心理科学进展 ›› 2021, Vol. 29 ›› Issue (7): 1264-1278.doi: 10.3724/SP.J.1042.2021.01264
收稿日期:
2020-07-17
出版日期:
2021-07-15
发布日期:
2021-05-24
基金资助:
Received:
2020-07-17
Online:
2021-07-15
Published:
2021-05-24
摘要:
语法是人类交流系统有别于其他动物的关键特征之一。行为比较研究表明, 除人类外的其他灵长目动物也能理解并掌握抽象的顺序排序规则; 神经生物学比较研究表明, 支持排序处理的神经机制来自人类与其他灵长目动物共同具有的脑区。因此语法所依赖的序列学习能力在人类与其他灵长目动物间具有进化连续性。词汇限制假说、事件感知假说与自我驯化假说分别从不同角度对人类语法的进化起源进行了解释。未来研究需要探讨人工语法任务中所发现的脑神经机制是否是层级结构加工的通用处理器, 并进一步澄清语义加工与语法加工的关系。
中图分类号:
殷融, 赵嘉. (2021). 语法的进化连续性及进化起源解释. 心理科学进展 , 29(7), 1264-1278.
YIN Rong, ZHAO Jia. (2021). Evolutionary continuity and origin explanation of syntax. Advances in Psychological Science, 29(7), 1264-1278.
研究者 | 任务内容 | 实验结果 | 研究结论 |
---|---|---|---|
Reber等( | 首先训练狨猴掌握听觉序列规则, 具体规则内容为:一段音节序列的最初项与最终项是低音, 中间项全部是高音。 | 在测试阶段, 狨猴表现出了对熟悉模式声音序列的偏好:如果它们听到的是与规则模式一致的声音序列, 它们会更倾向于朝向扬声器。 | 狨猴、恒河猴、狒狒和黑猩猩(与人类亲缘关系依次从远到近)都可以掌握不相邻的排序关系, 并且与人类亲缘关系最近的黑猩猩可以做到将之前掌握的规则泛化到新的刺激序列中。 |
Versace等 ( | 以4只绒顶柽柳猴为被试, 选择了3类视觉刺激:A (3种图形)、B (包含4种图形)与X (包含4种图形)组成图形序列, 设定规则为, 当出现一组图形时, 无论X类图形的数量与位置, A类图形必须在B类图形的左边。 | 在测试阶段, 向狨猴提供一些新的刺激序列。研究发现, 有两只狨猴可以明显区分出符合设定规则的刺激序列。 | |
Milne等( | 训练两只恒河猴学习具有非相邻排序关系的三音节序列, 其中, 第1个音节与第3个音节为配对搭配, 中间音节则随意。在后期测试阶段, 向恒河猴播放符合或不符合规则的刺激序列, 同时使用ERPs记录它们的脑电信号。 | 当出现违规序列时, 恒河猴大脑的脑电模式会出现明显的“失配反应” (mismatch response)。 | |
Malassis等( | 触摸屏上向狒狒呈现3行3列9个点组成的矩阵, 在学习阶段, 矩阵上3个点依次亮起, 每一个点亮起后, 狒狒用手触摸, 在完成符合特定规律的序列后, 狒狒获得奖励, 完成其他序列则不给奖励。在测试阶段, 狒狒依然按亮点顺序触摸屏幕。 | 当一个序列中第3个点的位置与第1个点位置符合序列规律时, 狒狒触摸的反应时显著更快。当增加序列的刺激数量后, 狒狒也具有相同表现。 | |
Sonnweber等( | 学习阶段, 在屏幕上向黑猩猩同时呈现两个图形序列, 每个序列都包含3或4个图形, 其中一个序列符合预定的规则(最左边与最右边的图形形状一致, 颜色无所谓), 一个序列不符合, 黑猩猩要从中选择其中一个, 如果选择了符合规则的序列可以得到奖励, 之后进行测试。 | 在测试阶段, 黑猩猩更倾向选择符合预定规则的序列; 此外, 即便扩展图形数量或引入新的形状, 也有一些黑黑猩猩可以完成测试。 | |
Ravignani和Sonnweber ( | 首先训练黑猩猩掌握图形序列的对称规则(如XYX是合规则的图形序列, 而XYY不是)。随后, 再训练黑猩猩掌握新的听觉序列规则。 | 相比其他规则(如高音-低音-低音), 如果听觉序列规则也属于对称规则(如高音-低音-高音), 黑猩猩掌握规则的速度明显更快。 | 其他灵长目动物可以同人类一样将一种感觉通道的序列规则泛化到其他感觉通道, 因此, 序列加工能力与特定感觉通道无关。 |
Mueller等( | 以猕猴和人类为被试, 使用5种图形和5种声音分别进行了视觉序列加工测试和听觉序列加工测试, 两种测试中使用的规则一致。 | 猕猴在两种感觉通道的测试中表现出了高度相似的反应模式。而人类被试在视觉序列与听觉序列的加工任务中也会表现出一致的相关性。 |
表1 近年来部分以其他灵长目动物为被试的人工语法任务实验
研究者 | 任务内容 | 实验结果 | 研究结论 |
---|---|---|---|
Reber等( | 首先训练狨猴掌握听觉序列规则, 具体规则内容为:一段音节序列的最初项与最终项是低音, 中间项全部是高音。 | 在测试阶段, 狨猴表现出了对熟悉模式声音序列的偏好:如果它们听到的是与规则模式一致的声音序列, 它们会更倾向于朝向扬声器。 | 狨猴、恒河猴、狒狒和黑猩猩(与人类亲缘关系依次从远到近)都可以掌握不相邻的排序关系, 并且与人类亲缘关系最近的黑猩猩可以做到将之前掌握的规则泛化到新的刺激序列中。 |
Versace等 ( | 以4只绒顶柽柳猴为被试, 选择了3类视觉刺激:A (3种图形)、B (包含4种图形)与X (包含4种图形)组成图形序列, 设定规则为, 当出现一组图形时, 无论X类图形的数量与位置, A类图形必须在B类图形的左边。 | 在测试阶段, 向狨猴提供一些新的刺激序列。研究发现, 有两只狨猴可以明显区分出符合设定规则的刺激序列。 | |
Milne等( | 训练两只恒河猴学习具有非相邻排序关系的三音节序列, 其中, 第1个音节与第3个音节为配对搭配, 中间音节则随意。在后期测试阶段, 向恒河猴播放符合或不符合规则的刺激序列, 同时使用ERPs记录它们的脑电信号。 | 当出现违规序列时, 恒河猴大脑的脑电模式会出现明显的“失配反应” (mismatch response)。 | |
Malassis等( | 触摸屏上向狒狒呈现3行3列9个点组成的矩阵, 在学习阶段, 矩阵上3个点依次亮起, 每一个点亮起后, 狒狒用手触摸, 在完成符合特定规律的序列后, 狒狒获得奖励, 完成其他序列则不给奖励。在测试阶段, 狒狒依然按亮点顺序触摸屏幕。 | 当一个序列中第3个点的位置与第1个点位置符合序列规律时, 狒狒触摸的反应时显著更快。当增加序列的刺激数量后, 狒狒也具有相同表现。 | |
Sonnweber等( | 学习阶段, 在屏幕上向黑猩猩同时呈现两个图形序列, 每个序列都包含3或4个图形, 其中一个序列符合预定的规则(最左边与最右边的图形形状一致, 颜色无所谓), 一个序列不符合, 黑猩猩要从中选择其中一个, 如果选择了符合规则的序列可以得到奖励, 之后进行测试。 | 在测试阶段, 黑猩猩更倾向选择符合预定规则的序列; 此外, 即便扩展图形数量或引入新的形状, 也有一些黑黑猩猩可以完成测试。 | |
Ravignani和Sonnweber ( | 首先训练黑猩猩掌握图形序列的对称规则(如XYX是合规则的图形序列, 而XYY不是)。随后, 再训练黑猩猩掌握新的听觉序列规则。 | 相比其他规则(如高音-低音-低音), 如果听觉序列规则也属于对称规则(如高音-低音-高音), 黑猩猩掌握规则的速度明显更快。 | 其他灵长目动物可以同人类一样将一种感觉通道的序列规则泛化到其他感觉通道, 因此, 序列加工能力与特定感觉通道无关。 |
Mueller等( | 以猕猴和人类为被试, 使用5种图形和5种声音分别进行了视觉序列加工测试和听觉序列加工测试, 两种测试中使用的规则一致。 | 猕猴在两种感觉通道的测试中表现出了高度相似的反应模式。而人类被试在视觉序列与听觉序列的加工任务中也会表现出一致的相关性。 |
[1] |
Arnold, K., & Zuberbühler, K. (2006). Language evolution: Semantic combinations in primate calls. Nature, 441(7091), 303-303.
pmid: 16710411 |
[2] |
Arnold, K., & Zuberbühler, K. (2008). Meaningful call combinations in a non-human primate. Current Biology, 18(5), 202-203.
doi: 10.1016/j.cub.2008.01.040 pmid: 18334192 |
[3] |
Atkinson, E. G., Audesse, A. J., Palacios, J. A., Bobo, D. M., Webb, A. E., Ramachandran, S., & Henn, B. M. (2018). No Evidence for recent selection at FOXP2 among diverse human populations. Cell, 174(6), 1424-1435.
doi: 10.1016/j.cell.2018.06.048 |
[4] |
Bauernfeind, A. L., de Sousa, A. A., Avasthi, T., Dobson, S. D., Raghanti, M. A., Lewandowski, A. H., ... Sherwood, C. C. (2013). A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution, 64(4), 263-279.
doi: 10.1016/j.jhevol.2012.12.003 URL |
[5] |
Bemis, D. K., & Pylkkanen, L. (2011). Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience, 31(8), 2801-2814.
doi: 10.1523/JNEUROSCI.5003-10.2011 URL |
[6] |
Benítez-Burraco, A., & Kempe, V. (2018). The emergence of modern languages: Has human self-domestication optimized language transmission? Frontiers in Psychology, 9, 551.
doi: 10.3389/fpsyg.2018.00551 pmid: 29719524 |
[7] | Bergen, B. K. (2016). What the F: What swearing reveals about our language, our brains, and ourselves. New York: Basic Books. |
[8] |
Bozic, M., Fonteneau, E., Su, L., & Marslen-Wilson, W. D. (2015). Grammatical analysis as a distributed neurobiological function. Human Brain Mapping, 36(3), 1190-1201. doi: 10.1002/hbm.22696.
doi: 10.1002/hbm.22696 URL |
[9] |
Candiotti, A., Zuberbühler, K., & Lemasson, A. (2012). Context- related call combinations in female Diana monkeys. Animal Cognition, 15(3), 327-339.
doi: 10.1007/s10071-011-0456-8 pmid: 21947942 |
[10] |
Cartmill, E. A., & Byrne, R. W. (2007). Orangutans modify their gestural signaling according to their audience's comprehension. Current Biology, 17(15), 1345-1348.
pmid: 17683939 |
[11] |
Chen, L. Y., Wu, J. J., Fu, Y. B., Kang, H., & Feng, L. P. (2019). Neural substrates of word category information as the basis of syntactic processing. Human Brain Mapping, 40(2), 451-464.
doi: 10.1002/hbm.v40.2 URL |
[12] |
Cheung, V. K. M., Meyer, L., Friederici, A. D., & Koelsch, S. (2018). The right inferior frontal gyrus processes nested non-local dependencies in music. Scientific Reports, 8(1), 3822.
doi: 10.1038/s41598-018-22144-9 URL |
[13] | Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press. |
[14] | Chomsky, N. (2002). On nature and language. Cambridge, England: Cambridge University Press. |
[15] | Chomsky, N. (2010). Some simple evo devo theses: How true might they be for language? In R. K. Larson, V. M. Déprez, & H. Yamakido (Eds.),The evolution of human language (Vol. 45-62). Cambridge University Press. |
[16] |
Clay, Z., Archbold, J., & Zuberbuhler, K. (2015). Functional flexibility in wild bonobo vocal behaviour. PeerJ, 3, e1124.
doi: 10.7717/peerj.1124 URL |
[17] |
Clay, Z., & Zuberbühler, K. (2011). Bonobos extract meaning from call sequences. Plos One, 6(4), e18786.
doi: 10.1371/journal.pone.0018786 URL |
[18] | Code, C. (2005). First in, last out? The evolution of aphasic lexical speech automatisms to agrammatism and the evolution of human communication. Interaction Studies, 6(2), 311-334. |
[19] |
Cope, T. E., Wilson, B., Robson, H., Drinkall, R., Dean, L., Grube, M., ... Petkov, C. I. (2017). Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia, 104, 201-213.
doi: 10.1016/j.neuropsychologia.2017.08.022 URL |
[20] |
Crockford, C., & Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142(4), 397-421.
doi: 10.1163/1568539054012047 URL |
[21] |
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 48-71.
doi: 10.1016/j.neuroscience.2013.12.044 pmid: 24378955 |
[22] |
Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology, 21(3), 415-424.
doi: 10.1016/j.conb.2011.04.008 URL |
[23] |
Fedorenko, E., Blank, I. A., Siegelman, M., & Mineroff, Z. (2020). Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition, 203, 104348.
doi: S0010-0277(20)30167-0 pmid: 32569894 |
[24] | Ferrigno, S., Cheyette, S. J., Piantadosi, S. T., & Cantlon, J. F. (2020). Recursive sequence generation in monkeys, children, U.S. adults, and native Amazonians. Science Advances, 6(26), eaaz1002. |
[25] |
Fitch, W. T. (2017). Empirical approaches to the study of language evolution. Psychonomic Bulletin & Review, 24, 3-33.
doi: 10.3758/s13423-017-1236-5 URL |
[26] |
Fitch, W. T. (2019). Animal cognition and the evolution of human language: Why we cannot focus solely on communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1789),20190046.
doi: 10.1098/rstb.2019.0046 URL |
[27] |
French, C. A., & Fisher, S. E. (2014). What can mice tell us about Foxp2 function? Current Opinion in Neurobiology, 28(28), 72-79.
doi: 10.1016/j.conb.2014.07.003 URL |
[28] |
Friederici, A. D. (2017). Evolution of the neural language network. Psychonomic Bulletin & Review, 24(1), 41-47.
doi: 10.3758/s13423-016-1090-x URL |
[29] |
Friederici, A. D. (2020). Hierarchy processing in human neurobiology: How specific is it? Philosophical Transactions of the Royal Society B, 375(1789),20180391.
doi: 10.1098/rstb.2018.0391 URL |
[30] | Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2458-2463. |
[31] |
Friedrich, R., & Friederici, A. D. (2009). Mathematical logic in the human brain: Syntax. Plos One, 4(5), e5599.
doi: 10.1371/journal.pone.0005599 URL |
[32] |
Fröhlich, M., Sievers, C., Townsend, S. W., Gruber, T., & van Schaik, C. P. (2019). Multimodal communication and language origins: Integrating gestures and vocalizations. Biological Reviews, 94(5), 1809-1829.
doi: 10.1111/brv.v94.5 URL |
[33] |
Fröhlich, M., & van Schaik, C. P. (2018). The function of primate multimodal communication. Animal Cognition, 21(5), 619-629.
doi: 10.1007/s10071-018-1197-8 pmid: 29876698 |
[34] | Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech Language and Heaingr Research, 58(3), 934-945. |
[35] |
Genty, E., Clay, Z., Hobaiter, C., & Zuberbühler, K. (2014). Multi-Modal use of a socially directed call in bonobos. Plos One, 9(1), e84738.
doi: 10.1371/journal.pone.0084738 URL |
[36] |
Goucha, T., & Friederici, A. D. (2015). The language skeleton after dissecting meaning: A functional segregation within Broca’s Area. NeuroImage, 114, 294-302.
doi: 10.1016/j.neuroimage.2015.04.011 pmid: 25871627 |
[37] |
Goucha, T., Zaccarella, E., & Friederici, A. D. (2017). A revival of Homo loquens as a builder of labeled structures: Neurocognitive considerations. Neuroscience & Biobehavioral Reviews, 81, 213-224.
doi: 10.1016/j.neubiorev.2017.01.036 URL |
[38] |
Gruber, T., & Grandjean, D. (2017). A comparative neurological approach to emotional expressions in primate vocalizations. Neuroscience & Biobehavioral Reviews, 73, 182-190.
doi: 10.1016/j.neubiorev.2016.12.004 URL |
[39] | Hare, B. (2001). Can competitive paradigms increase the validity of experiments on primate social cognition? Animal Cognition, 4(3-4),269-280. |
[40] |
Hare, B., Call, J., & Tomasello, M. (2006). Chimpanzees deceive a human competitor by hiding. Cognition, 101(3), 495-514.
doi: 10.1016/j.cognition.2005.01.011 URL |
[41] |
Hauser, M. D., Chomsky, N., & Fitch, W. (2002). The faculty of language: What is it, who has it, and how did it evolve. Science, 298, 1569-1579.
doi: 10.1126/science.298.5598.1569 URL |
[42] |
Heard, M., & Lee, Y. S. (2020). Shared neural resources of rhythm and syntax: An ALE meta-analysis. Neuropsychologia, 137, 107284.
doi: 10.1016/j.neuropsychologia.2019.107284 URL |
[43] | Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., ... Stout, D. (2015). Acquisition of paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Structure & Function, 220(4), 2315-2331. |
[44] | Hobaiter, C., Byrne, R. W., & Zuberbühler, K. (2017). Wild chimpanzees’ use of single and combined vocal and gestural signals. Behavioral Ecology & Sociobiology, 71(6), 96. |
[45] | Hsu, H. J., Tomblin, J. B., & Christiansen, M. H. (2014). Impaired statistical learning of non-adjacent dependencies in adolescents with specific language impairment. Frontiers in Psychology, 5, 175. |
[46] |
Jackendoff, R., & Wittenberg, E. (2017). Linear grammar as a possible stepping-stone in the evolution of language. Psychonomic Bulletin & Review, 24(1), 219-224.
doi: 10.3758/s13423-016-1073-y URL |
[47] |
Jarvis, E. D. (2019). Evolution of vocal learning and spoken language. Science, 366(6461), 50-54.
doi: 10.1126/science.aax0287 URL |
[48] |
Jeon, H.-A., Kuhl, U., & Friederici, A. D. (2019). Mathematical expertise modulates the architecture of dorsal and cortico- thalamic white matter tracts. Scientific Reports, 9(1), 6825.
doi: 10.1038/s41598-019-43400-6 URL |
[49] | Jeon, H. A., & Friederici, A. D. (2016). What does "Being an Expert" mean to the brain? Functional specificity and connectivity in expertise. Cerebral Cortex, 27(12), 5603-5615. |
[50] |
Jiang, X. J., Long, T. H., Cao, W. C., Li, J. R., Dehaene, S., & Wang, L. P. (2018). Production of supra-regular spatial sequences by macaque monkeys. Current Biology, 28(12), 1851-1859.
doi: 10.1016/j.cub.2018.04.047 URL |
[51] |
Kabdebon, C., & Dehaene-Lambertz, G. (2019). Symbolic labeling in 5-month-old human infants. Proceedings of the National Academy of Sciences, 116(12), 5805-5810.
doi: 10.1073/pnas.1809144116 URL |
[52] |
Keller, S. S., Deppe, M., Herbin, M., & Gilissen, E. (2012). Variability and asymmetry of the sulcal contours defining Broca's Area homologue in the chimpanzee brain. The Journal of Comparative Neurology, 520(6), 1165-1180.
doi: 10.1002/cne.22747 pmid: 21826664 |
[53] |
Kerkhoff, A., de Bree, E., de Klerk, M., & Wijnen, F. (2013). Non-adjacent dependency learning in infants at familial risk of dyslexia. Journal of Child Language, 40(1), 11-28.
doi: 10.1017/S0305000912000098 URL |
[54] |
Kikuchi, Y., Attaheri, A., Wilson, B., Rhone, A. E., Nourski, K. V., Gander, P. E., ... Petkov, C. I. (2017). Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. Plos Biology, 15(4), e2000219.
doi: 10.1371/journal.pbio.2000219 URL |
[55] |
Kochiyama, T., Ogihara, N., Tanabe, H. C., Kondo, O., Amano, H., Hasegawa, K., ... Akazawa, T. (2018). Reconstructing the Neanderthal brain using computational anatomy. Scientific Reports, 8(1), 6296.
doi: 10.1038/s41598-018-24331-0 URL |
[56] |
Kolodny, O., & Edelman, S. (2018). The evolution of the capacity for language: The ecological context and adaptive value of a process of cognitive hijacking. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743),20170052.
doi: 10.1098/rstb.2017.0052 URL |
[57] |
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110-114.
doi: 10.1126/science.aaf8110 URL |
[58] |
Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519-523.
pmid: 11586359 |
[59] |
Laland, K. N. (2017). The origins of language in teaching. Psychonomic Bulletin & Review, 24, 225-231.
doi: 10.3758/s13423-016-1077-7 URL |
[60] |
López-Barroso, D., Catani, M., Ripollés, P., Dell'Acqua, F., Rodríguez-Fornells, A., & de Diego-Balaguer, R. (2013). Word learning is mediated by the left arcuate fasciculus. Proceedings of the National Academy of Sciences, 110(32), 13168-13173.
doi: 10.1073/pnas.1301696110 URL |
[61] |
Loui, P., Alsop, D. C., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? The Journal of Neuroscience, 29(33), 10215-10220.
doi: 10.1523/JNEUROSCI.1701-09.2009 URL |
[62] |
Malassis, R., Rey, A., & Fagot, J. (2018). Non-adjacent Dependencies Processing in Human and Non-human Primates. Cognitive Science, 42(5), 1677-1699.
doi: 10.1111/cogs.2018.42.issue-5 URL |
[63] |
Marslen-Wilson, W. D., & Bozic, M. (2018). Dual neurobiological systems underlying language evolution: Inferring the ancestral state. Current Opinion in Behavioral Sciences, 21, 176-181.
doi: 10.1016/j.cobeha.2018.05.004 URL |
[64] |
Matchin, W., Hammerly, C., & Lau, E. (2017). The role of the IFG and pSTS in syntactic prediction: Evidence from a parametric study of hierarchical structure in fMRI. Cortex, 88, 106-123.
doi: 10.1016/j.cortex.2016.12.010 URL |
[65] |
Milne, A. E., Mueller, J. L., Männel, C., Attaheri, A., Friederici, A. D., & Petkov, C. I. (2016). Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Scientific Reports, 6(1), 36259.
doi: 10.1038/srep36259 URL |
[66] | Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in Human Neuroscience, 9, 227-227. |
[67] |
Mueller, J. L., Milne, A., & Männel, C. (2018). Non-adjacent auditory sequence learning across development and primate species. Current Opinion in Behavioral Sciences, 21, 112-119.
doi: 10.1016/j.cobeha.2018.04.002 URL |
[68] |
Nowak, M. A., Plotkin, J. B., & Jansen, V. A. A. (2000). The evolution of syntactic communication. Nature, 404(6777), 495-498.
pmid: 10761917 |
[69] |
Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences, 108(6), 2522-2527.
doi: 10.1073/pnas.1018711108 URL |
[70] | Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., ... Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16056-16061. |
[71] | Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain & Language, 120(2), 83-95. |
[72] |
Poletiek, F. H., Fitz, H., & Bocanegra, B. R. (2016). What baboons can (not) tell us about natural language grammars. Cognition, 151, 108-112.
doi: S0010-0277(15)00094-3 pmid: 26026382 |
[73] |
Progovac, L., & Benítez-Burraco, A. (2019). From physical aggression to verbal behavior: Language evolution and self-domestication feedback loop. Frontiers in Psychology, 10, 2807.
doi: 10.3389/fpsyg.2019.02807 URL |
[74] |
Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L. F., & Ofen, N. (2018a). Diversity of grammars and their diverging evolutionary and processing paths: Evidence from functional MRI study of serbian. Frontiers in Psychology, 9, 278.
doi: 10.3389/fpsyg.2018.00278 URL |
[75] |
Progovac, L., Rakhlin, N., Angell, W., Liddane, R., Tang, L. F., & Ofen, N. (2018b). Neural correlates of syntax and proto-syntax: Evolutionary Dimension. Frontiers in Psychology, 9(2415)
doi: 10.3389/fpsyg.2018.02415 URL |
[76] |
Ravignani, A., & Sonnweber, R. (2017). Chimpanzees process structural isomorphisms across sensory modalities. Cognition, 161, 74-79.
doi: S0010-0277(17)30005-7 pmid: 28135575 |
[77] |
Reber, S. A., Šlipogor, V., Oh, J., Ravignani, A., Hoeschele, M., Bugnyar, T., & Fitch, W. T. (2019). Common marmosets are sensitive to simple dependencies at variable distances in an artificial grammar. Evolution and Human Behavior, 40(2), 214-221.
doi: 10.1016/j.evolhumbehav.2018.11.006 URL |
[78] |
Rey, A., Minier, L., Malassis, R., Bogaerts, L., & Fagot, J. (2019). Regularity extraction across species: Associative learning mechanisms shared by human and non-human primates. Topics in Cognitive Science, 11(3), 573-586.
doi: 10.1111/tops.2019.11.issue-3 URL |
[79] | Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., & Preuss, T. M. (2012). Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3, 11-11. |
[80] |
Rodd, J. M., Vitello, S., Woollams, A. M., & Adank, P. (2015). Localising semantic and syntactic processing in spoken and written language comprehension: An Activation Likelihood Estimation meta-analysis. Brain and Language, 141, 89-102.
doi: 10.1016/j.bandl.2014.11.012 URL |
[81] |
Schell, M., Zaccarella, E., & Friederici, A. D. (2017). Differential cortical contribution of syntax and semantics: An fMRI study on two-word phrasal processing. Cortex, 96, 105-120.
doi: 10.1016/j.cortex.2017.09.002 URL |
[82] |
Schlenker, P., Chemla, E., Schel, A. M., Fuller, J., Gautier, J.-P., Kuhn, J., ... Zuberbühler, K. (2016). Formal monkey linguistics. Theoretical Linguistics, 42(1-2),1-90.
doi: 10.1515/tl-2016-0001 URL |
[83] | Senghas, R. J., Senghas, A., & Pyers, J. E. (2005). The emergence of Nicaraguan Sign Language: Questions of development, acquisition and evolution. In S. T. Parker, J. Langer, & C. Milbrath (Eds.), Biology and knowledge revisited: From neurogenesis to psychogenesis (pp.287-306). Mahwah, NJ: Erlbaum. |
[84] |
Skeide, M. A., Brauer, J., & Friederici, A. D. (2016). Brain functional and structural predictors of language performance. Cerebral Cortex, 26(5), 2127-2139.
doi: 10.1093/cercor/bhv042 URL |
[85] |
Sonnweber, R., Ravignani, A., & Fitch, W. T. (2015). Non- adjacent visual dependency learning in chimpanzees. Animal Cognition, 18(3), 733-745.
doi: 10.1007/s10071-015-0840-x pmid: 25604423 |
[86] |
ten Cate, C. (2017). Assessing the uniqueness of language: Animal grammatical abilities take center stage. Psychonomic Bulletin & Review, 24(1), 91-96.
doi: 10.3758/s13423-016-1091-9 URL |
[87] |
Terrace, H. S., Petitto, L. A., Sanders, R. J., & Bever, T. G. (1979). Can an ape create a sentence? Science, 206(4421), 891-902.
doi: 10.1126/science.504995 URL |
[88] |
Thomas, J., & Kirby, S. (2018). Self domestication and the evolution of language. Biology and Philosophy, 33(1), 9.
doi: 10.1007/s10539-018-9612-8 URL |
[89] |
Tomasello, M. (2018). How children come to understand false beliefs: A shared intentionality account. Proceedings of the National Academy of Sciences, 115(34), 8491-8498.
doi: 10.1073/pnas.1804761115 URL |
[90] |
Tomasello, M., & Call, J. (2019). Thirty years of great ape gestures. Animal Cognition, 22(4), 461-469.
doi: 10.1007/s10071-018-1167-1 pmid: 29468285 |
[91] |
Townsend, S. W., Koski, S. E., Byrne, R. W., Slocombe, K. E., Bickel, B., Boeckle, M., ... Manser, M. B. (2017). Exorcising Grice's ghost: An empirical approach to studying intentional communication in animals. Biological Reviews, 92(3), 1427-1433.
doi: 10.1111/brv.2017.92.issue-3 URL |
[92] |
Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., ... Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain, 134(2), 415-431.
doi: 10.1093/brain/awq369 URL |
[93] | Varley, R. A., Klessinger, N. J. C., Romanowski, C. A. J., & Siegal, M. (2005). Agrammatic but numerate. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3519-3524. |
[94] |
Versace, E., Rogge, J. R., Shelton-May, N., & Ravignani, A. (2019). Positional encoding in cotton-top tamarins (Saguinus oedipus). Animal Cognition, 22, 825-838.
doi: 10.1007/s10071-019-01277-y URL |
[95] |
Wang, L. P., Uhrig, L., Jarraya, B., & Dehaene, S. (2015). Representation of numerical and sequential patterns in macaque and human brains. Current Biology, 25(15), 1966-1974.
doi: 10.1016/j.cub.2015.06.035 URL |
[96] |
Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., ... Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6(2), 8901.
doi: 10.1038/ncomms9901 URL |
[97] |
Wilson, B., Marslen-Wilson, W. D., & Petkov, C. I. (2017). Conserved sequence processing in primate frontal cortex. Trends in Neurosciences, 40(2), 72-82.
doi: 10.1016/j.tins.2016.11.004 URL |
[98] |
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen- Wilson, W. D., Smith, K., & Petkov, C. I. (2013). Auditory artificial grammar learning in macaque and marmoset monkeys. Journal of Neuroscience, 33(48), 18825-18835.
doi: 10.1523/JNEUROSCI.2414-13.2013 URL |
[99] |
Wilson, B., Smith, K., & Petkov, C. I. (2015). Mixed-complexity artificial grammar learning in humans and macaque monkeys: Evaluating learning strategies. European Journal of Neuroscience, 41(5), 568-578.
doi: 10.1111/ejn.12834 URL |
[100] |
Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., ... Rey, A. (2020). Non-adjacent dependency learning in humans and other animals. Topics in Cognitive Science, 12(3), 843-858.
doi: 10.1111/tops.v12.3 URL |
[101] |
Winkler, M., Mueller, J. L., Friederici, A. D., & Männel, C. (2018). Infant cognition includes the potentially human- unique ability to encode embedding. Science Advances, 4(11), eaar8334.
doi: 10.1126/sciadv.aar8334 URL |
[102] |
Wright, P., Stamatakis, E. A., & Tyler, L. K. (2012). Differentiating hemispheric contributions to syntax and semantics in patients with left-hemisphere lesions. The Journal of Neuroscience, 32(24), 8149-8157.
doi: 10.1523/JNEUROSCI.0485-12.2012 pmid: 22699896 |
[103] |
Wu, C. Y., Zaccarella, E., & Friederici, A. D. (2019). Universal neural basis of structure building evidenced by network modulations emerging from Broca's area: The case of Chinese. Human Brain Mapping, 40(6), 1705-1717.
doi: 10.1002/hbm.v40.6 URL |
[104] |
Yang, Y.-H., Marslen-Wilson, W. D., & Bozic, M. (2017). Syntactic complexity and frequency in the neurocognitive language system. Journal of Cognitive Neuroscience, 29(9), 1605-1620.
doi: 10.1162/jocn_a_01137 URL |
[105] | Zaccarella, E., & Friederici, A. D. (2015a). Merge in the human brain: A sub-region based functional investigation in the left pars opercularis. Frontiers in Psychology, 6, 1818. |
[106] | Zaccarella, E., & Friederici, A. D. (2015b). Reflections of word processing in the insular cortex: A sub-regional parcellation based functional assessment. Brain & Language, 142, 1-7. |
[107] |
Zaccarella, E., & Friederici, A. D. (2017). The neurobiological nature of syntactic hierarchies. Neuroscience & Biobehavioral Reviews, 81, 205-212.
doi: 10.1016/j.neubiorev.2016.07.038 URL |
[108] | Zaccarella, E., Meyer, L., Makuuchi, M., & Friederici, A. D. (2017). Building by syntax: The neural basis of minimal linguistic structures. Cerebral Cortex, 27(1), 411-421. |
[109] |
Zimmerer, V. C., Cowell, P. E., & Varley, R. A. (2014). Artificial grammar learning in individuals with severe aphasia. Neuropsychologia, 53, 25-38.
doi: 10.1016/j.neuropsychologia.2013.10.014 pmid: 24184437 |
[110] |
Zuberbühler, K. (2019). Evolutionary roads to syntax. Animal Behaviour, 151, 259-265.
doi: 10.1016/j.anbehav.2019.03.006 URL |
[111] | Zuberbühler, K. (2020). Syntax and compositionality in animal communication. Philosophical Transactions of the Royal Society B, 375(1789) |
[1] | 于文勃, 梁丹丹. 口语加工中的词语切分线索[J]. 心理科学进展, 2018, 26(10): 1765-1774. |
[2] | 张剑心;汤旦;查德华;黄建平;刘电芝. 内隐序列学习意识的具身机制[J]. 心理科学进展, 2016, 24(2): 203-216. |
[3] | 张启睿;舒华;刘友谊. 汉语个体量词认知研究述评[J]. 心理科学进展, 2011, 19(4): 510-520. |
[4] | 刘涵慧;姚梅林. 效应器在动作序列学习中的作用机制探析[J]. 心理科学进展, 2009, 17(6): 1170-1176. |
[5] | 盖笑松;杨薇;邰宇. 儿童语言样本的分析技术[J]. 心理科学进展, 2009, 17(6): 1242-1249. |
[6] | 付秋芳;傅小兰 . 内隐序列学习与注意的关系[J]. 心理科学进展, 2006, 14(6): 817-821. |
[7] | 郭秀艳;朱磊;魏知超. 内隐学习的人工神经网络模型[J]. 心理科学进展, 2006, 14(6): 837-843. |
[8] | 黄贤军,高路. 语法启动与言语产生中的语法表征[J]. 心理科学进展, 2005, 13(2): 147-155. |
[9] | 陈玲丽,吴家舵. 序列学习是否是内隐学习?[J]. 心理科学进展, 2004, 12(4): 500-504. |
[10] | 袁汝兵,郭春彦,方平. 内隐序列学习的研究进展[J]. 心理科学进展, 2003, 11(1): 22-27. |
[11] | 胡琳丽;刘永芳;于广涛. 某些应用领域中内隐学习现象研究综述[J]. 心理科学进展, 2000, 8(1): 24-283. |
[12] | 刘永芳;赵海;李莉. 内隐学习研究的现状及其争议[J]. 心理科学进展, 1998, 6(2): 17-21. |
[13] | 施建农;查子秀;周林. 智力超常与常态学生技术创造性思维的比较研究[J]. 心理科学进展, 1995, 3(1): 51-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||