心理科学进展 ›› 2023, Vol. 31 ›› Issue (10): 1775-1784.doi: 10.3724/SP.J.1042.2023.01775
• 研究构想 • 下一篇
收稿日期:
2023-03-06
出版日期:
2023-10-15
发布日期:
2023-07-25
通讯作者:
刘永, E-mail: 基金资助:
Received:
2023-03-06
Online:
2023-10-15
Published:
2023-07-25
摘要:
全球超重/肥胖人群增长迅猛, 1997年世界卫生组织将肥胖认定为全球性流行病。目前, 中国成年人的超重/肥胖发生率已超过50%, 不健康的饮食行为占肥胖成因的70%。本项目拟从食物特异工作记忆切入, 探明超重/肥胖个体食物特异工作记忆的神经机制, 以及与一般工作记忆神经机制的差异。再采用前瞻性的研究设计, 考察食物特异工作记忆与超重/肥胖发展的渐变关系, 探索食物特异工作记忆及其神经活动对个体饮食管理和体质变化的预测作用。最后, 采用食物特异抑制控制训练, 提升超重/肥胖个体的食物特异工作记忆能力, 塑造健康饮食行为。本项目旨在探索塑造健康饮食行为的安全及有效的方法, 为超重/肥胖的预防和干预提供理论和实践建议, 具有现实性、前沿性和前瞻性。
中图分类号:
刘永, 陈红. (2023). 超重/肥胖个体工作记忆的神经机制及干预. 心理科学进展 , 31(10), 1775-1784.
LIU Yong, CHEN Hong. (2023). Neural mechanism of food-related working memory in individuals with overweight/obesity and related intervention. Advances in Psychological Science, 31(10), 1775-1784.
[1] | 库逸轩. (2019). 工作记忆的认知神经机制. 生理学报, 71(1), 173-185. |
[2] | 刘豫, 陈红, 李书慧, 罗念. (2017). 在线抑制控制训练对失败的限制性饮食者不健康食物选择的改善. 心理学报, 49(2), 219. |
[3] |
Allom, V., & Mullan, B. (2014). Individual differences in executive function predict distinct eating behaviours. Appetite, 80, 123-130. https://doi.org/10.1016/j.appet.2014.05.007
doi: 10.1016/j.appet.2014.05.007 URL pmid: 24845785 |
[4] |
Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553-573. https://doi.org/10.1037/0033-2909.130.4.553
doi: 10.1037/0033-2909.130.4.553 URL pmid: 15250813 |
[5] |
Batterink, L., Yokum, S., & Stice, E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fmri study. Neuroimage, 52(4), 1696-1703. https://doi.org/10.1016/j.neuroimage.2010.05.059
doi: 10.1016/j.neuroimage.2010.05.059 URL pmid: 20510377 |
[6] |
Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974. https://doi.org/10.1016/j.cub.2012.08.029
doi: 10.1016/j.cub.2012.08.029 URL pmid: 23041197 |
[7] |
Bruce, A. S., Lepping, R. J., Bruce, J. M., Cherry, J. B. C., Martin, L. E., Davis, A. M., ... Savage, C. R. (2013). Brain responses to food logos in obese and healthy weight children. The Journal of Pediatrics, 162(4), 759-764. https://doi.org/10.1016/j.jpeds.2012.10.003
doi: 10.1016/j.jpeds.2012.10.003 URL pmid: 23211928 |
[8] |
Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608. https://doi.org/10.1038/386604a0
doi: 10.1038/386604a0 URL |
[9] |
Delgado-Rodríguez, R., Versace, F., Hernández-Rivero, I., Guerra, P., Fernández-Santaella, M. C., & Miccoli, L. (2022). Food addiction symptoms are related to neuroaffective responses to preferred binge food and erotic cues. Appetite, 168, 105687. https://doi.org/10.1016/j.appet.2021.105687
doi: 10.1016/j.appet.2021.105687 URL |
[10] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
doi: 10.1146/annurev-psych-113011-143750 URL pmid: 23020641 |
[11] |
Dohle, S., Diel, K., & Hofmann, W. (2018). Executive functions and the self-regulation of eating behavior: A review. Appetite, 124, 4-9. https://doi.org/10.1016/j.appet.2017.05.041
doi: S0195-6663(17)30160-5 URL pmid: 28551113 |
[12] |
Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13(2), 190-193. https://doi.org/10.1177/1745691617720478
doi: 10.1177/1745691617720478 URL pmid: 29592654 |
[13] |
Fu, Y., Zhou, Y., Zhou, J., Shen, M., & Chen, H. (2021). More attention with less working memory: The active inhibition of attended but outdated information. Science Advances, 7(47), eabj4985. https://doi.org/10.1126/sciadv.abj4985
doi: 10.1126/sciadv.abj4985 URL |
[14] |
Gazzaley, A., Cooney, J. W., Rissman, J., & D'esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298-1300. https://doi.org/10.1038/nn1543
doi: 10.1038/nn1543 URL pmid: 16158065 |
[15] |
Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution eeg mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374
URL pmid: 9177767 |
[16] |
Goldschmidt, A. B., O'Brien, S., Lavender, J. M., Pearson, C. M., Le, G. D., & Hunter, S. J. (2017). Executive functioning in a racially diverse sample of children who are overweight and at risk for eating disorders. Appetite, 124, 43-49. https://doi.org/10.1016/j.appet.2017.03.010
doi: 10.1016/j.appet.2017.03.010 URL |
[17] | Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology Of Learning And Motivation, 22, 193-225. https://doi.org/10.1016/S0079-7421(08)60041-9 |
[18] |
Hofmann, W., Gschwendner, T., Friese, M., Wiers, R. W., & Schmitt, M. (2008). Working memory capacity and self-regulatory behavior: Toward an individual differences perspective on behavior determination by automatic versus controlled processes. Journal of Personality and Social Psychology, 95(4), 962-977. https://doi.org/10.1037/a0012705
doi: 10.1037/a0012705 URL pmid: 18808271 |
[19] |
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174-180. https://doi.org/10.1016/j.tics.2012.01.006
doi: 10.1016/j.tics.2012.01.006 URL pmid: 22336729 |
[20] |
Houben, K., & Jansen, A. (2015). Chocolate equals stop. Chocolate-specific inhibition training reduces chocolate intake and go associations with chocolate. Appetite, 87, 318-323. https://doi.org/10.1016/j.appet.2015.01.005
doi: 10.1016/j.appet.2015.01.005 URL pmid: 25596041 |
[21] |
Janssen, L. K., Duif, I., van Loon, I., Wegman, J., de Vries, J. H. M., Cools, R., & Aarts, E. (2017). Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity. Neuroimage, 146, 148-156. https://doi.org/10.1016/j.neuroimage.2016.11.015
doi: S1053-8119(16)30639-5 URL pmid: 27845255 |
[22] |
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882. https://doi.org/10.1093/cercor/12.8.877
doi: 10.1093/cercor/12.8.877 URL pmid: 12122036 |
[23] |
Kaisari, P., Kumar, S., Hattersley, J., Dourish, C. T., Rotshtein, P., & Higgs, S. (2019). Top-down guidance of attention to food cues is enhanced in individuals with overweight/obesity and predicts change in weight at one-year follow up. International Journal of Obesity, 43(9), 1849-1858. https://doi.org/10.1038/s41366-018-0246-3
doi: 10.1038/s41366-018-0246-3 URL pmid: 30464229 |
[24] |
Killgore, W., Weber, M., Schwab, Z., Kipman, M., DelDonno, S., Webb, C., & Rauch, S. (2013). Cortico-limbic responsiveness to high-calorie food images predicts weight status among women. International Journal of Obesity, 37(11), 1435-1442. https://doi.org/10.1038/ijo.2013.26
doi: 10.1038/ijo.2013.26 URL pmid: 23459322 |
[25] |
Kong, F., Zhang, Y., & Chen, H. (2015). Inhibition ability of food cues between successful and unsuccessful restrained eaters: A two-choice oddball task. PLoS One, 10(7), e0133942. https://doi.org/10.1371/journal.pone.0133942
doi: 10.1371/journal.pone.0133942 URL |
[26] |
Kopell, N., Whittington, M. A., & Kramer, M. A. (2011). Neuronal assembly dynamics in the beta1 frequency range permits short-term memory. Proceedings of the National Academy of Sciences, 108(9), 3779-3784. https://doi.org/10.1073/pnas.1019676108
doi: 10.1073/pnas.1019676108 URL |
[27] |
Lamichhane, B., Westbrook, A., Cole, M. W., & Braver, T. S. (2020). Exploring brain-behavior relationships in the n-back task. Neuroimage, 212, 116683. https://doi.org/10.1016/j.neuroimage.2020.116683
doi: 10.1016/j.neuroimage.2020.116683 URL |
[28] |
Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C., & Xue, G. (2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. Neuroimage, 149, 210-219. https://doi.org/10.1016/j.neuroimage.2017.01.061
doi: S1053-8119(17)30085-X URL pmid: 28131893 |
[29] |
Liu, Y., Gao, X., Zhao, J., Zhang, L., & Chen, H. (2020). Neurocognitive correlates of food-related response inhibition in overweight/obese adults. Brain Topography, 33(1), 101-111. https://doi.org/10.1007/s10548-019-00730-y
doi: 10.1007/s10548-019-00730-y URL pmid: 31564028 |
[30] |
Liu, Y., Quan, H., Song, S., Zhang, X., & Chen, H. (2019). Decreased conflict control in overweight Chinese females: Behavioral and event-related potentials evidence. Nutrients, 11(7), 1450. https://doi.org/10.3390/nu11071450
doi: 10.3390/nu11071450 URL |
[31] |
Liu, Y., Zhao, J., Zhang, X., Gao, X., & Chen, H. (2019). Overweight adults are more impulsive than normal weight adults: Evidence from erps during a chocolate-related delayed discounting task. Neuropsychologia, 133, 107181. https://doi.org/10.1016/j.neuropsychologia.2019.107181
doi: 10.1016/j.neuropsychologia.2019.107181 URL |
[32] |
Loeber, S., Grosshans, M., Korucuoglu, O., Vollmert, C., Vollstädt-klein, S., Schneider, S., ... Kiefer, F. (2012). Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. International Journal of Obesity, 36(10), 1334-1339. http://doi.org/10.1038/ijo.2011.184
doi: 10.1038/ijo.2011.184 URL pmid: 21986703 |
[33] |
Lopez, R. B., Chen, P.-H. A., Huckins, J. F., Hofmann, W., Kelley, W. M., & Heatherton, T. F. (2017). A balance of activity in brain control and reward systems predicts self-regulatory outcomes. Social Cognitive and Affective Neuroscience, 12(5), 832-838. https://doi.org/10.1093/scan/nsx004
doi: 10.1093/scan/nsx004 URL pmid: 28158874 |
[34] |
Lopez, R. B., Hofmann, W., Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2014). Neural predictors of giving in to temptation in daily life. Psychological Science, 25(7), 1337-1344. https://doi.org/10.1177/0956797614531492
doi: 10.1177/0956797614531492 URL pmid: 24789842 |
[35] |
Lopez, R. B., Milyavskaya, M., Hofmann, W., & Heatherton, T. F. (2016). Motivational and neural correlates of self-control of eating: A combined neuroimaging and experience sampling study in dieting female college students. Appetite, 103, 192-199. https://doi.org/10.1016/j.appet.2016.03.027
doi: S0195-6663(16)30121-0 URL pmid: 27058281 |
[36] |
Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communication, 9(1), 394. https://doi.org/10.1038/s41467-017-02791-8
doi: 10.1038/s41467-017-02791-8 URL |
[37] | Meng, X., Huang, D., Ao, H., Wang, X., & Gao, X. (2020). Food cue recruits increased reward processing and decreased inhibitory control processing in the obese/overweight: An activation likelihood estimation meta-analysis of fmri studies. Obesity Research & Clinical Practice, 14(2), 127-135. https://10.1016/j.orcp.2020.02.004 |
[38] |
Meule, A., Kübler, A., & Blechert, J. (2013). Time course of electrocortical food-cue responses during cognitive regulation of craving. Frontiers in Psychology, 4, 669. https://10.3389/fpsyg.2013.00669
doi: 10.3389/fpsyg.2013.00669 URL pmid: 24098290 |
[39] |
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. https://10.1146/annurev.neuro.24.1.167
doi: 10.1146/neuro.2001.24.issue-1 URL |
[40] |
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100(2), 463-475. https://doi.org/10.1016/j.neuron.2018.09.023
doi: S0896-6273(18)30825-0 URL pmid: 30359609 |
[41] |
Murdaugh, D. L., Cox, J. E., Cook III, E. W., & Weller, R. E. (2012). fMRI reactivity to high-calorie food pictures predicts short-and long-term outcome in a weight-loss program. Neuroimage, 59(3), 2709-2721. https://doi.org/10.1016/j.neuroimage.2011.10.071
URL pmid: 22332246 |
[42] |
Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., ... Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the global burden of disease study 2013. The Lancet, 384(9945), 766-781. https://doi.org/10.1016/S0140-6736(14)60460-8
doi: 10.1016/S0140-6736(14)60460-8 URL |
[43] |
Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53(1), 25-38. https://doi.org/10.1016/S0006-3223(02)01675-X
doi: 10.1016/s0006-3223(02)01675-x URL pmid: 12513942 |
[44] |
Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., ... Lisman, J. E. (2001). Gating of human theta oscillations by a working memory task. Journal of Neuroscience, 21(9), 3175-3183. https://doi.org/10.1523/jneurosci.21-09-03175.2001
URL pmid: 11312302 |
[45] |
Rutters, F., Kumar, S., Higgs, S., & Humphreys, G. W. (2015). Electrophysiological evidence for enhanced representation of food stimuli in working memory. Experimental Brain Research, 233(2), 519-528. https://doi.org/10.1007/s00221-014-4132-5
doi: 10.1007/s00221-014-4132-5 URL pmid: 25354971 |
[46] |
Salazar, R., Dotson, N., Bressler, S., & Gray, C. (2012). Content-specific fronto-parietal synchronization during visual working memory. Science, 338(6110), 1097-1100. https://doi.org/10.1126/science.1224000
doi: 10.1126/science.1224000 URL pmid: 23118014 |
[47] |
Spitzer, B., Fleck, S., & Blankenburg, F. (2014). Parametric alpha-and beta-band signatures of supramodal numerosity information in human working memory. Journal of Neuroscience, 34(12), 4293-4302. https://doi.org/10.1523/jneurosci.4580-13.2014
doi: 10.1523/JNEUROSCI.4580-13.2014 URL |
[48] |
Stice, E., & Burger, K. (2019). Neural vulnerability factors for obesity. Clinical Psychology Review, 68, 38-53. https://doi.org/10.1016/j.cpr.2018.12.002
doi: S0272-7358(18)30162-4 URL pmid: 30587407 |
[49] |
Stingl, K. T., Kullmann, S., Ketterer, C., Heni, M., Häring, H.-U., Fritsche, A., & Preissl, H. (2012). Neuronal correlates of reduced memory performance in overweight subjects. NeuroImage, 60(1), 362-369. /https://doi.org/10.1016/j.neuroimage.2011.12.012
doi: 10.1016/j.neuroimage.2011.12.012 URL pmid: 22197786 |
[50] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. https://doi.org/10.1038/nature04171
doi: 10.1038/nature04171 URL |
[51] |
Whitelock, V., Nouwen, A., van den Akker, O., & Higgs, S. (2018). The role of working memory sub-components in food choice and dieting success. Appetite, 124, 24-32. https://doi.org/10.1016/j.appet.2017.05.043
doi: S0195-6663(17)30039-9 URL pmid: 28554850 |
[52] |
Wu, X., Nussbaum, M. A., & Madigan, M. L. (2016). Executive function and measures of fall risk among people with obesity. Perceptual And Motor Skills, 122(3), 825-839. https://doi.org/10.1177/0031512516646158
doi: 10.1177/0031512516646158 URL pmid: 27170627 |
[53] |
Yang, Y., Shields, G. S., Guo, C., & Liu, Y. (2018). Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral Reviews, 84, 225-244. https://doi.org/10.1016/j.neubiorev.2017.11.020
doi: 10.1016/j.neubiorev.2017.11.020 URL |
[54] |
Yang, Y., Shields, G. S., Wu, Q., Liu, Y., Chen, H., & Guo, C. (2019). Cognitive training on eating behaviour and weight loss: A meta-analysis and systematic review. Obesity Reviews, 20(11), 1628-1641. https://doi.org/10.1111/obr.12916
doi: 10.1111/obr.12916 URL pmid: 31353774 |
[55] |
Yau, P. L., Kang, E. H., Javier, D. C., & Convit, A. (2014). Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity, 22(8), 1865-1871. https://doi.org/10.1002/oby.20801
doi: 10.1002/oby.20801 URL pmid: 24891029 |
[56] |
Yokum, S., Ng, J., & Stice, E. (2011). Attentional bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity, 19(9), 1775-1783. https://doi.org/10.1038/oby.2011.168
doi: 10.1038/oby.2011.168 URL pmid: 21681221 |
[57] | Zacks, T. R., & Hasher, L. (2006). Aging and long-term memory:Deficits are not inevitable. In E. Bialystok & F. I. M. Craik (Eds.), Lifespan cognition: Mechanisms of change (pp. 162-177). Oxford Academic. https://doi.org/ 10.1093/acprof:oso/9780195169539.003.0011 |
[58] |
Zhao, J., Long, Z., Li, Y., Qin, Y., & Liu, Y. (2022). Alteration of regional heterogeneity and functional connectivity for obese undergraduates: Evidence from resting-state fMRI. Brain Imaging and Behavior, 16(2), 627-636. https://doi.org/10.1007/s11682-021-00542-4
doi: 10.1007/s11682-021-00542-4 URL |
[1] | 郑好, 陈荣荣, 买晓琴. 第三方惩罚行为的认知神经机制[J]. 心理科学进展, 2024, 32(2): 398-412. |
[2] | 郭禹辰, 刘艳彬, 程远. “惩前毖后”与“率先垂范”:第三方干预行为的影响效应[J]. 心理科学进展, 2024, 32(1): 151-161. |
[3] | 魏宁, 宋锦涛, 周天罡. 空间位置信息对视觉工作记忆重复优势效应的影响[J]. 心理科学进展, 2023, 31(suppl.): 72-72. |
[4] | 裴英名, 任衍具. 与工作记忆保持项目语义相关的干扰对搜索固定与变化目标的影响[J]. 心理科学进展, 2023, 31(suppl.): 75-75. |
[5] | 邱余波, 潘嘉蔚, 吴静岚, 高在峰. 通过社会注意线索转移工作记忆中的注意焦点[J]. 心理科学进展, 2023, 31(suppl.): 76-76. |
[6] | 谢燕, 曲折. 工作记忆容量对不同显著性干扰子的抑制功能的调控作用[J]. 心理科学进展, 2023, 31(suppl.): 78-78. |
[7] | 黄一丰, 沈毅, 赵苑秀. 事件信息与客体信息在视觉工作记忆中的独立存储[J]. 心理科学进展, 2023, 31(suppl.): 81-81. |
[8] | 罗钰萱, 张奇凯, 吴静岚, 高在峰. 社会交互信息在工作记忆中的表征方式:工作记忆中的“同事件优势”[J]. 心理科学进展, 2023, 31(suppl.): 82-82. |
[9] | 肖芬妮, 孟迎芳. 目标探测促进知觉加工?视觉工作记忆中的注意促进效应[J]. 心理科学进展, 2023, 31(suppl.): 86-86. |
[10] | 潘嘉蔚, 邱余波, 叶欣, 郭杨, 梁佳文, 高在峰. 利用连续报告任务检验感觉记忆和工作记忆中的唤起-偏向竞争[J]. 心理科学进展, 2023, 31(suppl.): 87-87. |
[11] | 徐宇寒, 张琪. 抑制性线索引导对工作记忆内相应表征的抑制[J]. 心理科学进展, 2023, 31(suppl.): 90-90. |
[12] | 吴静岚, 郭杨, 陈芝韵, 高在峰. 工作记忆组织社会交互信息的双重路径[J]. 心理科学进展, 2023, 31(suppl.): 104-104. |
[13] | 张婉婷, 库逸轩. 新异刺激自动进入工作记忆而产生注意引导效应[J]. 心理科学进展, 2023, 31(suppl.): 106-106. |
[14] | 潘晗希, 陈泽锋, 许楠, 高在峰. 社会工作记忆的脑机制:来自fMRI的证据[J]. 心理科学进展, 2023, 31(suppl.): 107-107. |
[15] | 梁永奕, 邓佳音, 严鸣, 马捷, 李爱梅. 团队虚拟性的“双刃剑”效应——基于团队发展的视角[J]. 心理科学进展, 2023, 31(9): 1583-1594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||