心理科学进展 ›› 2022, Vol. 30 ›› Issue (1): 51-64.doi: 10.3724/SP.J.1042.2022.00051
收稿日期:
2021-04-10
出版日期:
2022-01-15
发布日期:
2021-11-25
基金资助:
YAN Lizhu1, CHEN Yanxiu1, LIU Xun2, FU Shimin1, NAN Weizhi1()
Received:
2021-04-10
Online:
2022-01-15
Published:
2021-11-25
摘要:
数字空间联结一直是认知心理学领域研究的热点之一。探索数字空间联结的一个重要指标为空间-数字反应联合编码(spatial-numerical association of response codes, SNARC)效应(左/右手对小/大数反应更快更准确)。以往研究已验证SNARC效应的普遍性及其在方向上的灵活性, 并提出多种理论解释。此外, SNARC效应在加工阶段上也具有灵活性, 其原因可能有:(1)加因素法则的理解偏差; (2)观察的角度单一; (3)观察效标的差异; (4)使用任务的差异。结合以上因素, 提出双阶段(数量信息的空间表征、空间表征到反应选择)加工模型, 不同的操控因素分别作用于两个阶段可能是引起SNARC效应灵活变化的核心原因。未来研究可从对比任务差异、引入不同干扰因素等方面进一步验证双阶段加工模型, 并结合认知神经科学技术揭示数字空间联结灵活性的内在神经机制。
中图分类号:
颜丽珠, 陈妍秀, 刘勋, 傅世敏, 南威治. (2022). 数字空间联结的灵活性及其内在机制. 心理科学进展 , 30(1), 51-64.
YAN Lizhu, CHEN Yanxiu, LIU Xun, FU Shimin, NAN Weizhi. (2022). The flexibility of spatial-numerical associations and its internal mechanism. Advances in Psychological Science, 30(1), 51-64.
图1 大小比较任务和奇偶判断任务中SNARC效应的双阶段加工模型。实线表示任务相关信息的加工通路, 虚线表示任务无关信息的加工通路, 闪电箭头表示SNARC效应产生链路的任一环节施加不同形式的干扰因素都会影响效应的产生。图A表示大小比较任务, 数量信息为任务相关信息输入, 奇偶信息为任务无关信息输入; 图B表示奇偶判断任务, 奇偶信息为任务相关信息输入, 大小信息为任务无关信息输入。
[1] | 邓之君, 吴慧中, 陈英和. (2017). 数字空间联结的工作记忆机制. 心理科学进展, 25(9), 1492-1502. |
[2] | 韩萌, 毛新瑞, 蔡梦彤, 贾茜, 郭春彦. (2017). 大小判断任务中正负号及其异同对SNARC效应的影响. 心理学报, 49(8), 995-1008. |
[3] | 胡林成, 熊哲宏. (2011). 刺激模拟量的空间表征: 面积和亮度的类SNARC效应. 心理科学, 34(1), 58-62. |
[4] | 金桂春, 王有智, 王丽. (2017). Simon效应对空间-数字反应编码联合效应的抑制作用. 心理与行为研究, 15(4), 489-494. |
[5] | 康武, 杨敏, 王丽平. (2013). SNARC效应:现状、理论及建议. 心理科学, 36(5), 1242-1248. |
[6] | 李雅君, 刘阳, 闻素霞. (2018). 书写习惯对数字空间表征SNARC效应的影响. 心理与行为研究, 16(5), 618-623. |
[7] | 刘雍江, 左全顺, 郭增辉, 李慧如, 韦磐石. (2018). 贵州少数民族儿童青少年SNARC效应的发展. 心理科学, 41(5), 116-122. |
[8] | 乔福强, 张恩涛, 陈功香. (2016). 情境对序数的空间表征之影响. 心理科学, 39(3), 566-572. |
[9] | 司继伟, 周超, 张传花, 仲蕾蕾. (2013). 不同加工深度非符号数量信息的SNARC效应:眼动证据. 心理学报, 45(1), 11-22. |
[10] | 孙玉, 司继伟, 黄碧娟. (2016). 分数的数量表征. 心理科学进展, 24(8), 1207-1216. |
[11] | 唐丹丹, 陈安涛, 李红, 朱海. (2020). 前额叶神经振荡活动反映了稳固的刺激冲突和反应冲突. 心理科学, 43(1), 23-32. |
[12] | 唐丹丹, 彭微微, 杨青松, 陈安涛, 陈雪飞. (2018). 刺激冲突和反应冲突的事件相关电位特征:中顶部P3. 心理与行为研究, 16(1), 31-36. |
[13] | 王力, 张栎文, 张明亮, 陈安涛. (2012). 视觉运动Simon效应和认知Simon效应的影响因素及机制. 心理科学进展, 20(5), 662-671. |
[14] | 魏萍, 周晓林. (2005). 从知觉负载理论来理解选择性注意. 心理科学进展, 13(4), 413-420. |
[15] | 徐晓东, 刘昌. (2006). 数字的空间特性. 心理科学进展, 14(6), 851-858. |
[16] |
Abrahamse, E., van Dijck, J. P., & Fias, W. (2016). How does working memory enable number-induced spatial biases? Frontiers in Psychology, 7, 977.
doi: 10.3389/fpsyg.2016.00977 pmid: 27445937 |
[17] |
Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus- response compatibility in representational space. Neuropsychologia, 36(8), 731-735.
pmid: 9751438 |
[18] |
Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124(4), 434-452.
doi: 10.1037/0096-3445.124.4.434 URL |
[19] |
Bulf, H., de Hevia, M. D., & Macchi Cassia, V. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394-401.
doi: 10.1111/desc.12315 URL |
[20] |
Chen, Q., & Verguts, T. (2010). Beyond the mental number line: A neural network model of number-space interactions. Cognitive Psychology, 60(3), 218-240.
doi: 10.1016/j.cogpsych.2010.01.001 pmid: 20138261 |
[21] | Cohen, , Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral & Brain Sciences, 32, 313-328. |
[22] |
Cutini, S., Scarpa, F., Scatturin, P., Dell'Acqua, R., & Zorzi, M. (2014). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex, 24(2), 444-451.
doi: 10.1093/cercor/bhs321 URL |
[23] |
Daar, M., & Pratt, J. (2008). Digits affect actions: the SNARC effect and response selection. Cortex, 44(4), 400-405.
doi: 10.1016/j.cortex.2007.12.003 URL |
[24] | Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination of apparently incompatible data. Attention Perception & Psychophysics, 45(6), 557-566. |
[25] |
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
pmid: 1511583 |
[26] |
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396.
doi: 10.1037/0096-3445.122.3.371 URL |
[27] |
Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 626-641.
doi: 10.1037/0096-1523.16.3.626 URL |
[28] |
Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218-224.
doi: 10.1016/j.conb.2004.03.008 URL |
[29] |
De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731-750.
doi: 10.1037/0096-1523.20.4.731 URL |
[30] |
Deng, Z. J., Chen, Y. H., Zhang, M., Li, Y. J., & Zhu, X. S. (2018). The association of number and space under different tasks: Insight from a process perspective. Frontiers in Psychology, 9, 957.
doi: 10.3389/fpsyg.2018.00957 URL |
[31] |
Deng, Z. J., Chen, Y. H., Zhu, X. S., & Li, Y. J. (2017). The effect of working memory load on the SNARC effect: Maybe tasks have a word to say. Memory & Cognition, 45(3), 428-441.
doi: 10.3758/s13421-016-0676-x URL |
[32] |
Didino, D., Breil, C., & Knops, A. (2019). The influence of semantic processing and response latency on the SNARC effect. Acta Psychologica, 196, 75-86.
doi: 10.1016/j.actpsy.2019.04.008 URL |
[33] |
Drucker, C. B., & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132(1), 57-67.
doi: 10.1016/j.cognition.2014.03.011 URL |
[34] |
Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87(3), 272-300.
pmid: 7384344 |
[35] | Felisatti, A., Laubrock, J., Shaki, S., & Fischer, M. H. (2020). A biological foundation for spatial-numerical associations:The brain's asymmetric frequency tuning. Annals of the New York Academy of Sciences, 1477(1), 44-53. |
[36] |
Fias, W., Brysbaert, M., Geypens, F., & d'Ydewalle, G. (1996). The Importance of Magnitude Information in Numerical Processing: Evidence from the SNARC Effect. Mathematical Cognition, 2(1), 95-110.
doi: 10.1080/135467996387552 URL |
[37] |
Fias, W., & van Dijck, J. P. (2016). The temporary nature of number-space interactions. Canadian Journal of Experimental Psychology, 70(1), 33-40.
doi: 10.1037/cep0000071 URL |
[38] |
Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72(3), 333-336.
doi: 10.1016/j.bandc.2009.10.010 pmid: 19917517 |
[39] |
Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition--from single digits to arithmetic. Quarterly Journal of Experimental Psychology, 67(8), 1461-1483.
doi: 10.1080/17470218.2014.927515 URL |
[40] |
Fischer, M. H., & Shaki, S. (2016). Measuring spatial-numerical associations: Evidence for a purely conceptual link. Psychological Research, 80(1), 109-112.
doi: 10.1007/s00426-015-0646-0 pmid: 25617061 |
[41] |
Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51(2), 91-97.
pmid: 15114901 |
[42] |
Fitousi, D., & Algom, D. (2020). A model for two-digit number processing based on a joint Garner and system factorial technology analysis. Journal of Experimental Psychology General, 149(4), 676-700.
doi: 10.1037/xge0000679 URL |
[43] |
Fumarola, A., Prpic, V., Da Pos, O., Murgia, M., Umiltà, C., & Agostini, T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76(3), 759-765.
doi: 10.3758/s13414-013-0614-y URL |
[44] |
Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.
doi: 10.1038/021252a0 URL |
[45] |
Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17(5), 659-673.
doi: 10.1080/09541440540000112 URL |
[46] |
Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006). Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica (Amst), 122(3), 221-233.
doi: 10.1016/j.actpsy.2005.11.004 URL |
[47] |
Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53(1), 58-68.
pmid: 16610273 |
[48] | Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87-B95. |
[49] |
Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology: General, 139(1), 180-190.
doi: 10.1037/a0017688 URL |
[50] |
Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: a computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32-44.
doi: 10.1037/0096-1523.32.1.32 URL |
[51] | Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short- and long-term memory. Frontiers in Human Neuroscience, 9(8), 8. |
[52] | Giorgio, E. D., Lunghi, M., Rugani, R., Regolin, L., Dalla Barba, B., Vallortigara, G., & Simion, F. (2019). A mental number line in human newborns. Developmental Science, 22(6), e12801. |
[53] |
Gut, M., Szumska, I., Wasilewska, M., & Jaskowśki, P. (2012). Are low and high number magnitudes processed differently while resolving the conflict evoked by the SNARC effect? International Journal of Psychophysiology, 85(1), 7-16.
doi: 10.1016/j.ijpsycho.2012.02.007 URL |
[54] |
Hartmann, M., Gashaj, V., Stahnke, A., & Mast, F. W. (2014). There is more than "more is up": Hand and foot responses reverse the vertical association of number magnitudes. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1401-1414.
doi: 10.1037/a0036686 URL |
[55] |
He, D. X., He, X. Y., Zhao, T. T., Wang, J., Li, L. Z., & Louwerse, M. (2020). Does Number Perception Cause Automatic Shifts of Spatial Attention? A Study of the Att-SNARC Effect in Numbers and Chinese Months. Frontiers in Psychology, 11, 680.
doi: 10.3389/fpsyg.2020.00680 URL |
[56] |
Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica (Amst), 128(2), 225-237.
doi: 10.1016/j.actpsy.2008.01.002 URL |
[57] |
Hirsch, P., Nolden, S., & Koch, I. (2017). Higher-order cognitive control in dual tasks: Evidence from task-pair switching. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 569-580.
doi: 10.1037/xhp0000309 URL |
[58] |
Hung, Y. H., Hung, D. L., Tzeng, O. J.-L., & Wu, D. H. (2008). Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 106(3), 1441-1450.
doi: 10.1016/j.cognition.2007.04.017 URL |
[59] |
Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673.
doi: 10.3758/BF03195857 URL |
[60] |
Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48-56.
doi: 10.1016/j.cogbrainres.2004.12.005 URL |
[61] |
Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33(4), 681-695.
doi: 10.3758/BF03195335 URL |
[62] |
Kong, F., Zhao, J. J., & You, X. Q. (2012). Components representation of negative numbers: Evidence from auditory stimuli detection and number classification tasks. Quarterly Journal of Experimental Psychology, 65(4), 691-701.
doi: 10.1080/17470218.2011.622048 URL |
[63] |
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97(2), 253-270.
pmid: 2186425 |
[64] |
Krause, F., Lindemann, O., Toni, I., & Bekkering, H. (2014). Different brains process numbers differently: Structural bases of individual differences in spatial and nonspatial number representations. Journal of Cognitive Neuroscience, 26(4), 768-776.
doi: 10.1162/jocn_a_00518 URL |
[65] |
Leuthold, H. (2011). The Simon effect in cognitive electrophysiology: A short review. Acta Psychologica (Amst), 136(2), 203-211.
doi: 10.1016/j.actpsy.2010.08.001 URL |
[66] |
Li, Q., Nan, W. Z., Wang, K., & Liu, X. (2014). Independent processing of stimulus-stimulus and stimulus-response conflicts. Plos One, 9(2), e89249.
doi: 10.1371/journal.pone.0089249 URL |
[67] |
Lindemann, O., Abolafia, J. M., Pratt, J., & Bekkering, H. (2008). Coding strategies in number space: Memory requirements influence spatial-numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515-524.
doi: 10.1080/17470210701728677 URL |
[68] |
Liu, X., Park, Y., Gu, X. S., & Fan, J. (2010). Dimensional overlap accounts for independence and integration of stimulus-response compatibility effects. Attention, Perception, & Psychophysics, 72(6), 1710-1720.
doi: 10.3758/APP.72.6.1710 URL |
[69] |
Lonnemann, J., Linkersdorfer, J., Nagler, T., Hasselhorn, M., & Lindberg, S. (2013). Spatial representations of numbers and letters in children. Frontiers in Psychology, 4, 544.
doi: 10.3389/fpsyg.2013.00544 pmid: 23970877 |
[70] | Mapelli, D., Rusconi, E., & Umiltà, C. (2003). The SNARC effect: An instance of the Simon effect? Cognition, 88(3), B1-B10. |
[71] |
Marois, R., Larson, J. M., Chun, M. M., & Shima, D. (2006). Response-specific sources of dual-task interference in human pre-motor cortex. Psychological Research, 70(6), 436-447.
doi: 10.1007/s00426-005-0022-6 URL |
[72] |
Moro, S. B., Dell'Acqua, R., & Cutini, S. (2018). The SNARC effect is not a unitary phenomenon. Psychonomic Bulletin & Review, 25(2), 688-695.
doi: 10.3758/s13423-017-1408-3 URL |
[73] |
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519-1520.
doi: 10.1038/2151519a0 URL |
[74] |
Müller, D., & Schwarz, W. (2007). Exploring the mental number line: Evidence from a dual-task paradigm. Psychological Research, 71(5), 598-613.
doi: 10.1007/s00426-006-0070-6 URL |
[75] |
Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015). The oculomotor resonance effect in spatial-numerical mapping. Acta Psychologica (Amst), 161, 162-169.
doi: 10.1016/j.actpsy.2015.09.006 URL |
[76] |
Nan, W. Z., Yan, L. Z., Yang, G. C., Liu, X., & Fu, S. M. (2021). Two processing stages of the SNARC effect. Psychological Research. doi: 10.1007/s00426-021-01506-5
doi: 10.1007/s00426-021-01506-5 |
[77] |
Nuerk, H. C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 57(5), 835-863.
doi: 10.1080/02724980343000512 URL |
[78] |
Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187-194.
doi: 10.1027/1618-3169.52.3.187 URL |
[79] |
Oberauer, K., Awh, E., & Sutterer, D. W. (2017). The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(1), 1-22.
doi: 10.1037/xlm0000302 URL |
[80] |
Pinto, M., Pellegrino, M., Marson, F., Lasaponara, S., & Doricchi, F. (2019). Reconstructing the origins of the space-number association: Spatial and number-magnitude codes must be used jointly to elicit spatially organised mental number lines. Cognition, 190, 143-156.
doi: 10.1016/j.cognition.2019.04.032 URL |
[81] |
Prado, J., Van der Henst, J. B., & Noveck, I. A. (2008). Spatial associations in relational reasoning: Evidence for a SNARC-like effect. Quarterly Journal of Experimental Psychology, 61(8), 1143-1150.
doi: 10.1080/17470210801954777 URL |
[82] |
Pressigout, A., Charvillat, A., Mersad, K., & Doré-Mazars, K. (2019). Time dependency of the SNARC effect for different number formats: Evidence from saccadic responses. Psychological Research, 83(7), 1485-1495.
doi: 10.1007/s00426-018-1010-y pmid: 29633009 |
[83] |
Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416-442.
pmid: 16719568 |
[84] |
Prpic, V., Fumarola, A., De Tommaso, M., Luccio, R., Murgia, M., & Agostini, T. (2016). Separate mechanisms for magnitude and order processing in the spatial-numerical association of response codes (SNARC) effect: The strange case of musical note values. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1241-1251.
doi: 10.1037/xhp0000217 URL |
[85] |
Ratinckx, E., & Brysbaert, M. (2002). Interhemispheric stroop-like interference in number comparison: Evidence for strong interhemispheric integration of semantic number information. Neuropsychology, 16(2), 217-229.
pmid: 11949714 |
[86] | Riello, M., & Rusconi, E. (2011). Unimanual SNARC Effect: Hand Matters. Frontiers in Psychology, 2, 372. |
[87] |
Rusconi, E., Bueti, D., Walsh, V., & Butterworth, B. (2011). Contribution of frontal cortex to the spatial representation of number. Cortex, 47(1), 2-13.
doi: 10.1016/j.cortex.2009.08.005 pmid: 19762013 |
[88] |
Scerrati, E., Lugli, L., Nicoletti, R., & Umiltà, C. (2017). Comparing Stroop-like and Simon Effects on Perceptual Features. Scientific Reports, 7(1), 17815.
doi: 10.1038/s41598-017-18185-1 pmid: 29259275 |
[89] |
Schuller, A.-M., Hoffmann, D., Goffaux, V., & Schiltz, C. (2014). Shifts of spatial attention cued by irrelevant numbers: Electrophysiological evidence from a target discrimination task. Journal of Cognitive Psychology, 27(4), 442-458.
doi: 10.1080/20445911.2014.946419 URL |
[90] |
Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66(4), 651-664.
doi: 10.3758/BF03194909 URL |
[91] |
Seron, X., Pesenti, M., Noël, M. P., Deloche, G., & Cornet, J. A. (1992). Images of numbers, or “When 98 is upper left and 6 sky blue”. Cognition, 44(1-2), 159-196.
doi: 10.1016/0010-0277(92)90049-N URL |
[92] |
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328-331.
doi: 10.3758/PBR.16.2.328 URL |
[93] |
Shaki, S., & Gevers, W. (2011). Cultural Characteristics Dissociate Magnitude and Ordinal Information Processing. Journal of Cross-Cultural Psychology, 42(4), 639-650.
doi: 10.1177/0022022111406100 URL |
[94] |
Spinelli, G., & Lupker, S. J. (2020). Item-specific control of attention in the stroop task: Contingency learning is not the whole story in the item-specific proportion-congruent effect. Memory & Cognition, 48(3), 426-435.
doi: 10.3758/s13421-019-00980-y URL |
[95] |
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica (Amst), 30, 276-315.
doi: 10.1016/0001-6918(69)90055-9 URL |
[96] |
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662.
doi: 10.1037/h0054651 URL |
[97] |
Tlauka, M. (2002). Switching imagined viewpoints: the effects of viewing angle and layout size. British Journal of Psychology, 93(2), 193-201.
doi: 10.1348/000712602162535 URL |
[98] | Tombu, M. N., Asplund, C. L., Dux, P. E., Godwin, D., Martin, J. W., & Marois, R. (2011). A Unified attentional bottleneck in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13426-13431. |
[99] |
Toomarian, E. Y., & Hubbard, E. M. (2018). On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neuroscience and Biobehavioral Reviews, 90, 184-199.
doi: 10.1016/j.neubiorev.2018.04.010 URL |
[100] |
Treccani, B., Cubelli, R., Della Sala, S., & Umiltà, C. (2009). Flanker and Simon effects interact at the response selection stage. Quarterly Journal of Experimental Psychology, 62(9), 1784-1804.
doi: 10.1080/17470210802557751 URL |
[101] |
Treccani, B., Milanese, N., & Umilta, C. (2010). Influence on Simon and SNARC effects of a nonspatial stimulus- response mapping: Between-task logical recoding. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1239-1254.
doi: 10.1037/a0019239 URL |
[102] |
Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermuller, F. (2012). You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59(4), 3139-3148.
doi: 10.1016/j.neuroimage.2011.11.037 pmid: 22133748 |
[103] |
Vallortigara, G. (2017). Comparative cognition of number and space: The case of geometry and of the mental number line. Philosophical Transactions of the Royal Society B Biological Sciences, 373(1740), 20170120.
doi: 10.1098/rstb.2017.0120 URL |
[104] |
van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119.
doi: 10.1016/j.cognition.2010.12.013 URL |
[105] |
van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113(2), 248-253.
doi: 10.1016/j.cognition.2009.08.005 URL |
[106] |
van Galen, M. S., & Reitsma, P. (2008). Developing access to number magnitude: A study of the SNARC effect in 7-to 9-year-olds. Journal of Experimental Child Psychology, 101(2), 99-113.
doi: 10.1016/j.jecp.2008.05.001 URL |
[107] |
van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: The same-different task. Journal of Cognitive Psychology, 23(1), 112-120.
doi: 10.1080/20445911.2011.466796 URL |
[108] |
Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin & Review, 12(1), 66-80.
doi: 10.3758/BF03196349 URL |
[109] |
Viarouge, A., Hubbard, E. M., & Dehaene, S. (2014). The organization of spatial reference frames involved in the SNARC effect. Quarterly Journal of Experimental Psychology, 67(8), 1484-1499.
doi: 10.1080/17470218.2014.897358 URL |
[110] |
Vu, K.-P. L., & Proctor, R. W. (2001). Determinants of right-left and top-bottom prevalence for two-dimensional spatial compatibility. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 813-828.
doi: 10.1037/0096-1523.27.4.813 URL |
[111] |
Wang, X. T., Du, F., He, X. S., & Zhang, K. (2014). Enhanced spatial stimulus-response mapping near the hands: The Simon effect is modulated by hand-stimulus proximity. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2252-2265.
doi: 10.1037/a0038140 URL |
[112] |
Weis, T., Estner, B., Krick, C. M., Reith, W., & Lachmann, T. (2015). SNARC meets SPARC in fMRI--Interdependence of compatibility effects depends on semantic content. Neuropsychologia, 77, 331-338.
doi: 10.1016/j.neuropsychologia.2015.09.018 URL |
[113] |
Weis, T., Estner, B., van Leeuwen, C., & Lachmann, T. (2016). SNARC (spatial-numerical association of response codes) meets SPARC (spatial-pitch association of response codes): Automaticity and interdependency in compatibility effects. Quarterly Journal of Experimental Psychology, 69(7), 1366-1383.
doi: 10.1080/17470218.2015.1082142 URL |
[114] |
Wiegand, K., & Wascher, E. (2005). Dynamic aspects of stimulus-response correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 453-464.
doi: 10.1037/0096-1523.31.3.453 URL |
[115] |
Wiegand, K., & Wascher, E. (2007). Response coding in the Simon task. Psychological Research, 71(4), 401-410.
doi: 10.1007/s00426-005-0027-1 URL |
[116] |
Yan, L. Z., Yang, G. C., Nan, W. Z., Liu, X., & Fu, S. M. (2021). The SNARC effect occurs in the response-selection stage. Acta Psychologica (Amst), 215, 103292.
doi: 10.1016/j.actpsy.2021.103292 URL |
[117] |
Yang, G. C., Nan, W. Z., Zheng, Y., Wu, H. Y., Li, Q., & Liu, X. (2017). Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 43(4), 807-818.
doi: 10.1037/xhp0000351 URL |
[118] | Zhang, P., Cao, B. H., & Li, F. H. (2020). SNARC effect modulated by central executive control: revealed in a cue-based trisection task. Psychological Research. https://doi.org/10.1007/s00426-020-01407-z |
[119] |
Zhao, T. T., He, X. Y., Zhao, X. R., Huang, J. R., Zhang, W., Wu, S., & Chen, Q. (2018). The influence of time units on the flexibility of the spatial numerical association of response codes effect. British Journal of Psychology, 109(2), 299-320.
doi: 10.1111/bjop.2018.109.issue-2 URL |
[120] |
Zhou, D. D., Luo, J., Yi, Z. Z., Li, Y., Yang, S. T., Verguts, T., & Chen, Q. (2020). The hand-lateralization of spatial associations in working memory and long-term memory. Quarterly Journal of Experimental Psychology, 73(8), 1150-1161.
doi: 10.1177/1747021819899533 URL |
[121] |
Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138-139.
doi: 10.1038/417138a URL |
[1] | 李恒. “前”、“后”轴上的内隐时空映射及其影响因素 *[J]. 心理科学进展, 2018, 26(6): 975-983. |
[2] | 邓之君, 吴慧中, 陈英和. 数字空间联结的工作记忆机制[J]. 心理科学进展, 2017, 25(9): 1492-1502. |
[3] | 陈杰, 刘雷, 王蓉, 沈海洲. 音乐训练对执行功能的影响[J]. 心理科学进展, 2017, 25(11): 1854-1864. |
[4] | 谢继红;刘华山. 无意识目标追求的行为特征、机制及影响因素[J]. 心理科学进展, 2012, 20(12): 2069-2078. |
[5] | 雷鸣;戴艳;肖宵;曾灿;张庆林. 心理复原的机制:来自特质性复原力个体的证据[J]. 心理科学进展, 2011, 19(6): 874-882. |
[6] | 蒋军;陈雪飞;陈安涛. 积极情绪对视觉注意的调节及其机制[J]. 心理科学进展, 2011, 19(5): 701-711. |
[7] | 唐源鸿;卢谢峰;李珂. 个人-组织匹配的概念、测量策略及应用: 基于互动性与灵活性的反思 [J]. 心理科学进展, 2010, 18(11): 1762-1770. |
[8] | 徐晓东;刘昌. 数字的空间特性[J]. 心理科学进展, 2006, 14(6): 851-858. |
[9] | 顾力雄;陈琦. 认知灵活性理论、超文本和Internet网络教学[J]. 心理科学进展, 1998, 6(3): 25-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||