心理科学进展 ›› 2025, Vol. 33 ›› Issue (2): 291-304.doi: 10.3724/SP.J.1042.2025.0291
戚睿盈, 封叶, 司富珍
收稿日期:
2024-05-31
出版日期:
2025-02-15
发布日期:
2024-12-06
通讯作者:
封叶, E-mail: echofy@blcu.edu.cn
基金资助:
QI Ruiying, FENG Ye, SI Fuzhen
Received:
2024-05-31
Online:
2025-02-15
Published:
2024-12-06
摘要: 在语言表型与神经机制之间寻找对应关系, 即所谓的映射问题(the mapping problem), 是当前研究的一大热点。其中, 句法解析的神经机制尤具挑战性, 这涉及到如何在神经活动中识别出对应于句法结构构建的过程, 是人类语言能力之谜破题的关键。近期神经振荡活动的相关研究不仅为句法解析过程中句法加工的心理现实性提供了有力证据, 也展示了利用神经振荡来阐释句法解析过程的神经编码活动的可行性。而理论语言学最简方案有关句法计算的理论模型可以与神经科学中有关神经振荡的实验研究相互印证, 通过此类研究可以窥探句法构建的时间进程。未来研究可集中于四方面:神经振荡与句法加工的更细粒度对齐; 神经振荡的发生机制及其生物学意义; 儿童语言发展过程中神经振荡的变化模式; 语言障碍神经生理基础及其康复应用。
戚睿盈, 封叶, 司富珍. (2025). 神经振荡:窥探句法解析的时间进程. 心理科学进展 , 33(2), 291-304.
QI Ruiying, FENG Ye, SI Fuzhen. (2025). Neural oscillations: Exploring the temporal dynamics of syntactic parsing. Advances in Psychological Science, 33(2), 291-304.
[1] 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. (2022). 节律在听觉言语理解中的作用. [2] 胡瑞晨, 袁佩君, 蒋毅, 王莹. (2019). 时间结构信息在人类知觉中的作用及其脑机制. [3] 姜孟. (2009). 句法自治: 争鸣与证据. [4] 马宝鹏, 庄会彬. (2022). 二十年来韵律-句法接口研究的回顾与启示. [5] 司富珍. (2024). 语言与人脑科学研究中的“伽利略谜题”. [6] 杨烈祥. (2012). 唯递归论的跨语言比较述评. [7] 张力新, 王发颀, 王玲, 杨佳佳, 万柏坤. (2017). 认知功能研究中神经振荡交叉节律耦合应用研究进展. [8] Abbasi, O., & Gross, J. (2020). Beta-band oscillations play an essential role in motor-auditory interactions. [9] Abbott, N., & Love, T. (2023). Bridging the divide: Brain and behavior in developmental language disorder. [10] Attaheri A., Choisdealbha Á. N., Di Liberto G. M., Rocha S., Brusini P., Mead N., .. Goswami U. (2022). Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. [11] Bai F., Meyer A. S., & Martin A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. [12] Bastiaansen M., Mazaheri A., & Jensen, O. (2011). Beyond ERPs: Oscillatory neuronal dynamics In E S Kappenman & S J Luck (Eds), The Oxford Handbook of event- related potential components Oxford University Press Oscillatory neuronal dynamics. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford Handbook of event- related potential components. Oxford University Press. [13] Berwick R. C., Friederici A. D., Chomsky N., & Bolhuis J. J. (2013). Evolution, brain, and the nature of language. [14] Brennan, J. R., & Hale, J. T. (2019). Hierarchical structure guides rapid linguistic predictions during naturalistic listening. [15] Brennan, J. R., & Martin, A. E. (2019). Phase synchronization varies systematically with linguistic structure composition. [16] Calmus R., Wilson B., Kikuchi Y., & Petkov C. I. (2020). Structured sequence processing and combinatorial binding: Neurobiologically and computationally informed hypotheses. [17] Chalas N., Daube C., Kluger D. S., Abbasi O., Nitsch R., & Gross J. (2023). Speech onsets and sustained speech contribute differentially to delta and theta speech tracking in auditory cortex. [18] Chomsky, N. (1957). [19] Chomsky, N. (1965). Aspects of the theory of syntax. The MIT Press.. [20] Chomsky, N. (1995). The minimalist program. The MIT Press.. [21] Chomsky, N. (2017). The Galilean challenge: Architecture and evolution of language. Journal of Physics: Conference Series, 880, 12-15. [22] Chomsky N.,& Moro, A. (2022). The Secrets of words. The MIT Press.. [23] Chomsky N., Seely T. D., Berwick R. C., Fong S., Huybregts M. A.C., Kitahara, H., McInnerney, A., & Sugimoto, Y. (2023). Merge and the strong minimalist thesis. Cambridge University Press.. [24] Coopmans C. W., Mai A., Slaats S., Weissbart H., & Martin A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. [25] Dikker S., Rabagliati H., Farmer T. A., & Pylkkänen L. (2010). Early occipital sensitivity to syntactic category is based on form typicality. [26] Ding, N. (2020). A structure-based memory maintenance model for neural tracking of linguistic structures. [27] Ding, N. (2022). The neural correlates of linguistic structure building: Comments on Kazanina & Tavano (2022). [28] Ding, N. (2023). Low-frequency neural parsing of hierarchical linguistic structures. [29] Ding N., Melloni L., Tian X., & Poeppel D. (2017). Rule-based and word-level statistics-based processing of language: Insights from neuroscience. [30] Ding N., Melloni L., Zhang H., Tian X., & Poeppel D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. [31] Flanagan, S., & Goswami, U. (2018). The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. [32] Frank, S. L., & Christiansen, M. H. (2018). Hierarchical and sequential processing of language: A response to: Ding, Melloni, Tian, and Poeppel (2017). Rule-based and word-level statistics-based processing of language: Insights from neuroscience. [33] Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrainment during speech comprehension. [34] Fridriksson J., Basilakos A., Hickok G., Bonilha L., & Rorden C. (2015). Speech entrainment compensates for Broca’s area damage. [35] Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. [36] Gardner M. K., Rothkopf E. Z., Lapan R., & Lafferty T. (1987). The word frequency effect in lexical decision: Finding a frequency-based component. [37] Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. [38] Giraud, A.-L. (2020). Oscillations for all ¯_(ツ)_/¯? A commentary on Meyer, Sun & Martin (2020). [39] Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. [40] Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. [41] Gouvea A., Phillips C., Kazanina N., & Poeppel D. (2010). The linguistic processes underlying the P600. [42] Gross J., Hoogenboom N., Thut G., Schyns P., Panzeri S., Belin P., & Garrod S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. [43] Gwilliams L., Marantz A., Poeppel D., & King J. R. (2024). Hierarchical dynamic coding coordinates speech comprehension in the brain. [44] Haegens, S. (2020). Entrainment revisited: A commentary on Meyer, Sun, and Martin (2020). [45] Haegens, S., & Zion Golumbic, E. (2018). Rhythmic facilitation of sensory processing: A critical review. [46] Hale J. T., Campanelli L., Li J., Bhattasali S., Pallier C., & Brennan J. R. (2022). Neurocomputational models of language processing. [47] Henke L., Lewis A. G., & Meyer L. (2023). Fast and slow rhythms of naturalistic reading revealed by combined eye-tracking and electroencephalography. [48] Jin P., Lu Y., & Ding N. (2020). Low-frequency neural activity reflects rule-based chunking during speech listening. [49] Jin P., Zou J., Zhou T., & Ding N. (2018). Eye activity tracks task-relevant structures during speech and auditory sequence perception. [50] Kandylaki, K. D., & Kotz, S. A. (2020). Distinct cortical rhythms in speech and language processing and some more: A commentary on Meyer, Sun, & Martin (2019). [51] Kaufeld G., Bosker H. R., Ten Oever S., Alday P. M., Meyer A. S., & Martin A. E. (2020). Linguistic structure and meaning organize neural oscillations into a content- specific hierarchy. [52] Kaushik, K. R., & Martin, A. E. (2022). A mathematical neural process model of language comprehension, from syllable to sentence. [53] Kazanina, N., & Tavano, A. (2023). What neural oscillations can and cannot do for syntactic structure building.Nature Reviews Neuroscience, 24(2), 113-128. [54] Keitel A., Gross J., & Kayser C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. [55] Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. [56] Klimovich-Gray, A., & Molinaro, N. (2020). Synchronising internal and external information: A commentary on Meyer, Sun & Martin (2020).Language, Cognition and Neuroscience, 35(9), 1129-1132. [57] Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. [58] Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. [59] Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). [60] Lewis, A. G. (2020). Balancing exogenous and endogenous cortical rhythms for speech and language requires a lot of entraining: A commentary on Meyer, Sun & Martin (2020). [61] Lo C.-W., Tung T.-Y., Ke A. H., & Brennan J. R. (2022). Hierarchy, not lexical regularity, modulates low-frequency neural synchrony during language comprehension. [62] Lu L., Sheng J., Liu Z., & Gao J.-H. (2021). Neural representations of imagined speech revealed by frequency- tagged magnetoencephalography responses. [63] Lu Y., Jin P., Ding N., & Tian X. (2023). Delta-band neural tracking primarily reflects rule-based chunking instead of semantic relatedness between words. [64] Mai G., Minett J. W., & Wang W. S.-Y. (2016). Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing. [65] Marcolli M., Berwick R. C., & Chomsky N. (2023a). Old and New Minimalism: A Hopf algebra comparison. [66] Marcolli M., Berwick R. C., & Chomsky N. (2023b). Syntax-semantics interface: An algebraic model. [67] Marcolli M., Chomsky N., & Berwick R. (2023). Mathematical structure of syntactic merge. [68] Marr, D. (1982). [69] Martin, A. E. (2020). A compositional neural architecture for language. [70] Martin, A. E., & Doumas, L. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. [71] Martins, P. T., & Boeckx, C. (2019). Language evolution and complexity considerations: The no half-Merge fallacy. [72] McClamrock, R. (1991). Marr's three levels: A re-evaluation. [73] Meyer L., Lakatos P., & He Y. (2021). Language dysfunction in Schizophrenia: Assessing neural tracking to characterize the underlying disorder (s)? [74] Meyer L., Sun Y., & Martin A. E. (2020a). “Entraining” to speech, generating language? [75] Meyer L., Sun Y., & Martin A. E. (2020b). Synchronous, but not entrained: Exogenous and endogenous cortical rhythms of speech and language processing. [76] Miller G. A., Heise G. A., & Lichten W. (1951). The intelligibility of speech as a function of the context of the test materials. [77] Murphy, E. (2024). ROSE: A neurocomputational architecture for syntax. [78] Nallet, C., & Gervain, J. (2021). Neurodevelopmental preparedness for language in the neonatal brain. [79] Obleser, J., & Kayser, C. (2019). Neural entrainment and attentional selection in the listening brain. [80] Pallier C., Devauchelle A.-D., & Dehaene S. (2011). Cortical representation of the constituent structure of sentences. [81] Peter V., Goswami U., Burnham D., & Kalashnikova M. (2023). Impaired neural entrainment to low frequency amplitude modulations in English-speaking children with dyslexia or dyslexia and DLD. [82] Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. [83] Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. [84] Poeppel D., Idsardi W. J., & van Wassenhove V. (2008). Speech perception at the interface of neurobiology and linguistics. [85] Prystauka, Y., & Lewis, A. G. (2019). The power of neural oscillations to inform sentence comprehension: A linguistic perspective. [86] Rafferty M. B., Saltuklaroglu T., Reilly K., Paek E. J., & Casenhiser D. M. (2023). Neural synchrony reflects closure of jabberwocky noun phrases but not predictable pseudoword sequences. [87] Si, F. (2016). [88] Seidl, A. (2007). Infants’ use and weighting of prosodic cues in clause segmentation. [89] Slaats S., Weissbart H., Schoffelen J.-M., Meyer A. S., & Martin A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. [90] Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. [91] Steinhauer K., Alter K., & Friederici A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. [92] Traxler, M. J. (2014). Trends in syntactic parsing: Anticipation, Bayesian estimation, and good-enough parsing. [93] Xu N., Qin X., Zhou Z., Shan W., Ren J., Yang C., Lu L., & Wang Q. (2023). Age differentially modulates the cortical tracking of the lower and higher level linguistic structures during speech comprehension. [94] Xu N., Zhao B., Luo L., Zhang K., Shao X., Luan G., Wang Q., Hu W., & Wang Q. (2023). Two stages of speech envelope tracking in human auditory cortex modulated by speech intelligibility. |
[1] | 施伟廷, 张亚宁, 李兴珊, 林楠. 社会概念表征和整合的神经基础[J]. 心理科学进展, 2024, 32(2): 276-286. |
[2] | 申莉, 李硕, 王莹, 蒋毅. 节律性生物运动信息视听整合的层级式皮层编码机制[J]. 心理科学进展, 2023, 31(suppl.): 155-155. |
[3] | 邓善文, 杨好, 左康洁, 张晶晶. 音乐经验对第二语言加工的影响[J]. 心理科学进展, 2023, 31(11): 2040-2049. |
[4] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[5] | 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. 节律在听觉言语理解中的作用[J]. 心理科学进展, 2022, 30(8): 1818-1831. |
[6] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[7] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[8] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. 口语句子的韵律边界:窥探言语理解的秘窗[J]. 心理科学进展, 2021, 29(3): 425-437. |
[9] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[10] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[11] | 钟楚鹏, 曲折, 丁玉珑. 刺激前alpha振荡对视知觉的影响[J]. 心理科学进展, 2020, 28(6): 945-958. |
[12] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[13] | 钱浩悦, 黄逸慧, 高湘萍. Gamma神经振荡和信息整合加工[J]. 心理科学进展, 2018, 26(3): 433-441. |
[14] | 袁祥勇, 张西磊, 王莹, 蒋毅. 视听整合增强视觉节律的神经振荡[J]. 心理科学进展, 2017, 25(suppl.): 53-53. |
[15] | 王苹;潘治辉;张立洁;陈煦海. 动态面孔和语音情绪信息的整合加工及神经生理机制[J]. 心理科学进展, 2015, 23(7): 1109-1117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||