心理科学进展 ›› 2022, Vol. 30 ›› Issue (5): 1018-1027.doi: 10.3724/SP.J.1042.2022.01018
收稿日期:
2021-07-12
出版日期:
2022-05-15
发布日期:
2022-03-24
通讯作者:
韩佳慧
E-mail:jiahui110509@163.com
基金资助:
GUAN Lei1,2, LUO Wenpei1,2, HAN Jiahui1,2()
Received:
2021-07-12
Online:
2022-05-15
Published:
2022-03-24
Contact:
HAN Jiahui
E-mail:jiahui110509@163.com
摘要:
大脑可以对来自不同感觉通道的信息进行处理与整合。与单一感觉通道相比, 个体对同时呈现在不同感觉通道的目标信号的响应会更快。对于这种现象的一种主要理论解释是共同激活模型, 该模型认为来自不同通道的刺激在特定的脑区汇聚整合, 比如顶叶内沟、颞上沟和前额叶皮层区域。整合后的信号强度更大, 可以更快地触发反应, 但是信号的整合发生在认知加工的哪一阶段目前尚未有明确结论。当个体对出现在不同感觉通道之间的任务转换进行加工时, 产生与感觉通道相关的任务转换的损失小于跨感觉通道转换损失与任务转换损失的总和, 这为与感觉通道相关的转换代价来源于任务设置的惯性和干扰提供了证据。而在单通道和多通道之间发生转换时, 跨通道转换代价会减小甚至消失, 这是由于同时发生的多感觉整合抵消了一部分损失, 这种现象支持了共同激活模型理论。然而, 多感觉信号整合对任务转换的神经加工过程产生怎样的影响并不清楚, 在未来的研究中可以把多感觉整合范式同经典的任务转换范式结合改进, 进而确定跨通道转换的加工机制和多感觉信号整合的发生阶段。
管蕾, 罗文佩, 韩佳慧. (2022). 多感觉整合范式中潜在的跨通道转换效应. 心理科学进展 , 30(5), 1018-1027.
GUAN Lei, LUO Wenpei, HAN Jiahui. (2022). The modality shifting effects in the multisensory integration paradigm. Advances in Psychological Science, 30(5), 1018-1027.
图2 共同激活模型(引自Raab, 1962)。来自不同通道的刺激S1, S2在特定区域汇聚整合, 整合后的信号强度大于单一的S1和S2刺激, 能更快地触发反应 注:不等式的左边表示冗余信号条件下的反应时概率累积密度分布函数, 不等式的右边分别是单一通道输入信号对应的反应概率累积密度分布函数。S1和S2是指两种来自不同通道的刺激。
[1] | 史艺荃, 周晓林.(2004). 执行控制研究的重要范式--任务切换. 心理科学进展, 12(5), 672-679. |
[2] | 孙远路, 胡中华, 张瑞玲, 寻茫茫, 刘强, 张庆林.(2011). 多感觉整合测量范式中存在的影响因素探讨. 心理学报, 43(11), 1239-1246. |
[3] |
Barutchu A., & Spence C.(2021). Top-down task-specific determinants of multisensory motor reaction time enhancements and sensory switch costs. Experimental Brain Research, 239(3), 1021-1034. https://doi.org/10.1007/s00221-020-06014-3
doi: 10.1007/s00221-020-06014-3 URL pmid: 33515085 |
[4] |
Bastos A. M., Vezoli J., Bosman C. A., Schoffelen J. M., Oostenveld R., Dowdall J. R.,... Fries P.(2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390-401. http://dx.doi.org/10.1016/j.neuron.2014.12.018
doi: 10.1016/j.neuron.2014.12.018 URL |
[5] |
Bauer A. R., Debener S., & Nobre A. C.(2020). Synchronisation of Neural Oscillations and Cross-modal Influences. Trends in Cognitive Sciences, 24(6), 481-495. https://doi.org/10.1016/j.tics.2020.03.003
doi: 10.1016/j.tics.2020.03.003 URL |
[6] |
Blurton S. P., Greenlee M. W., & Gondan M.(2014). Multisensory processing of redundant information in go/no-go and choice responses. Attention Perception & Psychophysics, 76(4), 1212-1233. https://doi.org/10.3758/s13414-014-0644-0
doi: 10.3758/s13414-014-0644-0 URL |
[7] | Capizzi M., Ambrosini E., Arbula S., & Vallesi A.(2020). Brain oscillatory activity associated with switch and mixing costs during reactive control. Psychophysiology, 57(11), Article e13642. https://doi.org/10.1111/psyp.13642 |
[8] |
Cappe C., Morel A., & Rouiller E. M.(2007). Thalamocortical and the dual pattern of corticothalamic projections of the posterior parietal cortex in macaque monkeys. Neuroscience, 146(3), 1371-1387. https://doi.org/10.1016/j.neuroscience.2007.02.033
pmid: 17395383 |
[9] |
Cooper P. S., Darriba A., Karayanidis F., & Barcelo F.(2016). Contextually sensitive power changes across multiple frequency bands underpin cognitive control. Neuroimage, 132, 499-511. https://doi.org/10.1016/j.neuroimage.201603.010
doi: 10.1016/j.neuroimage.2016.03.010 URL |
[10] |
Cooper P. S., Karayanidis F., McKewen M., McLellan-Hall S., Wong A. S. W., Skippen P., & Cavanagh J. F.(2019). Frontal theta predicts specific cognitive control-induced behavioural changes beyond general reaction time slowing. Neuroimage, 189, 130-140. https://doi.org/10.1016/j.neuroimage.2019.01.022
doi: 10.1016/j.neuroimage.2019.01.022 URL |
[11] |
Cooper P. S., Wong A. S. W., McKewen M., Michie P. T., & Karayanidis F.(2017). Frontoparietal theta oscillations during proactive control are associated with goal-updating and reduced behavioral variability. Biological Psychology, 129, 253-264. http://dx.doi.org/10.1016/j.biopsycho.2017.09.008
doi: 10.1016/j.biopsycho.2017.09.008 URL |
[12] |
Dosenbach N. U. F., Fair D. A., Miezin F. M., Cohen A. L., & Wenger K. K.(2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073-11078. https://doi.org/10.1073/pnas.0704320104
doi: 10.1073/pnas.0704320104 URL pmid: 17576922 |
[13] | Dove A., Pollmann S., Schubert T., Wiggins C. J., & von Cramon D. Y.(2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9(1), 103-109. https://doi.org/10.1016/s0926-6410(99)00029-4 |
[14] |
Elkhetali A. S., Fleming L. L., Vaden R. J., Nenert R., Mendle J. E., & Visscher K. M.(2019). Background connectivity between frontal and sensory cortex depends on task state, independent of stimulus modality. Neuroimage, 184, 790-800. https://doi.org/10.1016/j.neuroimage.2018.09.040
doi: 10.1016/j.neuroimage.2018.09.040 URL |
[15] |
Foxe J. J., Murphy J. W., & de Sanctis P.(2014). Throwing out the rules: Anticipatory alpha-band oscillatory attention mechanisms during task-set reconfigurations. European Journal of Neuroscience, 39(11), 1960-1972. https://doi.org/10.1111/ejn.12577
doi: 10.1111/ejn.12577 URL |
[16] |
Gondan M., & Minakata K.(2016). A tutorial on testing the race model inequality. Attention Perception & Psychophysics, 78(3), 723-735. https://doi.org/10.3758/s13414-015-1018-y
doi: 10.3758/s13414-015-1018-y URL |
[17] |
Hershenson M.(1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63(3), 289-293. https://doi.org/10.1037/h0039516
doi: 10.1037/h0039516 URL |
[18] |
Innes B. R., & Otto T. U.(2019). A comparative analysis of response times shows that multisensory benefits and interactions are not equivalent. Scientific Reports, 9(1), 2921. https://doi.org/10.1038/s41598-019-39924-6
doi: 10.1038/s41598-019-39924-6 URL |
[19] |
Keil J., & Senkowski D.(2018). Neural Oscillations Orchestrate Multisensory Processing. The Neuroscientist, 24(6), 609-626. https://doi.org/10.1177/1073858418755352
doi: 10.1177/1073858418755352 URL |
[20] |
Maslovat D., Hajj J., & Carlsen A. N.(2018). Coactivation of response initiation processes with redundant signals. Neuroscience Letters, 675, 7-11. https://doi.org/10.1016/j.neulet.2018.03.029
doi: S0304-3940(18)30206-4 URL pmid: 29555517 |
[21] |
Mercier M. R., Foxe J. J., Fiebelkorn I. C., Butler J. S., Schwartz T. H., & Molholm S.(2013). Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration. Neuroimage, 79, 19-29. https://doi.org/10.1016/j.neuroimage.2013.04.060
doi: 10.1016/j.neuroimage.2013.04.060 URL pmid: 23624493 |
[22] |
Mercier M. R., Molholm S., Fiebelkorn I. C., Butler J. S., Schwartz T. H., & Foxe J. J.(2015). Neuro-oscillatory phase alignment drives speeded multisensory response times: An electro-corticographic investigation. The Journal of Neuroscience, 35(22), 8546-8557. https://doi.org/10.1523/JNEUROSCI.4527-14.2015
doi: 10.1523/JNEUROSCI.4527-14.2015 URL |
[23] |
Miller J.(1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247- 279. https://doi.org/10.1016/0010-0285(82)90010-x
URL pmid: 7083803 |
[24] |
Miller J.(2016). Statistical facilitation and the redundant signals effect: What are race and coactivation models? Attention Perception & Psychophysics, 78(2), 516-519. https://doi.org/10.3758/s13414-015-1017-z
doi: 10.3758/s13414-015-1017-z URL |
[25] |
Otto T. U., & Mamassian P.(2017). Multisensory Decisions: The Test of a Race Model, Its Logic, and Power. Multisensory Research, 30(1), 1-24. https://doi.org/10.1163/22134808-00002541
doi: 10.1163/22134808-00002541 URL |
[26] | Peng A., Kirkham N. Z., & Mareschal D.(2018). Information processes of task-switching and modality-shifting across development. PLoS ONE, 13(6), Article e0198870. https://doi.org/10.1371/journal.pone.0198870 |
[27] |
Proskovec A. L., Wiesman A. I., & Wilson T. W.(2019). The strength of alpha and gamma oscillations predicts behavioral switch costs. Neuroimage, 188, 274-281. https://doi.org/10.1016/j.neuroimage.2018.12.016
doi: S1053-8119(18)32160-8 URL pmid: 30543844 |
[28] | Raab D. H.(1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24, 574-590. https://doi.org/10.1111/j.2164-0947.1962.tb01433. |
[29] |
Regenbogen C., Seubert J., Johansson E., Finkelmeyer A., Andersson P., & Lundstrom J. N.(2018). The intraparietal sulcus governs multisensory integration of audiovisual information based on task difficulty. Human Brain Mapping, 39(3), 1313-1326. https://doi.org/10.1002/hbm.23918
doi: 10.1002/hbm.23918 URL pmid: 29235185 |
[30] |
Rogers R. D., & Monsell S.(1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207-231. https://doi.org/10.1037/0096-3445.124.2.207
doi: 10.1037/0096-3445.124.2.207 URL |
[31] |
Sandhu R., & Dyson B. J.(2013). Modality and task switching interactions using bi-modal and bivalent stimuli. Brain and Cognition, 82(1), 90-99. http://dx.doi.org/10.1016/j.bandc.2 013.02.011
doi: 10.1016/j.bandc.2013.02.011 URL |
[32] |
Shaw L. H., Freedman E. G., Crosse M. J., Nicholas E., Chen A. M., Braiman M. S.,... Foxe J. J.(2020). Operating in a multisensory context: Assessing the interplay between multisensory reaction time facilitation and inter-sensory task-switching effects. Neuroscience, 436, 122-135. https://doi.org/10.1016/j.neuroscience.2020.04.013
doi: 10.1016/j.neuroscience.2020.04.013 URL |
[33] |
Sohn M.-H., Ursu S., Anderson J. R., Stenger V. A., & Carter C. S.(2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13448-13453. https://doi.org/10.1073/pnas.240460497
URL pmid: 11069306 |
[34] |
Spence C., Nicholls M. E. R., & Driver J.(2001). The cost of expecting events in the wrong sensory modality. Perception & Psychophysics, 63(2), 330-336. https://doi.org/10.3758/bf03194473
doi: 10.3758/BF03194473 URL |
[35] | Spitzer B., & Haegens S.(2017). Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re) Activation. Eneuro, 4(4), Article e0170-17. http://dx.doi.org/10.1523/ENEURO.0170-17.2017 |
[36] |
Stickel S., Weismann P., Kellermann T., Regenbogen C., Habel U., Freiherr J., & Chechko N.(2019). Audio-visual and olfactory-visual integration in healthy participants and subjects with autism spectrum disorder. Human Brain Mapping, 40(15), 4470-4486. https://doi.org/10.1002/hbm.24715
doi: 10.1002/hbm.24715 URL |
[37] |
van Atteveldt N., Murray M. M., Thut G., & Schroeder C. E.(2014). Multisensory integration: Flexible use of general operations. Neuron, 81(6), 1240-1253. http://dx.doi.org/10.1016/j.neuron.2014.02.044
doi: S0896-6273(14)00194-9 URL pmid: 24656248 |
[38] |
van der Stoep N., Spence C., Nijboer T. C., & van der Stigchel S.(2015). On the relative contributions of multisensory integration and crossmodal exogenous spatial attention to multisensory response enhancement. Acta Psychologica, 162, 20-28. http://dx.doi.org/10.1016/j.actpsy.2015.09.010
doi: 10.1016/j.actpsy.2015.09.010 URL pmid: 26436587 |
[39] |
Wu S., Hitchman G., Tan J., Zhao Y., Tang D., Wang L., & Chen A.(2015). The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task- switching paradigm. Scientific Reports, 5, 10240. https://doi.org/10.1038/srep10240
doi: 10.1038/srep10240 URL |
[1] | 赵宏明, 董燕萍. 口译员的认知转换优势[J]. 心理科学进展, 2021, 29(4): 625-634. |
[2] | 杨伟平, 李胜楠, 李子默, 郭敖, 任艳娜. 老年人视听觉整合的影响因素及其神经机制[J]. 心理科学进展, 2020, 28(5): 790-799. |
[3] | 王爱君, 黄杰, 陆菲菲, 何嘉滢, 唐晓雨, 张明. 多感觉整合中的声音诱发闪光错觉效应[J]. 心理科学进展, 2020, 28(10): 1662-1677. |
[4] | 王梓宇, 孔子叶, 朱荣娟, 游旭群. 任务转换训练和执行功能可塑性[J]. 心理科学进展, 2019, 27(10): 1667-1676. |
[5] | 赵佩琼, 陈巍, 张静, 平贤洁. 橡胶手错觉:拥有感研究的实验范式及其应用[J]. 心理科学进展, 2019, 27(1): 37-50. |
[6] | 蒋浩. 自主任务转换中的重构和干扰[J]. 心理科学进展, 2018, 26(9): 1624-1631. |
[7] | 彭姓, 常若松, 任桂琴, 王爱君, 唐晓雨. 外源性注意与多感觉整合的交互关系[J]. 心理科学进展, 2018, 26(12): 2129-2140. |
[8] | 罗霄骁, 康冠兰, 周晓林. McGurk效应的影响因素与神经基础[J]. 心理科学进展, 2018, 26(11): 1935-1951. |
[9] | 周爱保;张彦驰;刘沛汝;尹玉龙;张 奋. 我是谁?——人际间多感觉刺激下的识脸错觉[J]. 心理科学进展, 2015, 23(2): 159-167. |
[10] | 袁祥勇;黄希庭. 多感觉整合的时间再校准[J]. 心理科学进展, 2011, 19(5): 692-700. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||