心理科学进展 ›› 2021, Vol. 29 ›› Issue (3): 425-437.doi: 10.3724/SP.J.1042.2021.00425
方岚1,2, 郑苑仪3,4, 金晗2, 李晓庆3,4, 杨玉芳3,4, 王瑞明1()
收稿日期:
2020-05-04
出版日期:
2021-03-15
发布日期:
2021-01-26
通讯作者:
王瑞明
E-mail:wruiming@163.com
基金资助:
FANG Lan1,2, ZHENG Yuanyi3,4, JIN Han2, LI Xiaoqing3,4, YANG Yufang3,4, WANG Ruiming1()
Received:
2020-05-04
Online:
2021-03-15
Published:
2021-01-26
Contact:
WANG Ruiming
E-mail:wruiming@163.com
摘要:
韵律边界加工与言语理解紧密相关, 最近十几年来逐渐成为心理学和语言学的研究焦点。韵律系统包含若干由小到大的韵律单位, 不同单位的韵律成分其边界强度不同, 表现在音高、延宕和停顿三个声学线索上的参数也不同。句子的听力理解过程中, 听话人运用声学线索感知权重策略对韵律边界的声学线索进行加工。从神经层面上来看, 对于韵律边界的加工, 大脑显示出独立且特异性的神经机制。韵律边界的加工能力在婴儿出生后随年龄的增长而发展, 到了老年阶段则逐渐退化, 而且似乎能够对二语迁移。未来, 需要扩大对韵律边界声学表现的考查范围, 进一步明确韵律边界的加工过程, 进一步厘清韵律边界加工和句法加工之间的关系, 进一步关注二语者韵律边界加工能力的发展。
中图分类号:
方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. (2021). 口语句子的韵律边界:窥探言语理解的秘窗. 心理科学进展 , 29(3), 425-437.
FANG Lan, ZHENG Yuanyi, JIN Han, LI Xiaoqing, YANG Yufang, WANG Ruiming. (2021). Prosodic boundaries in speech: A window to spoken language comprehension. Advances in Psychological Science, 29(3), 425-437.
[1] | 杨玉芳. (2015). 心理语言学. 北京: 科学出版社. |
[2] | 周游, 刘方舟. (2017). 汉语韵律结构与语法结构的对比分析. 见:中国中文信息学会语音信息专业委员会(编), 第十四届全国人机语音通讯学术会议(NCMMSC’2017)论文集 |
[3] |
Aasland, W., & Baum, S. (2003). Temporal parameters as cues to phrasal boundaries: A comparison of processing by left-and right-hemisphere brain-damaged individuals. Brain and Language, 87(3), 385-399.
URL pmid: 14642541 |
[4] |
Bögels, S., Schriefers, H., Vonk, W., Chwilla, D. J., & Kerkhofs, R. (2010). The interplay between prosody and syntax in sentence processing: The case of subject-and object-control verbs. Journal of Cognitive Neuroscience, 22(5), 1036-1053.
doi: 10.1162/jocn.2009.21269 URL pmid: 19445602 |
[5] |
Bögels, S., Schriefers, H., Vonk, W., Chwilla, D. J., & Kerkhofs, R. (2013). Processing consequences of superfluous and missing prosodic breaks in auditory sentence comprehension. Neuropsychologia, 51(13), 2715-2728.
doi: 10.1016/j.neuropsychologia.2013.09.008 URL |
[6] | Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid transformation from auditory to linguistic representations of continuous speech. Current Biology, 28( 24), 3976- 3983. e5. |
[7] |
Buxó-Lugo, A., & Watson, D. G. (2016). Evidence for the influence of syntax on prosodic parsing. Journal of Memory and Language, 90, 1-13.
URL pmid: 30853752 |
[8] |
Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception. Acta Psychologica, 155, 43-50.
URL pmid: 25553343 |
[9] |
Clahsen, H., & Felser, C. (2018). Some notes on the shallow structure hypothesis. Studies in Second Language Acquisition, 40(3), 693-706.
doi: 10.1017/S0272263117000250 URL |
[10] |
Clifton, C, & Duffy, S. A. (2001). Sentence and text Comprehension: Roles of linguistic structure. Annual Review of Psychology, 52, 167-196.
URL pmid: 11148303 |
[11] |
Clifton, C., Carlson, K., & Frazier, L. (2002). Informative prosodic boundaries. Language and Speech, 45(2), 87-114.
doi: 10.1177/00238309020450020101 URL |
[12] |
Cole, J. (2015). Prosody in context: A review. Language, Cognition and Neuroscience, 30(1-2), 1-31.
doi: 10.1080/23273798.2014.963130 URL |
[13] |
Cole, J., Mo, Y., & Bae, S. (2010). The role of syntactic structure in guiding prosody perception with ordinary listeners and everyday speech. Language and Cognitive Process, 25(7-9), 1141-1177.
doi: 10.1080/01690960903525507 URL |
[14] |
Cumming, R., Wilson, A., Leong, V., Colling, L. J., & Goswami, U. (2015). Awareness of rhythm patterns in speech and music in children with specific language impairments. Frontiers in Human Neuroscience, 9, 672.
doi: 10.3389/fnhum.2015.00672 URL pmid: 26733848 |
[15] |
Dilley, L. C., & Pitt, M. A. (2010). Altering context speech rate can cause words to appear or disappear. Psychological Science, 21(11), 1664-1670.
doi: 10.1177/0956797610384743 URL pmid: 20876883 |
[16] | Ding, N., & Jin, P. (2019). Low-frequency neural activity reflects rule-based chunking during speech listening. bioRxiv, Article 742585v1. https://www.biorxiv.org/content/10.1101/ 742585v1.full.pdf |
[17] |
Ding, N., Chatterjee, M., & Simon, J. Z. (2014). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. Neuroimage, 88, 41-46.
URL pmid: 24188816 |
[18] |
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2015). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
doi: 10.1038/nn.4186 URL pmid: 26642090 |
[19] |
Ding, N., Pan, X., Luo, C., Su, N., Zhang, W., & Zhang, J. (2018). Attention is required for knowledge-based sequential grouping: Insights from the integration of syllables into words. Journal of Neuroscience, 38(5), 1178-1188.
doi: 10.1523/JNEUROSCI.2606-17.2017 URL |
[20] |
Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage, 85, 761-768.
doi: 10.1016/j.neuroimage.2013.06.035 URL |
[21] | Flaugnacco, E., Lopez, L., Terribili, C., Montico, M., Zoia, S., & Schön, D. (2015). Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial. PLOS One, 10( 9), Article e0138715. https://doi.org/10.1371/journal.pone. 0138715 |
[22] |
Frazier, L., Clifton, C., & Carlson, K. (2004). Don't break, or do: Prosodic boundary preferences. Lingua, 114 (1), 3-27.
doi: 10.1016/S0024-3841(03)00044-5 URL |
[23] |
Frazier, L., Carlson, K., & Clifton, C. (2006). Prosodic phrasing is central to language comprehension. Trends in Cognitive Sciences, 10(6), 244-249.
doi: 10.1016/j.tics.2006.04.002 URL pmid: 16651019 |
[24] |
Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517.
URL pmid: 22426255 |
[25] |
Gross, J., Hoogenboom, N., Thut, G., Schyns, P., Panzeri, S., Belin, P., & Garrod, S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLOS Biology, 11(12). Article e1001752. https://doi.org/ 10.1371/journal.pbio.1001752
doi: 10.1371/journal.pbio.1001732 URL pmid: 24339748 |
[26] | Halle, M., & Stevens, K. (1962). Speech recognition: A model and a program for research. IRE Transactions on Information Theory, 8(2), 155-159. |
[27] |
Hawthorn, K., & Gerke, L. (2014). From pauses to clauses: Prosody facilitates learning of syntactic constituency. Cognition, 133(2), 420-428.
URL pmid: 25151251 |
[28] |
Hidalgo, C., Falk, S., & Schön, D. (2017). Speak on time! Effects of a musical rhythmic training on children with hearing loss. Hearing Research, 351, 11-18.
URL pmid: 28552493 |
[29] |
Holliman, A. J., Gutiérrez Palma, N., Critten, S., Wood, C., Cunnane, H., & Pillinger, C. (2017). Examining the independent contribution of prosodic sensitivity to word reading and spelling in early readers. Reading and Writing, 30, 509-521.
doi: 10.1007/s11145-016-9687-z URL |
[30] | Holzgrefe, J., Wellmann, C., Petrone, C., Truckenbrodt, H., Höhle, B., & Wartenburger, I. (2013). Brain response to prosodic boundary cues depends on boundary position. Frontiers in Psychology Language Sciences, 4, 421. |
[31] | Holzgrefe-Lang., J., Wellmann, C., Petrone, C., & Räling, R. (2016). How pitch change and final lengthening cue boundary perception in German: Converging evidence from ERPs and prosodic judgements. Language, Cognition and Neuroscience, 31(7), 904-920. |
[32] |
Honbolygo, F., Török, Á., Bánréti, Z., Hunyadi, L., & Csépe, V. (2016). ERP correlates of prosody and syntax interaction in case of embedded sentences. Journal of Neurolinguistics, 37, 22-33.
doi: 10.1016/j.jneuroling.2017.10.001 URL pmid: 29422720 |
[33] |
Howard, M. F., & Poeppel, D. (2010). Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension. Journal of Neurophysiology, 104(5), 2500-2511.
doi: 10.1152/jn.00251.2010 URL pmid: 20484530 |
[34] |
Hwang, H., & Steinhauer, K. (2011). Phrase length matters: The interplay between implicit prosody and syntax in Korean “garden path” sentences. Journal of Cognitive Neuroscience, 23(11), 3555-3575.
URL pmid: 21391765 |
[35] |
Ischebeck, A. K., Friederici, A. D., & Alter, K. (2008). Processing prosodic boundaries in natural and hummed speech: An fMRI study. Cerebral Cortex, 18(3), 541-552.
URL pmid: 17591598 |
[36] |
Kayser, S. J., Ince, R. A. A., Gross, J., & Kayser, C. (2015). Irregular speech rate dissociates auditory cortical entrainment, evoked responses, and frontal alpha. Journal of Neuroscience, 35(44), 14691-14701.
URL pmid: 26538641 |
[37] |
Kjelgaard, M. M., & Speer, S. R. (1999). Prosodic facilitation and interference in the resolution of temporary syntactic closure ambiguity. Journal of Memory and Language, 40(2), 153-194.
doi: 10.1006/jmla.1998.2620 URL |
[38] | Kösem, A., & van Wassenhov, V. (2016). Distinct contributions of low- and high-frequency neural oscillations to speech comprehension. Language, Cognition and Neuroscience, 32(5), 536-544. |
[39] |
Kreiner, H., & Eviatar, Z. (2014). The missing link in the embodiment of syntax: Prosody. Brain and Language, 137, 91-102.
URL pmid: 25190329 |
[40] |
Krivokapić, J., & Byrd, D. (2012). Prosodic boundary strength: An articulatory and perceptual study. Journal of Phonetics, 40(3), 430-442.
URL pmid: 23441103 |
[41] |
Li, W. J., & Yang, Y. (2009). Perception of prosodic hierarchical boundaries in Mandarin Chinese sentences. Neuroscience, 158(4), 1416-1425.
URL pmid: 19111906 |
[42] |
Männel, C., & Friederici, A. D. (2016). Neural correlates of prosodic boundary perception in German preschoolers: If pause is present, pitch can go. Brain Research, 1632, 27-33.
doi: 10.1016/j.brainres.2015.12.009 URL pmid: 26683081 |
[43] |
Männel, C., Schipke, C. S., & Friederici, A. D. (2013). The role of pause as a prosodic boundary marker: Language ERP studies in German 3- and 6-year-olds. Developmental Cognitive Neuroscience, 5, 86-94.
doi: 10.1016/j.dcn.2013.01.003 URL |
[44] | Marcus, M., & Hindle, D. (1990). “Description theory and intonation boundaries”. In G. Altman (Eds.), Cognitive Models of Speech Processing: Psycholinguistic and Computational Perspectives (pp. 483-512). Cambridge, MA, USA: MIT Press. |
[45] |
Maslowski, M., Meyer, A. S., & Bosker, H. R. (2019). Listeners normalize speech for contextual speech rate even without an explicit recognition task. The Journal of the Acoustical Society of America, 146(1), 179-188.
URL pmid: 31370593 |
[46] |
Meyer, L., Henry, M. J., Gaston, P., Schmuck, N., & Friederici, A. D. (2017). Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cerebral Cortex, 27(9), 4293-4302.
doi: 10.1093/cercor/bhw228 URL pmid: 27566979 |
[47] |
Nickels, S., Opitz, B., & Steinhauer, K. (2013). ERPs show that classroom-instructed late second language learners rely on the same prosodic cues in syntactic parsing as native speakers. Neuroscience Letters, 557, 107-111.
URL pmid: 24141083 |
[48] |
Nickels, S., & Steinhauer, K. (2018). Prosody-syntax integration in a second language: Contrasting event-related potentials from German and Chinese learners of English using linear mixed effect models. Second Language Research, 34(1), 9-37.
doi: 10.1177/0267658316649998 URL |
[49] |
Pannekamp, A., Toepel, U., Alter, K., Hahne, A., & Friederici, A. D. (2005). Prosody-driven sentence processing: An event-related brain potential study. Journal of Cognitive Neuroscience, 17(3), 407-421.
URL pmid: 15814001 |
[50] |
Park, H., Ince, R. A., Schyns, P. G., Thut, G., & Gross, J. (2015). Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners. Current Biology, 25(12), 1649-1653.
URL pmid: 26028433 |
[51] |
Pauker, E., Itzhak, I., Baum, S. R., & Steinhauer, K. (2011). Effects of cooperating and conflicting prosody in spoken English garden path sentences: ERP evidence for the boundary deletion hypothesis. Journal of Cognitive Neuroscience, 23(10), 2731-2751.
URL pmid: 21281091 |
[52] |
Pennington, M. C., & Ellis, N.C. (2000). Cantonese Speakers’ Memory for English Sentences with Prosodic Cues. The Modern Language Journal, 84(3), 372-389.
doi: 10.1111/modl.2000.84.issue-3 URL |
[53] |
Petrone, C., Truckenbrodt, H., Wellmann, C., Holzgrefe- Lang, J., Wartenburger, I., & Hohle, B. (2017). Prosodic boundary cues in German: Evidence from the production and perception of bracketed lists. Journal of Phonetics, 61, 71-92.
doi: 10.1016/j.wocn.2017.01.002 URL |
[54] |
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as 'asymmetric sampling in time'. Speech Communication, 41(1), 245-255.
doi: 10.1016/S0167-6393(02)00107-3 URL |
[55] |
Qin, Z., Chien, Y., & Tremblay, A. (2016). Processing of word-level stress by Mandarin-speaking second language learners of English. Applied Psycholinguistics, 38(3), 541-570.
doi: 10.1017/S0142716416000321 URL |
[56] |
Roll, M., Lindgren, M., Alter, K., & Horne, M. (2012). Time-driven effects on parsing during reading. Brain and Language, 121(3), 267-272.
doi: 10.1016/j.bandl.2012.03.002 URL pmid: 22480626 |
[57] |
Schmidt, E., Pérez, A., Cilibrasi, L., & Tsimpli, I. (2019). Prosody facilitates memory recall in L1 but not in L2 in highly proficient listeners. Studies in Second Language Acquisition, 42(1), 223-238.
doi: 10.1017/S0272263119000433 URL |
[58] |
Schön, D., & Tillmann, B. (2015). Short- and long-term rhythmic interventions: Perspectives for language rehabilitation. Annals of the New York Academy of Sciences, 1337, 32-39.
URL pmid: 25773614 |
[59] |
Schremm, A., Horne, M., & Roll, M. (2015). Brain responses to syntax constrained by time-driven implicit prosodic phrases. Journal of Neurolinguistics, 35, 68-84.
doi: 10.1016/j.jneuroling.2017.10.001 URL pmid: 29422720 |
[60] | Seidl, A. (2007). Infants’ use and weighting of prosodic cues in clause segmentation. Journal of Memory & Language, 57(1), 24-48. |
[61] |
Seidl, A., & Cristià, A. (2008). Developmental changes in the weighting of prosodic cues. Developmental Science, 11(4), 596-606.
URL pmid: 18576967 |
[62] | Selkirk, E. (2005). Comments on intonational phrasing in English. In S. Frota, M. Vigario, and M. J. Freitas (Eds.), Prosodies (pp. 11-58). Berlin, Germany: Mouton de Gruyter. |
[63] |
Slater, J., & Kraus, N. (2016). The role of rhythm in perceiving speech in noise: A comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 17(1), 79-87.
URL pmid: 26445880 |
[64] |
Steinhauer, K., Abada, S. H., Pauker, E., Itzhak, I., & Baum, S. R. (2010). Prosody-syntax interactions in aging: Event-related potentials reveal dissociations between on-line and off-line measures. Neuroscience Letters, 472(2), 133-138.
URL pmid: 20138120 |
[65] |
Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191-196.
doi: 10.1038/5757 URL pmid: 10195205 |
[66] | Truckenbrodt, H. (1995). Phonological phrases: Their relation to syntax, focus and prominance (Unpublished doctorial Dissertation), Massachusetts Institute of Technology. |
[67] | van Ommena, S., Boll-Avetisyanb, N., Larrazaa, S., Wellmannb, C., Bijeljac-Babica, R., Höhleb, B., & Nazzi, T. (2020). Language-specific prosodic acquisition: A comparison of phrase boundary perception by French- and German- learning infants. Journal of Memory and Language, 112, 104-108. |
[68] |
Wagner, M., & Watson, D. G. (2010). Experimental and theoretical advances in prosody: A review. Language and Cognitive Processes, 25(7-9), 905-945.
doi: 10.1080/01690961003589492 URL pmid: 22096264 |
[69] |
Webman-Shafran, R., &Fodor, J. D. (2016). Phrase length and prosody in on-line ambiguity resolution. Journal of Psycholinguist Research, 45(3), 447-474.
doi: 10.1007/s10936-015-9358-2 URL |
[70] |
Xu, G., Zhang, L., Shu, H., Wang, X., & Li, P. (2013). Access to lexical meaning in pitch-flattened Chinese sentences: An fMRI study. Neuropsychologia, 51(3), 550-556.
URL pmid: 23262075 |
[71] | Yang, L. C. (2016, March). Optimizing pronunciation and prosody teaching in second language learning. Paper presented at the meeting of ISAPh 2016 International Symposium on Applied Phonetics, Nagoya, Japan. |
[72] |
Yang, X., Shen, X., Li, W., & Yang, Y. (2014). How listeners weight acoustic cues to intonational phrase boundaries. PLOS One, 9(7), Article e102166. http://doi.org10.1371/ journal.pone.0102166
URL pmid: 25080093 |
[73] |
Zoefel, B., & VanRullen, R. (2015). Selective perceptual phase entrainment to speech rhythm in the absence of spectral energy fluctuations. Journal of Neuroscience, 35(5), 1954-1964.
URL pmid: 25653354 |
[74] |
Zoefel, B., & VanRullen, R. (2016). EEG oscillations entrain their phase to high-level features of speech sound. Neuroimage, 124, 16-23.
doi: 10.1016/j.neuroimage.2015.08.054 URL pmid: 26341026 |
[1] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[2] | 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. 节律在听觉言语理解中的作用[J]. 心理科学进展, 2022, 30(8): 1818-1831. |
[3] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[4] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[5] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[6] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[7] | 钟楚鹏, 曲折, 丁玉珑. 刺激前alpha振荡对视知觉的影响[J]. 心理科学进展, 2020, 28(6): 945-958. |
[8] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[9] | 韩海宾, 许萍萍, 屈青青, 程茜, 李兴珊. 语言加工过程中的视听跨通道整合[J]. 心理科学进展, 2019, 27(3): 475-489. |
[10] | 钱浩悦, 黄逸慧, 高湘萍. Gamma神经振荡和信息整合加工[J]. 心理科学进展, 2018, 26(3): 433-441. |
[11] | 袁祥勇, 张西磊, 王莹, 蒋毅. 视听整合增强视觉节律的神经振荡[J]. 心理科学进展, 2017, 25(suppl.): 53-53. |
[12] | 王苹;潘治辉;张立洁;陈煦海. 动态面孔和语音情绪信息的整合加工及神经生理机制[J]. 心理科学进展, 2015, 23(7): 1109-1117. |
[13] | 郑媛媛;李晓庆. 主语优先现象及其认知机制[J]. 心理科学进展, 2011, 19(12): 1749-1758. |
[14] | 于泽; 韩玉昌; 任桂琴. 韵律在语言加工中的作用及其神经机制[J]. 心理科学进展, 2010, 18(3): 420-425. |
[15] | 方杰;李小健. 言语产生的同音词表征:模型争论与再思[J]. 心理科学进展, 2009, 17(5): 909-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||