心理科学进展 ›› 2022, Vol. 30 ›› Issue (10): 2254-2268.doi: 10.3724/SP.J.1042.2022.02254
郑志伟1,2(), 肖凤秋3, 邵琦1,2, 赵晓凤1,2, 黄妍1,2, 李娟1,2()
收稿日期:
2021-09-10
出版日期:
2022-10-15
发布日期:
2022-08-24
通讯作者:
郑志伟,李娟
E-mail:zhengzw@psych.ac.cn;lijuan@psych.ac.cn
基金资助:
ZHENG Zhiwei1,2(), XIAO Fengqiu3, SHAO Qi1,2, ZHAO Xiaofeng1,2, HUANG Yan1,2, LI Juan1,2()
Received:
2021-09-10
Online:
2022-10-15
Published:
2022-08-24
Contact:
ZHENG Zhiwei,LI Juan
E-mail:zhengzw@psych.ac.cn;lijuan@psych.ac.cn
摘要:
随着年龄的增长, 大部分老年人的情景记忆会出现衰退, 但也会有一部分老年人的情景记忆表现出成功的年老化, 即记忆成绩较好或随增龄的衰退程度较小。脑保持理论、神经去分化理论、认知储备理论以及神经补偿理论分别从不同角度解释了情景记忆成功年老化的神经机制。基于选择性优化与补偿模型对现有理论进行整合, 发现情景记忆成功年老化可能与个体的认知储备水平直接相关:高认知储备的老年人能够对情景记忆相关的脑区和脑网络进行优化且具备更强的神经补偿能力, 因而其脑功能(比如, 神经表征和神经加工通路的特异性)可能会保持地更好。未来研究需要更多地采用纵向设计来考察各理论之间的关系及其影响因素, 从而更好地解释记忆成功年老化的神经机制并为提升老年人的脑与认知健康提供支持。
中图分类号:
郑志伟, 肖凤秋, 邵琦, 赵晓凤, 黄妍, 李娟. (2022). 情景记忆成功年老化的神经机制. 心理科学进展 , 30(10), 2254-2268.
ZHENG Zhiwei, XIAO Fengqiu, SHAO Qi, ZHAO Xiaofeng, HUANG Yan, LI Juan. (2022). Neural mechanisms of successful episodic memory aging. Advances in Psychological Science, 30(10), 2254-2268.
[1] | 韩布新, 朱莉琪. (2012). 人类心理毕生发展理论. 中国科学院院刊, 27(增刊), 78-87. |
[2] | 霍丽娟, 郑志伟, 李瑾, 李娟. (2018). 老年人的脑可塑性: 来自认知训练的证据. 心理科学进展, 26(5), 846-858. |
[3] |
Abdulrahman, H., Fletcher, P. C., Bullmore, E., & Morcom, A. M. (2017). Dopamine and memory dedifferentiation in aging. Neuroimage, 153, 211-220.
doi: S1053-8119(15)00213-X pmid: 25800211 |
[4] |
Alghamdi, S. A., & Rugg, M. D. (2020). The effect of age on recollection is not moderated by differential estimation methods. Memory, 28(8), 1067-1077.
doi: 10.1080/09658211.2020.1813781 pmid: 32870106 |
[5] | Baltes, M. M., & Carstensen, L. L. (1996). The process of successful ageing. Ageing & Society, 16(4), 397-422. |
[6] | Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging:The model of selective optimization with compensation. In P. B. Baltes & M. M. Baltes (Eds.), Successful aging: Perspectives from the behavioral sciences (pp. 1-34). New York: Cambridge University Press. |
[7] |
Baltes, P. B., & Smith, J. (2003). New frontiers in the future of aging: From successful aging of the young old to the dilemmas of the fourth age. Gerontology, 49(2), 123-135.
pmid: 12574672 |
[8] |
Baltes, P. B., Staudinger, U. M., & Lindenberger, U. (1999). Lifespan psychology: Theory and application to intellectual functioning. Annual Review of Psychology, 50, 471-507.
pmid: 15012462 |
[9] |
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502-509.
doi: 10.1016/j.tics.2013.08.012 pmid: 24018144 |
[10] |
Blessed, G., Tomlinson, B. E., & Roth, M. (1968). The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. The British Journal of Psychiatry, 114(512), 797-811.
doi: 10.1192/bjp.114.512.797 URL |
[11] | Boyle, R., Knight, S. P., de Looze, C., Carey, D., Scarlett, S., Stern, Y.,... Whelan, R. (2021). Verbal intelligence is a more robust cross-sectional measure of cognitive reserve than level of education in healthy older adults. Alzheimer's Research & Therapy, 13(1), 1-18. |
[12] |
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85-100.
pmid: 11931290 |
[13] |
Cabeza, R., Albert, M., Belleville, S., Craik, F. I., Duarte, A., Grady, C. L.,... Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701-710.
doi: 10.1038/s41583-018-0068-2 pmid: 30305711 |
[14] | Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging:Deterioration and compensation. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 628-652). New York: Oxford University Press. |
[15] |
Cacciaglia, R., Molinuevo, J. L., Falcón, C., Brugulat-Serrat, A., Sánchez-Benavides, G., Gramunt, N.,... Gispert, J. D. (2018). Effects of APOE-ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer's disease. Alzheimer's & Dementia, 14(7), 902-912.
doi: 10.1016/j.jalz.2018.01.016 URL |
[16] |
Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefrontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462-473.
doi: 10.1016/j.cortex.2009.11.009 URL |
[17] |
Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M.,... He, Y. (2014). Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience, 7, 76-93.
doi: 10.1016/j.dcn.2013.11.004 pmid: 24333927 |
[18] | Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences, 111(46), 4997-5006. |
[19] |
Chong, J. S. X., Ng, K. K., Tandi, J., Wang, C., Poh, J. H., Lo, J. C.,... Zhou, J. H. (2019). Longitudinal changes in the cerebral cortex functional organization of healthy elderly. Journal of Neuroscience, 39(28), 5534-5550.
doi: 10.1523/JNEUROSCI.1451-18.2019 pmid: 31109962 |
[20] | Clouston, S. A., Smith, D. M., Mukherjee, S., Zhang, Y., Hou, W., Link, B. G., & Richards, M. (2020). Education and cognitive decline: An integrative analysis of global longitudinal studies of cognitive aging. The Journals of Gerontology: Series B, 75(7), 151-160. |
[21] |
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J.,... Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321.
doi: 10.1073/pnas.0400266101 URL |
[22] |
Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. Neuroimage, 160, 32-40.
doi: S1053-8119(17)30101-5 pmid: 28159687 |
[23] |
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16(12), 1771-1782.
pmid: 16421332 |
[24] |
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Qué PASA? The posterior‐anterior shift in aging. Cerebral Cortex, 18(5), 1201-1209.
doi: 10.1093/cercor/bhm155 URL |
[25] | Dodson, C. S. (2017). Aging and memory. In J. H. Byrne (Series Ed.) & J. T. Wixted (Vol. Ed.). Learning and memory: A comprehensive reference: Vol. 2. Cognitive psychology of memory (2nd ed., pp. 403-421). Oxford: Academic Press. |
[26] | Duarte, A. & Dulas, M. R. (2020). Episodic memory decline in aging. In A. K. Thomas & A. Gutchess (Eds.), The Cambridge handbook of cognitive aging: A life course perspective (pp. 200-217). New York: Cambridge University Press. |
[27] |
Elshiekh, A., Subramaniapillai, S., Rajagopal, S., Pasvanis, S., Ankudowich, E., & Rajah, M. N. (2020). The association between cognitive reserve and performance-related brain activity during episodic encoding and retrieval across the adult lifespan. Cortex, 129, 296-313.
doi: S0010-9452(20)30188-X pmid: 32535380 |
[28] |
Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E.,... Kramer, A. F. (2007). Training-induced functional activation changes in dual-task processing: An fMRI study. Cerebral Cortex, 17(1), 192-204.
pmid: 16467562 |
[29] |
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L.,... Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
doi: 10.1073/pnas.1015950108 URL |
[30] |
Folville, A., Bahri, M. A., Delhaye, E., Salmon, E., D’Argembeau, A., & Bastin, C. (2020). Age-related differences in the neural correlates of vivid remembering. NeuroImage, 206, 116336.
doi: 10.1016/j.neuroimage.2019.116336 URL |
[31] |
Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987-1999.
doi: 10.1093/cercor/bhu012 URL |
[32] |
Gorbach, T., Pudas, S., Lundquist, A., Orädd, G., Josefsson, M., Salami, A.,... Nyberg, L. (2017). Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiology of Aging, 51, 167-176.
doi: S0197-4580(16)30308-6 pmid: 28089351 |
[33] |
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491-505.
doi: 10.1038/nrn3256 pmid: 22714020 |
[34] |
Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579-582.
doi: 10.1126/science.1254604 pmid: 25359965 |
[35] |
Habib, R., Nyberg, L., & Nilsson, L.-G. (2007). Cognitive and non-cognitive factors contributing to the longitudinal identification of successful older adults in the Betula study. Aging, Neuropsychology, and Cognition, 14(3), 257-273.
pmid: 17453560 |
[36] |
Han, L., Savalia, N. K., Chan, M. Y., Agres, P. F., Nair, A. S., & Wig, G. S. (2018). Functional parcellation of the cerebral cortex across the human adult lifespan. Cerebral Cortex, 28(12), 4403-4423.
doi: 10.1093/cercor/bhy218 URL |
[37] |
Johansson, J., Salami, A., Lundquist, A., Wåhlin, A., Andersson, M., & Nyberg, L. (2020). Longitudinal evidence that reduced hemispheric encoding/retrieval asymmetry predicts episodic-memory impairment in aging. Neuropsychologia, 137, 107329.
doi: 10.1016/j.neuropsychologia.2019.107329 URL |
[38] | Johnson, M. K., Kuhl, B. A., Mitchell, K. J., Ankudowich, E., & Durbin, K. A. (2015). Age-related differences in the neural basis of the subjective vividness of memories: Evidence from multivoxel pattern classification. Cognitive, Affective, & Behavioral Neuroscience, 15(3), 644-661. |
[39] | Jonasson, L. S., Nyberg, L., Kramer, A. F., Lundquist, A., Riklund, K., & Boraxbekk, C. J. (2017). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, 336. |
[40] |
Josefsson, M., de Luna, X., Pudas, S., Nilsson, L.-G., & Nyberg, L. (2012). Genetic and lifestyle predictors of 15‐year longitudinal change in episodic memory. Journal of the American Geriatrics Society, 60(12), 2308-2312.
doi: 10.1111/jgs.12000 pmid: 23110764 |
[41] |
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P.,... Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138-144.
pmid: 2897823 |
[42] |
Koen, J. D., Hauck, N., & Rugg, M. D. (2019). The relationship between age, neural differentiation, and memory performance. Journal of Neuroscience, 39(1), 149-162.
doi: 10.1523/JNEUROSCI.1498-18.2018 pmid: 30389841 |
[43] |
Koen, J. D., & Rugg, M. D. (2019). Neural dedifferentiation in the aging brain. Trends in Cognitive Sciences, 23(7), 547-559.
doi: S1364-6613(19)30104-4 pmid: 31174975 |
[44] |
Koen, J. D., Srokova, S., & Rugg, M. D. (2020). Age-related neural dedifferentiation and cognition. Current Opinion in Behavioral Sciences, 32, 7-14.
doi: 10.1016/j.cobeha.2020.01.006 pmid: 32095492 |
[45] |
Köhncke, Y., Düzel, S., Sander, M. C., Lindenberger, U., Kühn, S., & Brandmaier, A. M. (2021). Hippocampal and parahippocampal gray matter structural integrity assessed by multimodal imaging is associated with episodic memory in old age. Cerebral Cortex, 31(3), 1464-1477.
doi: 10.1093/cercor/bhaa287 URL |
[46] |
Köhncke, Y., Laukka, E. J., Brehmer, Y., Kalpouzos, G., Li, T.-Q., Fratiglioni, L.,... Lövdén, M. (2016). Three year changes in leisure activities are associated with concurrent changes in white-matter microstructure and perceptual speed in individuals aged 80 years and older. Neurobiology of Aging, 41, 173-186.
doi: S0197-4580(16)00168-8 pmid: 27103530 |
[47] |
Köhncke, Y., Papenberg, G., Jonasson, L., Karalija, N., Wahlin, A., Salami, A.,... Lövdén, M. (2018). Self-rated intensity of habitual physical activities is positively associated with dopamine D2/3 receptor availability and cognition. NeuroImage, 181, 605-616.
doi: S1053-8119(18)30651-7 pmid: 30041059 |
[48] | Liem, F., Geerligs, L., Damoiseaux, J. S., & Margulies, D. S. (2021). Functional connectivity in aging. In K. W. Schaie & S. L. Willis (Eds.), Handbook of the psychology of aging (9th ed., pp. 37-51). San Diego: Academic Press. |
[49] |
Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune?. Science, 346(6209), 572-578.
doi: 10.1126/science.1254403 pmid: 25359964 |
[50] |
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339-355.
pmid: 7999320 |
[51] |
Lindenberger, U., Scherer, H., & Baltes, P. B. (2001). The strong connection between sensory and cognitive performance in old age: Not due to sensory acuity reductions operating during cognitive assessment. Psychology and Aging, 16(2), 196-205.
pmid: 11405308 |
[52] | Li, S.-C., & Lindenberger, U. (1999). Cross-level unification:A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In L.-G. Nilsson & H. J. Markowitsch (Eds.), Cognitive neuroscience of memory (pp. 103-146). Seattle: Hogrefe & Huber Publishers. |
[53] |
Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479-486.
pmid: 11684480 |
[54] |
Li, S.-C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 29, 148-158.
doi: 10.1016/j.conb.2014.07.009 URL |
[55] |
Li, S.-C., & Sikström, S. (2002). Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neuroscience & Biobehavioral Reviews, 26(7), 795-808.
doi: 10.1016/S0149-7634(02)00066-0 URL |
[56] |
Li, X., Song, R., Qi, X., Xu, H., Yang, W., Kivipelto, M.,... Xu, W. (2021). Influence of cognitive reserve on cognitive trajectories: Role of brain pathologies. Neurology, 97(17), e1695-e1706.
doi: 10.1212/WNL.0000000000012728 pmid: 34493618 |
[57] |
Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C.,... Lindenberger, U. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 3878-3883.
doi: 10.1016/j.neuropsychologia.2010.08.026 pmid: 20816877 |
[58] |
Lövdén, M., Fratiglioni, L., Glymour, M. M., Lindenberger, U., & Tucker-Drob, E. M. (2020). Education and cognitive functioning across the life span. Psychological Science in the Public Interest, 21(1), 6-41.
doi: 10.1177/1529100620920576 pmid: 32772803 |
[59] | Malagurski, B., Liem, F., Oschwald, J., Mérillat, S., & Jäncke, L. (2020). Functional dedifferentiation of associative resting state networks in older adults-A longitudinal study. Neuroimage, 116680. |
[60] |
Morcom, A. M., & Henson, R. N. A. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. The Journal of Neuroscience, 38(33), 7303-7313.
doi: 10.1523/JNEUROSCI.1701-17.2018 URL |
[61] |
Mousavi-Nasab, S.-M.-H., Kormi-Nouri, R., & Nilsson, L.-G. (2014). Examination of the bidirectional influences of leisure activity and memory in old people: A dissociative effect on episodic memory. British Journal of Psychology, 105(3), 382-398.
doi: 10.1111/bjop.12044 pmid: 25040007 |
[62] |
Mukadam, N., Sommerlad, A., Huntley, J., & Livingston, P. G. (2019). Population attributable fractions for risk factors for dementia in low-income and middle-income countries: An analysis using cross-sectional survey data. The Lancet Global Health, 7(5), e596-e603.
doi: 10.1016/S2214-109X(19)30074-9 URL |
[63] |
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1170-1187.
doi: 10.1037/0278-7393.26.5.1170 URL |
[64] |
Ng, K. K., Lo, J. C., Lim, J. K., Chee, M. W., & Zhou, J. (2016). Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study. NeuroImage, 133, 321-330.
doi: S1053-8119(16)00234-2 pmid: 27001500 |
[65] |
Nyberg, L., Boraxbekk, C.-J., Sörman, D. E., Hansson, P., Herlitz, A., Kauppi, K.,... Adolfsson, R. (2020). Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Research Reviews, 64, 101184.
doi: 10.1016/j.arr.2020.101184 URL |
[66] | Nyberg, L., & Lindenberger, U. (2020). Brain maintenance and cognition in old age. In D. Poeppel, G. Mangun, & M. Gazzaniga (Eds.), The cognitive neurosciences (6th ed., pp. 81-90). Cambridge: MIT Press. |
[67] |
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292-305.
doi: 10.1016/j.tics.2012.04.005 pmid: 22542563 |
[68] |
Nyberg, L., Magnussen, F., Lundquist, A., Baare, W., Bartrés-Faz, D., Bertram, L.,... Fjell, A. M. (2021). Educational attainment does not influence brain aging. Proceedings of the National Academy of Sciences. 118(18), e2101644118.
doi: 10.1073/pnas.2101644118 URL |
[69] |
Nyberg, L., & Pudas, S. (2019). Successful memory aging. Annual Review of Psychology, 70, 219-243.
doi: 10.1146/annurev-psych-010418-103052 pmid: 29949727 |
[70] |
Nyberg, L., Salami, A., Andersson, M., Eriksson, J., Kalpouzos, G., Kauppi, K.,... Nilsson, L.-G. (2010). Longitudinal evidence for diminished frontal cortex function in aging. Proceedings of the National Academy of Sciences, 107(52), 22682-22686.
doi: 10.1073/pnas.1012651108 URL |
[71] |
Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104-118.
doi: 10.1037/0882-7974.23.1.104 pmid: 18361660 |
[72] |
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299-320.
pmid: 12061414 |
[73] |
Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences, 101(35), 13091-13095.
doi: 10.1073/pnas.0405148101 URL |
[74] |
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173-196.
doi: 10.1146/annurev.psych.59.103006.093656 pmid: 19035823 |
[75] |
Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.-G., Ingvar, M., & Buckner, R. L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16(7), 907-915.
pmid: 16162855 |
[76] |
Persson, J., Pudas, S., Lind, J., Kauppi, K., Nilsson, L.-G., & Nyberg, L. (2012). Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline. Cerebral Cortex, 22(10), 2297-2304.
doi: 10.1093/cercor/bhr306 URL |
[77] |
Pudas, S., Josefsson, M., Rieckmann, A., & Nyberg, L. (2018). Longitudinal evidence for increased functional response in frontal cortex for older adults with hippocampal atrophy and memory decline. Cerebral Cortex, 28(3), 936-948.
doi: 10.1093/cercor/bhw418 URL |
[78] |
Pudas, S., Persson, J., Josefsson, M., de Luna, X., Nilsson, L. G., & Nyberg, L. (2013). Brain characteristics of individuals resisting age-related cognitive decline over two decades. Journal of Neuroscience, 33(20), 8668-8677.
doi: 10.1523/JNEUROSCI.2900-12.2013 pmid: 23678111 |
[79] |
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177-182.
doi: 10.1111/j.1467-8721.2008.00570.x URL |
[80] |
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355-370.
doi: 10.1007/s11065-014-9270-9 pmid: 25143069 |
[81] |
Roe, J. M., Vidal-Piñeiro, D., Sneve, M. H., Kompus, K., Greve, D. N., Walhovd, K. B.,... Westerhausen, R. (2020). Age-related differences in functional asymmetry during memory retrieval revisited: No evidence for contralateral overactivation or compensation. Cerebral Cortex, 30(3), 1129-1147.
doi: 10.1093/cercor/bhz153 URL |
[82] | Rugg, M. D., Johnson, J. D., & Uncapher, M. R. (2015). Encoding and retrieval in episodic memory:Insights from fMRI. In D. R. Addis, M. Barense, & A. Duarte (Eds.), The Wiley handbook on the cognitive neuroscience of memory (pp.84-107). Chichester: John Wiley & Sons. |
[83] |
Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proceedings of the National Academy of Sciences, 111(49), 17654-17659
doi: 10.1073/pnas.1410233111 URL |
[84] |
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7, 273-295
doi: 10.1037/0894-4105.7.3.273 URL |
[85] |
Schofield, P. W., Logroscino, G., Andrews, H. F., Albert, S., & Stern, Y. (1997). An association between head circumference and Alzheimer’s disease in a population-based study of aging and dementia. Neurology, 49(1), 30-37.
pmid: 9222166 |
[86] |
Seblova, D., Berggren, R., & Lövdén, M. (2020). Education and age-related decline in cognitive performance: Systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 58, 101005.
doi: 10.1016/j.arr.2019.101005 URL |
[87] |
Shing, Y. L., Werkle-Bergner, M., Brehmer, Y., Müller, V., Li, S.-C., & Lindenberger, U. (2010). Episodic memory across the lifespan: The contributions of associative and strategic components. Neuroscience & Biobehavioral Reviews, 34(7), 1080-1091.
doi: 10.1016/j.neubiorev.2009.11.002 URL |
[88] |
Soshi, T., Andersson, M., Kawagoe, T., Nishiguchi, S., Yamada, M., Otsuka, Y.,... Sekiyama, K. (2021). Prefrontal plasticity after a 3-month exercise intervention in older adults relates to enhanced cognitive performance. Cerebral Cortex, 31(10), 4501-4517.
doi: 10.1093/cercor/bhab102 URL |
[89] | Spreng, R. N., & Turner, G. R. (2019). Structure and function of the aging brain. In G. R. Samanez-Larkin (Ed.), The aging brain: Functional adaptation across adulthood (pp. 9-43). Washington, DC: American Psychological Association. |
[90] | Srokova, S., Hill, P. F., Koen, J. D., King, D. R., & Rugg, M. D. (2020). Neural differentiation is moderated by age in scene-selective, but not face-selective, cortical regions. eNeuro, 7(3), 1-16. |
[91] |
Steffener, J., Barulli, D., Habeck, C., O’Shea, D., Razlighi, Q., & Stern, Y. (2014). The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PLoS One, 9(3), e91196.
doi: 10.1371/journal.pone.0091196 URL |
[92] |
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448-460.
pmid: 11939702 |
[93] |
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015-2028.
doi: 10.1016/j.neuropsychologia.2009.03.004 pmid: 19467352 |
[94] |
Stern, Y. (2017). An approach to studying the neural correlates of reserve. Brain Imaging and Behavior, 11(2), 410-416.
doi: 10.1007/s11682-016-9566-x pmid: 27450378 |
[95] |
Stern, Y., Arenaza‐Urquijo, E. M., Bartrés‐Faz, D., Belleville, S., Cantilon, M., Chetelat, G.,... Reserve, Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer's & Dementia, 16(9), 1305-1311.
doi: 10.1016/j.jalz.2018.07.219 URL |
[96] |
Stern, Y., Barnes, C. A., Grady, C., Jones, R. N., & Raz, N. (2019). Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiology of Aging, 83, 124-129.
doi: S0197-4580(19)30130-7 pmid: 31732015 |
[97] |
Stern, Y., Chételat, G., Habeck, C., Arenaza-Urquijo, E. M., Vemuri, P., Estanga, A.,... Vuoksimaa, E. (2019). Mechanisms underlying resilience in ageing. Nature Reviews Neuroscience, 20(4), 246-246.
doi: 10.1038/s41583-019-0138-0 |
[98] |
Trelle, A. N., Carr, V. A., Guerin, S. A., Thieu, M. K., Jayakumar, M., Guo, W.,... Wagner, A. D. (2020). Hippocampal and cortical mechanisms at retrieval explain variability in episodic remembering in older adults. Elife, 9, e55335.
doi: 10.7554/eLife.55335 URL |
[99] | Tucker-Drob, E. M., & Salthouse, T. A. (2013). Individual differences in cognitive aging. In T. Chamorro-Premuzic, S. von Stumm, & A. Furnham (Eds.), The Wiley-Blackwell handbook of individual differences (pp. 242-267). London: Wiley-Blackwell. |
[100] |
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1-25.
doi: 10.1146/annurev.psych.53.100901.135114 URL |
[101] |
Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2016-2020.
pmid: 8134342 |
[102] | Varangis, E., & Stern, Y. (2020). Cognitive reserve. In A. K. Thomas & A. Gutchess (Eds.), The Cambridge handbook of cognitive aging: A life course perspective (pp. 32-46). New York: Cambridge University Press. |
[103] |
Voss, M. W., Soto, C., Yoo, S., Sodoma, M., Vivar, C., & van Praag, H. (2019). Exercise and hippocampal memory systems. Trends in Cognitive Sciences, 23(4), 318-333.
doi: S1364-6613(19)30023-3 pmid: 30777641 |
[104] |
Vuoksimaa, E., Panizzon, M. S., Chen, C.-H., Eyler, L. T., Fennema-Notestine, C., Fiecas, M. J. A.,... Kremen, W. S. (2013). Cognitive reserve moderates the association between hippocampal volume and episodic memory in middle age. Neuropsychologia, 51(6), 1124-1131.
doi: 10.1016/j.neuropsychologia.2013.02.022 pmid: 23499725 |
[105] | Wang, W.-C., Daselaar, S. M., & Cabeza, R. (2017). Episodic memory decline and healthy aging. In J. H. Byrne (Series Ed.) & J. T. Wixted (Vol. Ed.). Learning and memory: A comprehensive reference: Vol. 2. Cognitive psychology of memory (2nd ed., pp. 475-497). Oxford: Academic Press. |
[106] |
Wig, G. S. (2017). Segregated systems of human brain networks. Trends in Cognitive Sciences, 21(12), 981-996.
doi: S1364-6613(17)30194-8 pmid: 29100737 |
[107] |
Xu, W., Tan, L., Wang, H.-F., Tan, M.-S., Tan, L., Li, J.-Q.,... Yu, J.-T. (2016). Education and risk of dementia: Dose-response meta-analysis of prospective cohort studies. Molecular Neurobiology, 53(5), 3113-3123.
doi: 10.1007/s12035-015-9211-5 pmid: 25983035 |
[108] |
Zahodne, L. B., Mayeda, E. R., Hohman, T. J., Fletcher, E., Racine, A. M., Gavett, B.,... Mungas, D. (2019). The role of education in a vascular pathway to episodic memory: Brain maintenance or cognitive reserve?. Neurobiology of Aging, 84, 109-118.
doi: S0197-4580(19)30287-8 pmid: 31539647 |
[109] |
Zheng, L., Gao, Z., Xiao, X., Ye, Z., Chen, C., & Xue, G. (2018). Reduced fidelity of neural representation underlies episodic memory decline in normal aging. Cerebral Cortex, 28(7), 2283-2296.
doi: 10.1093/cercor/bhx130 URL |
[1] | 赵鑫, 郑巧萍. 童年贫困与晚年认知老化:加速还是延缓?[J]. 心理科学进展, 2021, 29(1): 160-166. |
[2] | 邵意如, 周楚. 事件切割:我们如何知觉并记忆日常事件?[J]. 心理科学进展, 2019, 27(9): 1564-1573. |
[3] | 臧学莲, 张笑笑, 贾丽娜, 李根强, 李红. 选择性注意机制在情景线索效应中的作用[J]. 心理科学进展, 2017, 25(9): 1503-1511. |
[4] | 何燕;余林;闫志民:赵宇晗. 认知储备的测量及其在认知老化中的应用[J]. 心理科学进展, 2015, 23(3): 430-438. |
[5] | 程凯文;邓颜蕙; 尧德中. 双语(或多语)是否有利抵御老年痴呆症?[J]. 心理科学进展, 2014, 22(11): 1723-1732. |
[6] | 亓胜辉;余林;马建苓. 人格特质对认知老化的影响及其机制[J]. 心理科学进展, 2013, 21(1): 96-107. |
[7] | 苏彦捷;刘艳春. 亲子交流与儿童心理理论的获得和发展:文化的视角[J]. 心理科学进展, 2012, 20(3): 317-327. |
[8] | 刘岩;杨丽珠;徐国庆. 预见: 情景记忆的未来投射与重构[J]. 心理科学进展, 2010, 18(9): 1403-1412. |
[9] | 白文;王美芳;闫秀梅. 儿童心理时间之旅的发展[J]. 心理科学进展, 2009, 17(5): 983-989. |
[10] | 刘荣,郭春彦. 工作记忆与情景记忆中脑区的重合与分离——从脑区定位看两者关系[J]. 心理科学进展, 2005, 13(4): 435-441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||