[1] |
Auvray, M., Gallace, A., & Spence, C. (2011). Tactile short- term memory for stimuli presented on the fingertips and across the rest of the body surface. Attention Perception & Psychophysics, 73(4), 1227-1241.
doi: 10.3758/s13414-011-0098-6
URL
|
[2] |
Bancroft, T. D., Hockley, W. E., & Servos, P. (2012). Can vibrotactile working memory store multiple items? Neuroscience Letters, 514(1), 31-34.
doi: 10.1016/j.neulet.2012.02.044
URL
|
[3] |
Barak, O., Tsodyks, M., & Romo, R. (2010). Neuronal population coding of parametric working memory. Journal of Neuroscience, 30(28), 9424-9430.
doi: 10.1523/JNEUROSCI.1875-10.2010
URL
|
[4] |
Bliss, J. C., Crane, H. D., Mansfield, P. K., & Townsend, J. T. (1966). Information available in brief tactile presentations. Perception & Psychophysics, 1, 273-283.
doi: 10.3758/BF03207391
URL
|
[5] |
Carmichael, S. T., & Price, J. L. (1995). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 363(4), 642-664.
pmid: 8847422
|
[6] |
Cavada, C., Compañy, T., Tejedor, J., Cruzrizzolo, R. J., & Reinososuárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10(3), 220-242.
pmid: 10731218
|
[7] |
Cohen, L. G., Bandinelli, S., Sato, S., Kufta, C., & Hallett, M. (1991). Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalography & Clinical Neurophysiology, 81(5), 366-376.
|
[8] |
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.
pmid: 11515286
|
[9] |
Gallace, A., & Spence, C. (2009). The cognitive and neural correlates of tactile memory. Psychological Bulletin, 135(3), 380-406.
doi: 10.1037/a0015325
URL
|
[10] |
Haegens, S., Osipova, D., Oostenveld, R., & Jensen, O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Human Brain Mapping, 31(1), 26-35.
doi: 10.1002/hbm.20842
pmid: 19569072
|
[11] |
Harris, J. A., Harris, I. M., & Diamond, M. E. (2001a). The topography of tactile learning in humans. Journal of Neuroscience, 21(3), 1056-1061.
doi: 10.1523/JNEUROSCI.21-03-01056.2001
URL
|
[12] |
Harris, J. A., Harris, I. M., & Diamond, M. E. (2001b). The topography of tactile working memory. Journal of Neuroscience, 21(20), 8262-8269.
doi: 10.1523/JNEUROSCI.21-20-08262.2001
URL
|
[13] |
Harris, J. A., Miniussi, C., Harris, I. M., & Diamond, M. E. (2002). Transient storage of a tactile memory trace in primary somatosensory cortex. Journal of Neuroscience, 22(19), 8720-8725.
doi: 10.1523/JNEUROSCI.22-19-08720.2002
URL
|
[14] |
Iwamura, Y., Tanaka, M., Sakamoto, M., & Hikosaka, O. (1993). Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey's postcentral gyrus. Experimental Brain Research, 92(3), 360-368.
|
[15] |
Katus, T., Grubert, A., & Eimer, M. (2015). Electrophysiological evidence for a sensory recruitment model of somatosensory working memory. Cerebral Cortex, 25(12), 4697-4703. http://doi.org/10.1093/cercor/bhu153.
doi: 10.1093/cercor/bhu153
URL
|
[16] |
Killackey, H. P., Gould, H. J., Cusick, C. G., Pons, T. P., & Kaas, J. H. (1983). The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys. Journal of Comparative Neurology, 219(4), 384-419.
pmid: 6643713
|
[17] |
Ku, Y., Zhao, D., Bodner, M., & Zhou, Y. D. (2015). Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory. The European Journal of Neuroscience, 42(3), 1905-1911. http://doi.org/10.1111/ejn.12950.
doi: 10.1111/ejn.2015.42.issue-3
URL
|
[18] |
Merzenich, M. M., Kaas, J. H., Sur, M., & Lin, C. (1978). Double representation of the body surface within cytoarchitectonic area 3b and 1 in “si” in the owl monkey (aotus trivirgatus). Journal of Comparative Neurology, 181(1), 41-73.
pmid: 98537
|
[19] |
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97.
doi: 10.1037/h0043158
URL
|
[20] |
Morecraft, R. J., Geula, C., & Mesulam, M. M. (1992). Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. Journal of Comparative Neurology, 323(3), 341-358.
pmid: 1460107
|
[21] |
Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97-107.
pmid: 15654324
|
[22] |
Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Front Syst Neurosci, 9(2), 181.
|
[23] |
Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399(6735), 470-473.
pmid: 10365959
|
[24] |
Romo, R., & Salinas, E. (2003). Flutter discrimination: Neural codes, perception, memory and decision making. Nature Reviews Neuroscience, 4(3), 203-218.
doi: 10.1038/nrn1058
URL
|
[25] |
Schmidt, T. T., Wu, Y. H., & Blankenburg, F. (2017). Content- specific codes of parametric vibrotactile working memory in humans. Journal of Neuroscience, 37(40), 9771-9777.
doi: 10.1523/JNEUROSCI.1167-17.2017
URL
|
[26] |
Schmidt, T. T., Schröder, P., Reinhardt, P., & Blankenburg, F. (2020). Rehearsal of tactile working memory: Premotor cortex recruits two dissociable neuronal content representations. Human Brain Mapping, 42(1), 245-258. http://doi.org/10.1002/hbm.25220.
doi: 10.1002/hbm.v42.1
URL
|
[27] |
Sörös, P., Marmurek, J., Tam, F., Baker, N., Staines, W. R., & Graham, S. J. (2007). Functional MRI of working memory and selective attention in vibrotactile frequency discrimination. Bmc Neuroscience, 8(1), 48.
doi: 10.1186/1471-2202-8-48
URL
|
[28] |
Spitzer, B., & Blankenburg, F. (2011). Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8444-8449.
|
[29] |
Spitzer, B., & Blankenburg, F. (2012). Supramodal parametric working memory processing in humans. Journal of Neuroscience, 32(10), 3287-3295.
doi: 10.1523/JNEUROSCI.5280-11.2012
URL
|
[30] |
Spitzer, B., Gloel, M., Schmidt, T. T., & Blankenburg, F. (2014). Working memory coding of analog stimulus properties in the human prefrontal cortex. Cerebral Cortex, 24(8), 2229-2236.
doi: 10.1093/cercor/bht084
URL
|
[31] |
Spitzer, B., Wacker, E., & Blankenburg, F. (2010). Oscillatory correlates of vibrotactile frequency processing in human working memory. Journal of Neuroscience, 30(12), 4496-4502.
doi: 10.1523/JNEUROSCI.6041-09.2010
URL
|
[32] |
Sreenivasan, K. K., Curtis, C. E., & D'Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 18(2), 82-89.
doi: 10.1016/j.tics.2013.12.001
URL
|
[33] |
Wu, Y. H., Uluç, I., Schmidt, T. T., Tertel, K., Kirilina, E., & Blankenburg, F. (2018). Overlapping frontoparietal networks for tactile and visual parametric working memory representations. Neuroimage, 166, 325-334.
doi: 10.1016/j.neuroimage.2017.10.059
URL
|
[34] |
Zhao, D., Zhou, Y. D., Bodner, M., & Ku, Y. (2018). The causal role of the prefrontal cortex and somatosensory cortex in tactile working memory. Cerebral Cortex, 28(10), 3468-3477.
doi: 10.1093/cercor/bhx213
URL
|
[35] |
Zhou, Y. D., & Fuster, J. M. (1996). Mnemonic neuronal activity in somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(19), 10533-10537.
|
[36] |
Zhou, Y. D., & Fuster, J. M. (2000). Visuo-tactile cross-modal associations in cortical somatosensory cells. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9777-9782.
|