 47(2), 2-9. |
[6] | 杨烈祥. (2012). 唯递归论的跨语言比较述评. 外语教学与研究, 44(1), 54-64+158. |
[7] | 张力新, 王发颀, 王玲, 杨佳佳, 万柏坤. (2017). 认知功能研究中神经振荡交叉节律耦合应用研究进展. 生理学报, 69(6), 805-816. |
[8] |
Abbasi, O., & Gross, J. (2020). Beta-band oscillations play an essential role in motor-auditory interactions. Human Brain Mapping, 41(3), 656-665.
doi: 10.1002/hbm.24830 pmid: 31639252 |
[9] | Abbott, N., & Love, T. (2023). Bridging the divide: Brain and behavior in developmental language disorder. Brain Sciences, 13(11), 1606. |
[10] | Attaheri, A., Choisdealbha, Á. N., Di Liberto, G. M., Rocha, S., Brusini, P., Mead, N., ... Goswami, U. (2022). Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. NeuroImage, 247, 118698. |
[11] | Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. PLoS Biology, 20(7), e3001713. https://doi.org/10.1371/journal.pbio.3001713 |
[12] | Bastiaansen, M., Mazaheri, A., & Jensen, O. (2011). Beyond ERPs: Oscillatory neuronal dynamics. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford handbook of event- related potential components. Oxford University Press. |
[13] |
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 89-98.
doi: 10.1016/j.tics.2012.12.002 pmid: 23313359 |
[14] | Brennan, J. R., & Hale, J. T. (2019). Hierarchical structure guides rapid linguistic predictions during naturalistic listening. PloS One, 14(1), e0207741. https://doi.org/10.1371/journal.pone.0207741 |
[15] | Brennan, J. R., & Martin, A. E. (2019). Phase synchronization varies systematically with linguistic structure composition. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1791), 20190305. |
[16] | Calmus, R., Wilson, B., Kikuchi, Y., & Petkov, C. I. (2020). Structured sequence processing and combinatorial binding: Neurobiologically and computationally informed hypotheses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1791), 20190304. |
[17] | Chalas, N., Daube, C., Kluger, D. S., Abbasi, O., Nitsch, R., & Gross, J. (2023). Speech onsets and sustained speech contribute differentially to delta and theta speech tracking in auditory cortex. Cerebral Cortex, 33(10), 6273-6281. |
[18] | Chomsky, N. (1957). Syntactic structures. De Gruyter Mouton. |
[19] | Chomsky, N. (1965). Aspects of the theory of syntax. The MIT Press. |
[20] | Chomsky, N. (1995). The minimalist program. The MIT Press. |
[21] | Chomsky, N. (2017). The Galilean challenge: Architecture and evolution of language. Journal of Physics: Conference Series, 880, 12-15. |
[22] | Chomsky, N., & Moro, A. (2022). The Secrets of words. The MIT Press. |
[23] | Chomsky, N., Seely, T. D., Berwick, R. C., Fong, S., Huybregts, M. A. C., Kitahara, H., McInnerney, A., & Sugimoto, Y. (2023). Merge and the strong minimalist thesis. Cambridge University Press. |
[24] |
Coopmans, C. W., Mai, A., Slaats, S., Weissbart, H., & Martin, A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. Nature Reviews Neuroscience, 24(11), 723-723.
doi: 10.1038/s41583-023-00734-5 pmid: 37696998 |
[25] |
Dikker, S., Rabagliati, H., Farmer, T. A., & Pylkkänen, L. (2010). Early occipital sensitivity to syntactic category is based on form typicality. Psychological Science, 21(5), 629-634.
doi: 10.1177/0956797610367751 pmid: 20483838 |
[26] | Ding, N. (2020). A structure-based memory maintenance model for neural tracking of linguistic structures. arXiv. https://doi.org/10.48550/arXiv.2002.11870 |
[27] | Ding, N. (2022). The neural correlates of linguistic structure building: Comments on Kazanina & Tavano (2022). arXiv. https://doi.org/10.48550/arXiv.2212.04219 |
[28] |
Ding, N. (2023). Low-frequency neural parsing of hierarchical linguistic structures. Nature Reviews Neuroscience, 24(12), 792-792.
doi: 10.1038/s41583-023-00749-y pmid: 37770624 |
[29] |
Ding, N., Melloni, L., Tian, X., & Poeppel, D. (2017). Rule-based and word-level statistics-based processing of language: Insights from neuroscience. Language, Cognition and Neuroscience, 32(5), 570-575.
doi: 10.1080/23273798.2016.1215477 pmid: 29399592 |
[30] |
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
doi: 10.1038/nn.4186 pmid: 26642090 |
[31] | Flanagan, S., & Goswami, U. (2018). The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. The Journal of the Acoustical Society of America, 143(3), 1366-1375. |
[32] | Frank, S. L., & Christiansen, M. H. (2018). Hierarchical and sequential processing of language: A response to: Ding, Melloni, Tian, and Poeppel (2017). Rule-based and word-level statistics-based processing of language: Insights from neuroscience. Language, Cognition and Neuroscience, 33(9), 1213-1218. |
[33] | Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrainment during speech comprehension. PLoS One, 13(5), e0197304. https://doi.org/10.1371/journal.pone.0197304 |
[34] |
Fridriksson, J., Basilakos, A., Hickok, G., Bonilha, L., & Rorden, C. (2015). Speech entrainment compensates for Broca’s area damage. Cortex, 69, 68-75.
doi: 10.1016/j.cortex.2015.04.013 pmid: 25989443 |
[35] |
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480.
doi: 10.1016/j.tics.2005.08.011 pmid: 16150631 |
[36] | Gardner, M. K., Rothkopf, E. Z., Lapan, R., & Lafferty, T. (1987). The word frequency effect in lexical decision: Finding a frequency-based component. Memory & Cognition, 15(1), 24-28. |
[37] |
Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. Frontiers in Psychology, 2, 130.
doi: 10.3389/fpsyg.2011.00130 pmid: 21743809 |
[38] | Giraud, A.-L. (2020). Oscillations for all ¯_(ツ)_/¯? A commentary on Meyer, Sun & Martin (2020). Language, Cognition and Neuroscience, 35(9), 1106-1113. |
[39] | Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517. |
[40] |
Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 3-10.
doi: 10.1016/j.tics.2010.10.001 pmid: 21093350 |
[41] | Gouvea, A., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the P600. Language and Cognitive Processes, 25(2), 149-188. |
[42] | Gross, J., Hoogenboom, N., Thut, G., Schyns, P., Panzeri, S., Belin, P., & Garrod, S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biology, 11(12), e1001752. https://doi.org/10.1371/journal.pbio.1001752 |
[43] | Gwilliams, L., Marantz, A., Poeppel, D., & King, J. R. (2024). Hierarchical dynamic coding coordinates speech comprehension in the brain. bioRxiv: The preprint server for biology, 2024.04.19.590280. |
[44] |
Haegens, S. (2020). Entrainment revisited: A commentary on Meyer, Sun, and Martin (2020). Language, Cognition and Neuroscience, 35(9), 1119-1123.
doi: 10.1080/23273798.2020.1758335 pmid: 33718510 |
[45] | Haegens, S., & Zion Golumbic, E. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150-165. |
[46] | Hale, J. T., Campanelli, L., Li, J., Bhattasali, S., Pallier, C., & Brennan, J. R. (2022). Neurocomputational models of language processing. Annual Review of Linguistics, 8(1), 427-446. |
[47] |
Henke, L., Lewis, A. G., & Meyer, L. (2023). Fast and slow rhythms of naturalistic reading revealed by combined eye-tracking and electroencephalography. Journal of Neuroscience, 43(24), 4461-4469.
doi: 10.1523/JNEUROSCI.1849-22.2023 pmid: 37208175 |
[48] | Jin, P., Lu, Y., & Ding, N. (2020). Low-frequency neural activity reflects rule-based chunking during speech listening. eLife, 9, e55613. https://doi.org/10.7554/eLife.55613 |
[49] |
Jin, P., Zou, J., Zhou, T., & Ding, N. (2018). Eye activity tracks task-relevant structures during speech and auditory sequence perception. Nature Communications, 9(1), 5374.
doi: 10.1038/s41467-018-07773-y pmid: 30560906 |
[50] | Kandylaki, K. D., & Kotz, S. A. (2020). Distinct cortical rhythms in speech and language processing and some more: A commentary on Meyer, Sun, & Martin (2019). Language, Cognition and Neuroscience, 35(9), 1124-1128. |
[51] |
Kaufeld, G., Bosker, H. R., Ten Oever, S., Alday, P. M., Meyer, A. S., & Martin, A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content- specific hierarchy. Journal of Neuroscience, 40(49), 9467-9475.
doi: 10.1523/JNEUROSCI.0302-20.2020 pmid: 33097640 |
[52] | Kaushik, K. R., & Martin, A. E. (2022). A mathematical neural process model of language comprehension, from syllable to sentence. PsyArXiv. https://doi.org/10.31234/osf.io/xs5kr. |
[53] | Kazanina, N., & Tavano, A. (2023). What neural oscillations can and cannot do for syntactic structure building. Nature Reviews Neuroscience, 24(2), 113-128. |
[54] | Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biology, 16(3), e2004473. https://doi.org/10.1371/journal.pbio.2004473 |
[55] |
Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
doi: 10.1016/j.tics.2012.10.007 pmid: 23141428 |
[56] | Klimovich-Gray, A., & Molinaro, N. (2020). Synchronising internal and external information: A commentary on Meyer, Sun & Martin (2020). Language, Cognition and Neuroscience, 35(9), 1129-1132. |
[57] |
Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews. Neuroscience, 5(11), 831-843.
pmid: 15496861 |
[58] |
Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463-470.
doi: 10.1016/s1364-6613(00)01560-6 pmid: 11115760 |
[59] |
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647.
doi: 10.1146/annurev.psych.093008.131123 pmid: 20809790 |
[60] | Lewis, A. G. (2020). Balancing exogenous and endogenous cortical rhythms for speech and language requires a lot of entraining: A commentary on Meyer, Sun & Martin (2020). Language, Cognition and Neuroscience, 35(9), 1133-1137. |
[61] | Lo, C.-W., Tung, T.-Y., Ke, A. H., & Brennan, J. R. (2022). Hierarchy, not lexical regularity, modulates low-frequency neural synchrony during language comprehension. Neurobiology of Language, 3(4), 538-555. |
[62] | Lu, L., Sheng, J., Liu, Z., & Gao, J.-H. (2021). Neural representations of imagined speech revealed by frequency- tagged magnetoencephalography responses. NeuroImage, 229, 117724. |
[63] | Lu, Y., Jin, P., Ding, N., & Tian, X. (2023). Delta-band neural tracking primarily reflects rule-based chunking instead of semantic relatedness between words. Cerebral Cortex, 33(8), 4448-4458. |
[64] |
Mai, G., Minett, J. W., & Wang, W. S.-Y. (2016). Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing. NeuroImage, 133, 516-528.
doi: S1053-8119(16)00173-7 pmid: 26931813 |
[65] | Marcolli, M., Berwick, R. C., & Chomsky, N. (2023a). Old and New Minimalism: A Hopf algebra comparison. arXiv. https://doi.org/10.48550/arXiv.2306.10270 |
[66] | Marcolli, M., Berwick, R. C., & Chomsky, N. (2023b). Syntax-semantics interface: An algebraic model. arXiv. https://doi.org/10.48550/arXiv.2311.06189 |
[67] | Marcolli, M., Chomsky, N., & Berwick, R. (2023). Mathematical structure of syntactic merge. arXiv. https://doi.org/10.48550/arXiv.2305.18278 |
[68] | Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman. |
[69] |
Martin, A. E. (2020). A compositional neural architecture for language. Journal of Cognitive Neuroscience, 32(8), 1407-1427.
doi: 10.1162/jocn_a_01552 pmid: 32108553 |
[70] | Martin, A. E., & Doumas, L. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. PLoS Biology, 15(3), e2000663. https://doi.org/10.1371/journal.pbio.2000663 |
[71] | Martins, P. T., & Boeckx, C. (2019). Language evolution and complexity considerations: The no half-Merge fallacy. PLoS Biology, 17(11), e3000389. https://doi.org/10.1371/journal.pbio.3000389 |
[72] | McClamrock, R. (1991). Marr's three levels: A re-evaluation. Minds and Machines, 1, 185-196. |
[73] | Meyer, L., Lakatos, P., & He, Y. (2021). Language dysfunction in Schizophrenia: Assessing neural tracking to characterize the underlying disorder (s)? Frontiers in Neuroscience, 15, 640502. |
[74] | Meyer, L., Sun, Y., & Martin, A. E. (2020a). “Entraining” to speech, generating language? Language, Cognition and Neuroscience, 35(9), 1138-1148. |
[75] | Meyer, L., Sun, Y., & Martin, A. E. (2020b). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. Language, Cognition and Neuroscience, 35(9), 1089-1099. |
[76] |
Miller, G. A., Heise, G. A., & Lichten, W. (1951). The intelligibility of speech as a function of the context of the test materials. Journal of Experimental Psychology, 41(5), 329-335.
pmid: 14861384 |
[77] | Murphy, E. (2024). ROSE: A neurocomputational architecture for syntax. Journal of Neurolinguistics, 70, 101180. |
[78] | Nallet, C., & Gervain, J. (2021). Neurodevelopmental preparedness for language in the neonatal brain. Annual Review of Developmental Psychology, 3, 41-58. |
[79] |
Obleser, J., & Kayser, C. (2019). Neural entrainment and attentional selection in the listening brain. Trends in Cognitive Sciences, 23(11), 913-926.
doi: S1364-6613(19)30205-0 pmid: 31606386 |
[80] | Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences, 108(6), 2522-2527. |
[81] | Peter, V., Goswami, U., Burnham, D., & Kalashnikova, M. (2023). Impaired neural entrainment to low frequency amplitude modulations in English-speaking children with dyslexia or dyslexia and DLD. Brain and Language, 236, 105217. |
[82] |
Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology, 29(1-2), 34-55.
pmid: 23017085 |
[83] |
Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322-334.
doi: 10.1038/s41583-020-0304-4 pmid: 32376899 |
[84] | Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1493), 1071-1086. |
[85] | Prystauka, Y., & Lewis, A. G. (2019). The power of neural oscillations to inform sentence comprehension: A linguistic perspective. Language and Linguistics Compass, 13(9), e12347. https://doi.org/10.1111/lnc3.12347 |
[86] | Rafferty, M. B., Saltuklaroglu, T., Reilly, K., Paek, E. J., & Casenhiser, D. M. (2023). Neural synchrony reflects closure of jabberwocky noun phrases but not predictable pseudoword sequences. The European Journal of Neuroscience, 57(11), 1834-1847. |
[87] | Si, F. (2016). Paralinguistic features and non-verbal elements in human communication. The 7th International Conference on Formal Linguistics, China, Tianjin. |
[88] | Seidl, A. (2007). Infants’ use and weighting of prosodic cues in clause segmentation. Journal of Memory and Language, 57(1), 24-48. |
[89] |
Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. Journal of Neuroscience, 43(26), 4867-4883.
doi: 10.1523/JNEUROSCI.0964-22.2023 pmid: 37221093 |
[90] |
Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302-319.
doi: 10.1016/j.cognition.2013.02.013 pmid: 23747651 |
[91] |
Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191-196.
pmid: 10195205 |
[92] |
Traxler, M. J. (2014). Trends in syntactic parsing: Anticipation, Bayesian estimation, and good-enough parsing. Trends in Cognitive Sciences, 18(11), 605-611.
doi: 10.1016/j.tics.2014.08.001 pmid: 25200381 |
[93] | Xu, N., Qin, X., Zhou, Z., Shan, W., Ren, J., Yang, C., Lu, L., & Wang, Q. (2023). Age differentially modulates the cortical tracking of the lower and higher level linguistic structures during speech comprehension. Cerebral Cortex, 33(19), 10463-10474. |
[94] | Xu, N., Zhao, B., Luo, L., Zhang, K., Shao, X., Luan, G., Wang, Q., Hu, W., & Wang, Q. (2023). Two stages of speech envelope tracking in human auditory cortex modulated by speech intelligibility. Cerebral Cortex, 33(5), 2215-2228. |
[1] | 施伟廷, 张亚宁, 李兴珊, 林楠. 社会概念表征和整合的神经基础[J]. 心理科学进展, 2024, 32(2): 276-286. |
[2] | 申莉, 李硕, 王莹, 蒋毅. 节律性生物运动信息视听整合的层级式皮层编码机制[J]. 心理科学进展, 2023, 31(suppl.): 155-155. |
[3] | 邓善文, 杨好, 左康洁, 张晶晶. 音乐经验对第二语言加工的影响[J]. 心理科学进展, 2023, 31(11): 2040-2049. |
[4] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[5] | 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. 节律在听觉言语理解中的作用[J]. 心理科学进展, 2022, 30(8): 1818-1831. |
[6] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[7] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[8] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[9] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. 口语句子的韵律边界:窥探言语理解的秘窗[J]. 心理科学进展, 2021, 29(3): 425-437. |
[10] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[11] | 钟楚鹏, 曲折, 丁玉珑. 刺激前alpha振荡对视知觉的影响[J]. 心理科学进展, 2020, 28(6): 945-958. |
[12] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[13] | 钱浩悦, 黄逸慧, 高湘萍. Gamma神经振荡和信息整合加工[J]. 心理科学进展, 2018, 26(3): 433-441. |
[14] | 袁祥勇, 张西磊, 王莹, 蒋毅. 视听整合增强视觉节律的神经振荡[J]. 心理科学进展, 2017, 25(suppl.): 53-53. |
[15] | 王苹;潘治辉;张立洁;陈煦海. 动态面孔和语音情绪信息的整合加工及神经生理机制[J]. 心理科学进展, 2015, 23(7): 1109-1117. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||