ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 93-101.doi: 10.3724/SP.J.1042.2021.00093

• 研究前沿 • 上一篇    下一篇

肢体运动信息如何在工作记忆中存储?

谢婷婷1, 王丽娟1(), 王天泽2   

  1. 1东北师范大学心理学院, 长春 130024
    2广西师范大学教育学部, 桂林 541006
  • 收稿日期:2020-01-06 出版日期:2021-01-15 发布日期:2020-11-23
  • 通讯作者: 王丽娟 E-mail:wanglj699@nenu.edu.cn
  • 基金资助:
    * 教育部人文社科规划项目(1802123)

How is limb movement information stored in working memory?

XIE Tingting1, WANG Lijuan1(), WANG Tianze2   

  1. 1School of Psychology, Northeast Normal University, Changchun 130024, China
    2Faculty of Education, Guangxi Normal University, Guilin 541006, China
  • Received:2020-01-06 Online:2021-01-15 Published:2020-11-23
  • Contact: WANG Lijuan E-mail:wanglj699@nenu.edu.cn

摘要:

肢体运动(空间位置运动与身体模式运动)是个体与环境交互作用的重要途径。以往行为学和脑成像研究分别探讨了空间位置运动信息和身体模式运动信息的工作记忆存储问题, 发现两种肢体运动信息的存储均独立于语音环、视空间画板的视觉子系统, 需要视空间画板的空间子系统的参与; 两种肢体运动信息激活的脑区(运动相关皮层)独立于语音环、视空间画板的视觉子系统和空间子系统, 并存在差异。这表明, 现有的工作记忆多成分模型不能完全解释肢体运动信息的存储。据此可推论, 工作记忆系统中可能存在一个负责处理肢体运动信息的“肢体运动系统”, 其隶属于视空间画板, 与视觉子系统和空间子系统并存; 其激活脑区因肢体运动的不同而存在差异。

关键词: 肢体运动信息, 空间位置运动, 身体模式运动, 空间工作记忆, 运动相关皮层

Abstract:

Studies regarding the multicomponent model of working memory mainly focus on the storage of featural properties, spatiotemporal properties and verbal information of objects, as well as the binding of these information (e.g., Allen et al., 2015; Fellman et al., 2017; Logie, 1995; Son et al., 2020; Zhao et al., 2019). The storage of limb movement information has not been explored. Limb movements are one of the important ways individuals interact with their environment. Exploring the storage of limb movement information is helpful to deeply clarify the storage modes of various types of information, as well as understand how different types of information transcoded and interacted with each other. Smyth et al. (1988) proposed two types of limb movements, i.e., movement pattern (including a gesture or movement to be imitated, such as an arabesque in ballet) and movement to positions in space (such as picking up a pen) according to the different goals of movements. The goal of movement pattern is the body pattern, whereas achieving a spatial target is the goal of movement to positions in space. In other words, movement pattern refers to kinesthetic or motor coding in imitation; movement to positions in space refers to the use of movement in visuo-spatial processing. In the field of perception and working memory for limb movement, previous studies did not regard the two types of limb movements as a whole. On the contrary, they usually explored the storage of information of movement to positions in space and body movement patterns information respectively or even compared them in one study. Based on this, the current study reviewed and compared the storage mechanism of these two types of limb movement information.

Studies on movement to positions in space have revealed that the working memory task of movement to positions affects the encoding of spatial working memory, but it is separated from visual working memory and verbal working memory. In addition, information of movement to positions in space shared brain area (the superior parietal lobule) with spatial information of the object rather than with verbal information and information of the object’s featural properties; information of movement to positions in space activates unique brain areas (the contralateral motor cortex, the primary motor cortex, the ventral supplementary motor area, the left supramotor cortical areas and the primary motor cortex, etc.) that are independent of the other three kinds of information. Researches on body movement patterns have revealed that working memory for body movement patterns and verbal working memory are separated. In addition, the storage of body movement patterns only activates the brain regions that store spatial information of the object, rather than the brain regions that store information of the object’s featural properties and verbal information. More importantly, only the storage of body movement patterns activates the movement-related cortex (the middle temporal). Therefore, the storage of two kinds of limb movement information is independent of the phonological loop and the visual subsystem in the visuospatial sketchpad and needs the participation of the spatial subsystem in the visuospatial sketchpad; movement to positions in space and body movement patterns activate different movement-related cortexes that are independent of the phonological loop, the visual subsystem and the spatial subsystem in the visuospatial sketchpad. These results show that the existing multicomponent model of working memory cannot fully explain the storage of limb movement information. It is implied that there is a “limb movement system” in the working memory system that is specific to limb movement information, belongs to visuospatial sketchpad and coexists with the visual subsystem and spatial subsystem. The brain areas activated in the “limb movement system” vary with different kinds of limb movements.

Key words: body movement information, movement to positions in space, body movement patterns, spatial working memory, movement-related cortex

中图分类号: