心理科学进展 ›› 2022, Vol. 30 ›› Issue (9): 1993-2003.doi: 10.3724/SP.J.1042.2022.01993
收稿日期:
2021-04-10
出版日期:
2022-09-15
发布日期:
2022-07-21
通讯作者:
白学军
E-mail:bxuejun@126.com
基金资助:
ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun()
Received:
2021-04-10
Online:
2022-09-15
Published:
2022-07-21
Contact:
BAI Xuejun
E-mail:bxuejun@126.com
摘要:
智力运动是以开发智力为目的且涉及到较多认知活动的竞技运动。研究表明, 长期的智力运动经验会影响专家在领域内任务中知觉及记忆的行为表现及其大脑活动。智力运动经验使专家知觉广度增大的同时, 促进专家对棋子关系进行整体性知觉加工, 且这一过程与颞顶联合区、缘上回、压后皮质、侧副沟、梭状回等区域有关; 在长时记忆中存储的具体(空间位置)及抽象信息(知识、策略、棋子关系等)是专家记忆优势发生的基础, 该过程与内侧颞叶、额叶和顶叶有关。未来研究可以从智力运动类型、创新实验范式, 结合测量设备及认知特点, 深入探讨智力运动专家整体知觉优势及记忆优势的神经机制, 为人工智能和技能训练等提供理论依据。
中图分类号:
赵冰洁, 张琪涵, 陈怡馨, 章鹏, 白学军. (2022). 智力运动专家领域内知觉与记忆的加工特点及其机制. 心理科学进展 , 30(9), 1993-2003.
ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun. (2022). Processing characteristics and mechanisms of perception and memory of mind sports experts in domain-specific tasks. Advances in Psychological Science, 30(9), 1993-2003.
[1] | 公彦霏. (2015). 关于组块机制及其与国际象棋技能之间关系的拓展研究 (博士学位论文). 华东师范大学, 上海. |
[2] | 刘宁. (2019). 围棋专家的认知优势表现及其脑基础 (博士学位论文). 华东师范大学, 上海. |
[3] | 王福兴, 侯秀娟, 段朝辉, 刘华山, 李卉. (2016). 中国象棋经验棋手与新手的知觉差异: 来自眼动的证据. 心理学报, 48(5), 457-471. |
[4] | 张钦, 孟迎芳, 聂爱情, 赵鑫, 孙猛, 刘鑫宇. (2021). 记忆发展神经科学: 研究现状与未来展望. 中国科学: 生命科学, 51(6), 647-662. |
[5] |
Aciego, R., Garcia, L., & Betancort, M. (2012). The benefits of chess for the intellectual and social-emotional enrichment in schoolchildren. The Spanish Journal of Psychology, 15(2), 551-559.
doi: 10.5209/rev_SJOP.2012.v15.n2.38866 URL |
[6] | Bart, W. M. (2014). On the effect of chess training on scholastic achievement. Frontiers in Psychology, 5, 762. |
[7] |
Bartlett, J. C., Boggan, A. L., & Krawczyk, D. C. (2013). Expertise and processing distorted structure in chess. Frontiers in Human Neuroscience, 7, 825.
doi: 10.3389/fnhum.2013.00825 pmid: 24348371 |
[8] | Berlucchi, G., & Vallar, G. (2018). The history of the neurophysiology and neurology of the parietal lobe. Handbook of Clinical Neurology, 151, 3-30. |
[9] |
Bilalić, M. (2016). Revisiting the role of the fusiform face area in expertise. Journal of Cognitive Neuroscience, 28(9), 1345-1357.
doi: 10.1162/jocn_a_00974 pmid: 27082047 |
[10] | Bilalić, M., Graf, M., Vaci, N., & Danek, A. H. (2019). When the solution is on the doorstep: Better solving performance, but diminished Aha! Experience for chess experts on the mutilated checkerboard problem. Cognitive Science, 43(8), e12771. |
[11] |
Bilalić, M., Grottenthaler, T., Nägele, T., & Lindig, T. (2016). The faces in radiological images: Fusiform face area supports radiological expertise. Cerebral Cortex, 26(3), 1004-1014.
doi: 10.1093/cercor/bhu272 URL |
[12] |
Bilalić, M., Kiesel, A., Pohl, C., Erb, M., & Grodd, W. (2011). It takes two-skilled recognition of objects engages lateral areas in both hemispheres. PLOS One, 6(1), e16202.
doi: 10.1371/journal.pone.0016202 URL |
[13] |
Bilalić, M., Langner, R., Erb, M., & Grodd, W. (2010). Mechanisms and neural basis of object and pattern recognition: A study with chess experts. Journal of Experimental Psychology: General, 139(4), 728-742.
doi: 10.1037/a0020756 URL |
[14] |
Bilalić, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: Fusiform face area in chess experts and novices. Journal of Neuroscience, 31(28), 10206-10214.
doi: 10.1523/JNEUROSCI.5727-10.2011 pmid: 21752997 |
[15] |
Bilalić, M., Turella, L., Campitelli, G., Erb, M., & Grodd, W. (2012). Expertise modulates the neural basis of context dependent recognition of objects and their relations. Human Brain Mapping, 33(11), 2728-2740.
doi: 10.1002/hbm.21396 pmid: 21998070 |
[16] |
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[17] |
Bloechle, J., Huber, S., Klein, E., Bahnmueller, J., Moeller, K., & Rennig, J. (2018). Neuro-cognitive mechanisms of global Gestalt perception in visual quantification. NeuroImage, 181, 359-369.
doi: 10.1016/j.neuroimage.2018.07.026 URL |
[18] |
Boggan, A. L., Bartlett, J. C., & Krawczyk, D. C. (2012). Chess masters show a hallmark of face processing with chess. Journal of Experimental Psychology: General, 141(1), 37-42.
doi: 10.1037/a0024236 URL |
[19] |
Bor, D., & Owen, A. M. (2007). A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cerebral Cortex, 17(4), 778-786.
doi: 10.1093/cercor/bhk035 URL |
[20] |
Bowman, C. R., & Zeithamova, D. (2018). Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. Journal of Neuroscience, 38(10), 2605-2614.
doi: 10.1523/JNEUROSCI.2811-17.2018 URL |
[21] |
Brams, S., Ziv, G., Levin, O., Spitz, J., Wagemans, J., Williams, A. M., & Helsen, W. F. (2019). The relationship between gaze behavior, expertise, and performance: A systematic review. Psychological Bulletin, 145(10), 980-1027.
doi: 10.1037/bul0000207 URL |
[22] |
Bucur, M., & Papagno, C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 1-24.
doi: 10.1038/s41598-020-79139-8 URL |
[23] |
Burgoyne, A. P., Sala, G., Gobet, F., Macnamara, B. N., Campitelli, G., & Hambrick, D. Z. (2016). The relationship between cognitive ability and chess skill: A comprehensive meta- analysis. Intelligence, 59, 72-83.
doi: 10.1016/j.intell.2016.08.002 URL |
[24] |
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.
doi: 10.1162/08989290051137585 pmid: 10769304 |
[25] |
Campitelli, G., Gobet, F., Head, K., Buckley, M., & Parker, A. (2007). Brain localization of memory chunks in chessplayers. International Journal of Neuroscience, 117(12), 1641-1659.
pmid: 17987468 |
[26] |
Campitelli, G., Gobet, F., & Parker, A. (2005). Structure and stimulus familiarity: A study of memory in chess-players with functional magnetic resonance imaging. The Spanish Journal of Psychology, 8(2), 238-245.
doi: 10.1017/S1138741600005126 URL |
[27] | Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 16, pp. 1-58). New York, NY: Academic Press. |
[28] |
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55-81.
doi: 10.1016/0010-0285(73)90004-2 URL |
[29] |
Chassy, P., & Gobet, F. (2011). Measuring chess experts' single-use sequence knowledge: An archival study of departure from ‘Theoretical' openings. PLOS One, 6(11), e26692.
doi: 10.1371/journal.pone.0026692 URL |
[30] |
Cheng, S.-T., Chow, P. K., Song, Y.-Q., Yu, E. C. S., & Lam, J. H. M. (2014). Can leisure activities slow dementia progression in nursing home residents? A cluster-randomized controlled trial. International Psychogeriatrics, 26(4), 637-643.
doi: 10.1017/S1041610213002524 URL |
[31] |
Chu-Man, L., Chang, M.-Y., & Chu, M.-C. (2015). Effects of mahjong on the cognitive function of middle-aged and older people. International Journal of Geriatric Psychiatry, 30(9), 995-997.
doi: 10.1002/gps.4307 pmid: 26220879 |
[32] |
Cooke, N. J., Atlas, R. S., Lane, D. M., & Berger, R. C. (1993). Role of high-level knowledge in memory for chess positions. The American Journal of Psychology, 106(3), 321-351.
doi: 10.2307/1423181 URL |
[33] |
Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-120.
pmid: 15450164 |
[34] |
Engle, R. W., & Bukstel, L. (1978). Memory processes among bridge players of differing expertise. The American Journal of Psychology, 91(4), 673-689.
doi: 10.2307/1421515 URL |
[35] | Ericsson, K. A. (2007). Deliberate practice and the modifiability of body and mind: Toward a science of the structure and acquisition of expert and elite performance. International Journal of Sport Psychology, 38(1), 4-34. |
[36] |
Fattahi, F., Geshani, A., Jafari, Z., Jalaie, S., & Mahini, M. S. (2015). Auditory memory function in expert chess players. Medical Journal of the Islamic Republic of Iran, 29, 275.
pmid: 26793666 |
[37] |
Ferrari, V., Didierjean, A., & Marméche, E. (2008). Effect of expertise acquisition on strategic perception: The example of chess. Quarterly Journal of Experimental Psychology, 61(8), 1265-1280.
doi: 10.1080/17470210701503344 URL |
[38] |
Frank, M. C., & Gibson, E. (2011). Overcoming memory limitations in rule learning. Language Learning and Development, 7(2), 130-148.
doi: 10.1080/15475441.2010.512522 URL |
[39] |
Frey, P. W., & Adesman, P. (1976). Recall memory for visually presented chess positions. Memory & Cognition, 4(5), 541-547.
doi: 10.3758/BF03213216 URL |
[40] |
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191-197.
pmid: 10649576 |
[41] |
Gentile, A., Boca, S., & Giammusso, I. (2018). ‘You play like a Woman!' Effects of gender stereotype threat on Women's performance in physical and sport activities: A meta-analysis. Psychology of Sport and Exercise, 39, 95-103.
doi: 10.1016/j.psychsport.2018.07.013 URL |
[42] |
Gobet, F. (1998). Expert memory: A comparison of four theories. Cognition, 66(2), 115-152.
pmid: 9677761 |
[43] |
Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four... or is it two? Memory, 12(6), 732-747.
doi: 10.1080/09658210344000530 URL |
[44] |
Gobet, F., & Simon, H. A. (1996a). Recall of random and distorted chess positions: Implications for the theory of expertise. Memory & Cognition, 24(4), 493-503.
doi: 10.3758/BF03200937 URL |
[45] |
Gobet, F., & Simon, H. A. (1996b). Recall of rapidly presented random chess positions is a function of skill. Psychonomic Bulletin & Review, 3(2), 159-163.
doi: 10.3758/BF03212414 URL |
[46] |
Gobet, F., & Simon, H. A. (1996c). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31(1), 1-40.
doi: 10.1006/cogp.1996.0011 URL |
[47] |
Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6(3), 225-255.
pmid: 9709441 |
[48] |
Gong, Y., Ericsson, K. A., & Moxley, J. H. (2015). Recall of briefly presented chess positions and its relation to chess skill. PLOS One, 10(3), e0118756.
doi: 10.1371/journal.pone.0118756 URL |
[49] |
Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 34-45.
doi: 10.1016/j.intell.2013.04.001 URL |
[50] | Holding, D. H. (1985). The Psychology of Chess Skill. Hillsdale, NJ: Erlbaum. |
[51] |
Huberle, E., & Karnath, H.-O. (2012). The role of temporo- parietal junction (TPJ) in global Gestalt perception. Brain Structure and Function, 217(3), 735-746.
doi: 10.1007/s00429-011-0369-y URL |
[52] | Iizuka, A., Suzuki, H., Ogawa, S., Kobayashi-Cuya, K. E., Kobayashi, M., Takebayashi, T., & Fujiwara, Y. (2018). Pilot randomized controlled trial of the GO game intervention on cognitive function. American Journal of Alzheimer's Disease & Other Dementias, 33(3), 192-198. |
[53] | Joseph, E., Easvaradoss, V., Kennedy, A., & Kezia, E. J. (2016). Chess training improves cognition in children. GSTF Journal of Psychology, 2(2), 1-6. |
[54] |
Jung, W. H., Lee, T. Y., Yoon, Y. B., Choi, C. H., & Kwon, J. S. (2018). Beyond domain-specific expertise: Neural signatures of face and spatial working memory in Baduk (Go game) experts. Frontiers in Human Neuroscience, 12, 319.
doi: 10.3389/fnhum.2018.00319 URL |
[55] |
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109-2128.
doi: 10.1098/rstb.2006.1934 URL |
[56] |
Kazemi, F., Yektayar, M., & Abad, A. M. B. (2012). Investigation the impact of chess play on developing meta-cognitive ability and math problem-solving power of students at different levels of education. Procedia-Social and Behavioral Sciences, 32, 372-379.
doi: 10.1016/j.sbspro.2012.01.056 URL |
[57] |
Kiesel, A., Kunde, W., Pohl, C., Berner, M. P., & Hoffmann, J. (2009). Playing chess unconsciously. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 292-298.
doi: 10.1037/a0014499 URL |
[58] |
Kobiela, F. (2018). Should chess and other mind sports be regarded as sports. Journal of the Philosophy of Sport, 45(3), 279-295.
doi: 10.1080/00948705.2018.1520125 URL |
[59] |
Koen, J. D., Borders, A. A., Petzold, M. T., & Yonelinas, A. P. (2017). Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus, 27(2), 184-193.
doi: 10.1002/hipo.22682 URL |
[60] |
Krawczyk, D. C., Boggan, A. L., McClelland, M. M., & Bartlett, J. C. (2011). The neural organization of perception in chess experts. Neuroscience Letters, 499(2), 64-69.
doi: 10.1016/j.neulet.2011.05.033 pmid: 21635936 |
[61] |
Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: Gaze-tracking study. Radiology, 242(2), 396-402.
doi: 10.1148/radiol.2422051997 URL |
[62] |
Lane, D. M., & Chang, Y. A. (2018). Chess knowledge predicts chess memory even after controlling for chess experience: Evidence for the role of high-level processes. Memory & Cognition, 46(3), 337-348.
doi: 10.3758/s13421-017-0768-2 URL |
[63] |
Linhares, A., & Brum, P. (2007). Understanding our understanding of strategic scenarios: What role do chunks play? Cognitive Science, 31(6), 989-1007.
doi: 10.1080/03640210701703725 URL |
[64] |
Linhares, A., & Chada, D. M. (2013). What is the nature of the mind's pattern-recognition process? New Ideas in Psychology, 31(2), 108-121.
doi: 10.1016/j.newideapsych.2012.08.001 URL |
[65] |
Loiselle, M., Rouleau, I., Nguyen, D. K., Dubeau, F., Macoir, J., Whatmough, C.,... Joubert, S. (2012). Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy. Neuropsychologia, 50(5), 630-639.
doi: 10.1016/j.neuropsychologia.2011.12.023 pmid: 22245005 |
[66] | Mackintosh, N. (2011). IQ and human intelligence (2nd ed.). Oxford: Oxford University Press. |
[67] |
McGregor, S. J., & Howes, A. (2002). The role of attack and defense semantics in skilled players' memory for chess positions. Memory & Cognition, 30(5), 707-717.
doi: 10.3758/BF03196427 URL |
[68] |
Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016). Investigating cognitive transfer within the framework of music practice: Genetic pleiotropy rather than causality. Developmental Science, 19(3), 504-512.
doi: 10.1111/desc.12306 URL |
[69] | Nakatani, H., & Yamaguchi, Y. (2014). Quick concurrent responses to global and local cognitive information underlie intuitive understanding in board-game experts. Scientific Reports, 4(1), 1-10. |
[70] |
Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702-709.
doi: 10.1038/ng.3285 pmid: 25985137 |
[71] |
Postal, V. (2012). Inhibition of irrelevant information is not necessary to performance of expert chess players. Perceptual and Motor Skills, 115(1), 60-68.
doi: 10.2466/23.04.22.PMS.115.4.60-68 URL |
[72] |
Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. The Neuroscientist, 18(5), 502-515.
doi: 10.1177/1073858411409051 URL |
[73] |
Reber, T. P., Bausch, M., Mackay, S., Boström, J., Elger, C. E., & Mormann, F. (2019). Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLOS Biology, 17(6), e3000290.
doi: 10.1371/journal.pbio.3000290 URL |
[74] | Reingold, E. M., & Charness, N. (2005). Perception in chess:Evidence from eye movements. In G. Underwood (Ed.), Cognitive processes in eye guidance (pp. 325-354). Oxford: Oxford University Press. |
[75] |
Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12(1), 48-55.
pmid: 11294228 |
[76] |
Reingold, E. M., Charness, N., Schultetus, R. S., & Stampe, D. M. (2001). Perceptual automaticity in expert chess players: Parallel encoding of chess relations. Psychonomic Bulletin & Review, 8(3), 504-510.
doi: 10.3758/BF03196185 URL |
[77] | Rennig, J., Bilalić, M., Huberle, E., Karnath, H. O., & Himmelbach, M. (2013). The temporo-parietal junction contributes to global gestalt perception-evidence from studies in chess experts. Frontiers in Human Neuroscience, 7, 513. |
[78] |
Rennig, J., Himmelbach, M., Huberle, E., & Karnath, H.-O. (2015). Involvement of the TPJ area in processing of novel global forms. Journal of Cognitive Neuroscience, 27(8), 1587-1600.
doi: 10.1162/jocn_a_00809 URL |
[79] |
Risi, S., & Preuss, M. (2020). From chess and atari to starcraft and beyond: How game AI is driving the world of AI. KI-Künstliche Intelligenz, 34(1), 7-17.
doi: 10.1007/s13218-020-00647-w URL |
[80] |
Robbins, T. W., Anderson, E. J., Barker, D. R., Bradley, A. C., & Hudson, S. R. (1996). Working memory in chess. Memory & Cognition, 24(1), 83-93.
doi: 10.3758/BF03197274 URL |
[81] |
Ross, D. A., Tamber-Rosenau, B. J., Palmeri, T. J., Zhang, J., Xu, Y., & Gauthier, I. (2018). High-resolution functional magnetic resonance imaging reveals configural processing of cars in right anterior fusiform face area of car experts. Journal of Cognitive Neuroscience, 30(7), 973-984.
doi: 10.1162/jocn_a_01256 URL |
[82] |
Saariluoma, P. (1985). Chess players' intake of task-relevant cues. Memory & Cognition, 13(5), 385-391.
doi: 10.3758/BF03198451 URL |
[83] |
Sala, G., Burgoyne, A. P., Macnamara, B. N., Hambrick, D. Z., Campitelli, G., & Gobet, F. (2017). Checking the "Academic Selection" argument. Chess players outperform non-chess players in cognitive skills related to intelligence: A meta-analysis. Intelligence, 61, 130-139.
doi: 10.1016/j.intell.2017.01.013 URL |
[84] |
Sala, G., & Gobet, F. (2017a). Does far transfer exist? Negative evidence from chess, music, and working memory training. Current Directions in Psychological Science, 26(6), 515-520.
doi: 10.1177/0963721417712760 URL |
[85] |
Sala, G., & Gobet, F. (2017b). Experts' memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis. Memory & Cognition, 45(2), 183-193.
doi: 10.3758/s13421-016-0663-2 URL |
[86] |
Sauce, B., & Matzel, L. D. (2018). The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychological Bulletin, 144(1), 26-47.
doi: 10.1037/bul0000131 URL |
[87] |
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A.,... Posthuma, D. (2018). Genome-wide association meta-analysis in 269, 867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912-919.
doi: 10.1038/s41588-018-0152-6 URL |
[88] |
Schonberg, C., Marcus, G. F., & Johnson, S. P. (2018). The roles of item repetition and position in infants' abstract rule learning. Infant Behavior and Development, 53, 64-80.
doi: 10.1016/j.infbeh.2018.08.003 URL |
[89] |
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,... Silver, D. (2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839), 604-609.
doi: 10.1038/s41586-020-03051-4 URL |
[90] |
Schultetus, R. S., & Charness, N. (1999). Recall or evaluation of chess positions revisited: The relationship between memory and evaluation in chess skill. The American Journal of Psychology, 112(4), 555-569.
doi: 10.2307/1423650 URL |
[91] | Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11-21. |
[92] |
Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 18(3), 183-192.
doi: 10.1038/nrn.2017.6 pmid: 28209980 |
[93] |
Sheridan, H., & Reingold, E. M. (2017). The holistic processing account of visual expertise in medical image perception: A review. Frontiers in Psychology, 8, 1620.
doi: 10.3389/fpsyg.2017.01620 pmid: 29033865 |
[94] |
Smith, E. T., Bartlett, J. C., Krawczyk, D. C., & Basak, C. (2021). Are the advantages of chess expertise on visuo-spatial working-memory capacity domain specific or domain general? Memory & Cognition, 49, 1600-1616.
doi: 10.3758/s13421-021-01184-z URL |
[95] | Straube, B., He, Y., Steines, M., Gebhardt, H., Kircher, T., Sammer, G., & Nagels, A. (2013). Supramodal neural processing of abstract information conveyed by speech and gesture. Frontiers in Behavioral Neuroscience, 7, 120. |
[96] | Subia, G. S., Amaranto, J. L., Amaranto, J. C., Bustamante, J. Y., & Damaso, I. C. (2019). Chess and mathematics performance of college players: An exploratory analysis. Open Access Library Journal, 6(2), 1-7. |
[97] |
Ullén, F., Hambrick, D. Z., & Mosing, M. A. (2016). Rethinking expertise: A multifactorial gene-environment interaction model of expert performance. Psychological Bulletin, 142(4), 427-446.
doi: 10.1037/bul0000033 URL |
[98] |
Unterrainer, J. M., Kaller, C. P., Halsband, U., & Rahm, B. (2006). Planning abilities and chess: A comparison of chess and non-chess players on the Tower of London task. British Journal of Psychology, 97(3), 299-311.
doi: 10.1348/000712605X71407 URL |
[99] |
Vaci, N., Edelsbrunner, P., Stern, E., Neubauer, A., Bilalić, M., & Grabner, R. H. (2019). The joint influence of intelligence and practice on skill development throughout the life span. Proceedings of the National Academy of Sciences, 116(37), 18363-18369.
doi: 10.1073/pnas.1819086116 URL |
[100] |
Vaz, A. P., Inati, S. K., Brunel, N., & Zaghloul, K. A. (2019). Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science, 363(6430), 975-978.
doi: 10.1126/science.aau8956 URL |
[101] |
Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The neural basis of intuitive best next-move generation in board game experts. Science, 331(6015), 341-346.
doi: 10.1126/science.1194732 URL |
[102] |
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 1459-1468.
doi: 10.1002/hbm.20950 URL |
[103] |
Whitaker, M. M., Pointon, G. D., Tarampi, M. R., & Rand, K. M. (2020). Expertise effects on the perceptual and cognitive tasks of indoor rock climbing. Memory & Cognition, 48(3), 494-510.
doi: 10.3758/s13421-019-00985-7 URL |
[104] | Wright, M. J., Gobet, F., Chassy, P., & Ramchandani, P. N. (2013). ERP to chess stimuli reveal expert-novice differences in the amplitudes of N2 and P3 components. Psychophysiology, 50(10), 1023-1033. |
[1] | 张畅芯. 早期听觉剥夺后的大脑可塑性:来自先天性听力障碍群体的证据[J]. 心理科学进展, 2019, 27(2): 278-288. |
[2] | 霍丽娟, 郑志伟, 李瑾, 李娟. 老年人的脑可塑性:来自认知训练的证据[J]. 心理科学进展, 2018, 26(5): 846-858. |
[3] | 王小玲;李松蔚;钱铭怡. 创伤后应激障碍患者情绪记忆优势研究述评[J]. 心理科学进展, 2012, 20(2): 248-255. |
[4] | 陶维东;孙弘进;张旭东;郑剑虹. 非面孔物体倒置效应形成过程的认知神经机制[J]. 心理科学进展, 2011, 19(8): 1104-1114. |
[5] | 李艳玮;李燕芳. 儿童青少年认知能力发展与脑发育[J]. 心理科学进展, 2010, 18(11): 1700-1706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||