心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 93-101.doi: 10.3724/SP.J.1042.2021.00093
收稿日期:
2020-01-06
出版日期:
2021-01-15
发布日期:
2020-11-23
通讯作者:
王丽娟
E-mail:wanglj699@nenu.edu.cn
基金资助:
XIE Tingting1, WANG Lijuan1(), WANG Tianze2
Received:
2020-01-06
Online:
2021-01-15
Published:
2020-11-23
Contact:
WANG Lijuan
E-mail:wanglj699@nenu.edu.cn
摘要:
肢体运动(空间位置运动与身体模式运动)是个体与环境交互作用的重要途径。以往行为学和脑成像研究分别探讨了空间位置运动信息和身体模式运动信息的工作记忆存储问题, 发现两种肢体运动信息的存储均独立于语音环、视空间画板的视觉子系统, 需要视空间画板的空间子系统的参与; 两种肢体运动信息激活的脑区(运动相关皮层)独立于语音环、视空间画板的视觉子系统和空间子系统, 并存在差异。这表明, 现有的工作记忆多成分模型不能完全解释肢体运动信息的存储。据此可推论, 工作记忆系统中可能存在一个负责处理肢体运动信息的“肢体运动系统”, 其隶属于视空间画板, 与视觉子系统和空间子系统并存; 其激活脑区因肢体运动的不同而存在差异。
中图分类号:
谢婷婷, 王丽娟, 王天泽. (2021). 肢体运动信息如何在工作记忆中存储?. 心理科学进展 , 29(1), 93-101.
XIE Tingting, WANG Lijuan, WANG Tianze. (2021). How is limb movement information stored in working memory?. Advances in Psychological Science, 29(1), 93-101.
[1] | 董奇, 陶沙. (2004). 动作与心理发展 (pp. 5). 北京师范大学出版社. |
[2] | 李杰. (2010). 视觉工作记忆中表面特征与位置的绑定机制 (博士学位论文). 浙江大学. |
[3] | 宋伟, 董奇, 薛贵, 王亚鹏, 罗良. (2011). 英语两种句子理解中言语工作记忆的作用与布洛卡区功究. 增强心理学服务社会的意识和功能——中国心理学会成立90周年纪念大会暨第十四届全国心理学学术会议论文摘要集. |
[4] |
Allen, R. J., Castellà, J., Ueno, T., Hitch, G. J., & Baddeley, A. D. (2015). What does visual suffix interference tell us about spatial location in working memory? Memory & Cognition, 43, 133-142. https://doi.org/10.3758/s13421-014-0448-4
URL pmid: 25030081 |
[5] |
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. https://doi.org/10.1016/s1364-6613(00)01538-2
URL pmid: 11058819 |
[6] | Baddeley, A. (2012). Working Memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1-29. https://doi.org/10.1146/annurev-psych-120710-100422 |
[7] | Baddeley, A. D., Grant, S., Wight, E., & Thomson, N. (1974). Imagery and visual working memory. In P. M. Rabbitt & S. Dornic (Eds.), Attention and performance. Vol. 5. New York: Academic Press. |
[8] | Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.). The psychology of learning and motivation: Advances in research and theory(pp. 47-89). New York: Academic. |
[9] |
Brunetti, R., Del Gatto, C., Cavallina, C., Farina, B., & Delogu, F. (2016). Did I see your hand moving? The effect of movement-related information on the Corsi block tapping task. Psychological Research, 82(3), 459-467. https://doi.org/10.1007/s00426-016-0834-6
URL pmid: 27942953 |
[10] |
Cai, Y., Urgolites, Z., Wood, J., Chen, C., Li, S., Chen, A., & Xue, G. (2018). Distinct neural substrates for visual short-term memory of actions. Human Brain Mapping, 39(10), 4119-4133. https://doi.org/10.1002/hbm.24236
URL pmid: 29885016 |
[11] |
Carvalho, C. F., Menezes-Filho, J. A., de Matos, V. P., Bessa, J. R., Coelho-Santos, J., Viana, G. F. S. ... Abreu, N. (2014). Elevated airborne manganese and low executive function in school-aged children in Brazil. NeuroToxicology, 45, 301-308. https://doi.org/10.1016/j.neuro.2013.11.006
doi: 10.1016/j.neuro.2014.08.012 URL pmid: 25196089 |
[12] | Claessen, M. H. G., van der Ham I. J. M., & van Zandvoort, M. J. E. (2015). Computerization of the standard Corsi block-tapping task affects its underlying cognitive concepts: A pilot study. Applied Neuropsychology: Adult, 22(3), 180-188. https://doi.org/10.1080/23279095.2014.892488 |
[13] | Cohen, R. L. (1981). On the generality of some memory laws. Scandinavian Journal of Psychology, 22(1), 267-281. https://doi.org/10.1111/j.1467-9450.1981.tb00402.x |
[14] | Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. (Unpublished doctoral dissertation). Mcgill University. |
[15] |
Ding, X., Zhao, Y., Wu, F., Lu, X., Gao, Z., & Shen, M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 850-865. https://doi.org/10.1037/xhp0000061
URL pmid: 25893683 |
[16] | Farmer, E. W., Berman, J. V. F., & Fletcher, Y. L. (1986). Evidence for a visuo-spatial scratch-pad in working memory. The Quarterly Journal of Experimental Psychology Section A, 38(4), 675-688. https://doi.org/10.1080/14640748608401620 |
[17] | Fellman, D., Soveri, A., Viktorsson, C., Haga, S., Nylund, J., Johansson, S., ... Laine, M. (2017). Selective updating of sentences: Introducing a new measure of verbal working memory. Applied Psycholinguistics, 39(2), 275-301. https://doi.org/10.1017/s0142716417000182 |
[18] | Gimenes, G., Pennequin, V., & Sorel, O. (2013). Division of the articulatory loop according to sensory modality using double dissociation. Journal of Cognitive Psychology, 25(7), 808-815. https://doi.org/10.1080/20445911.2013.823974 |
[19] |
Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research, 112(1), 103-111. https://doi.org/10.1007/bf00227183
doi: 10.1007/BF00227183 URL pmid: 8951412 |
[20] |
Grainger, C., Williams, D. M., & Lind, S. E. (2013). Online action monitoring and memory for self-performed actions in autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(5), 1193-1206. https://doi.org/10.1007/s10803-013-1987-4
URL pmid: 24193578 |
[21] |
Grainger, C., Williams, D. M., & Lind, S. E. (2016). Recognition memory and source memory in autism spectrum disorder: A study of the intention superiority and enactment effects. Autism, 21(7), 812-820. https://doi.org/10.1177/1362361316653364
doi: 10.1177/1362361316653364 URL pmid: 27335106 |
[22] | Grèzes, J., Costes, N., & Decety, J. (1999). The effects of learning and intention on the neural network involved in the perception of meaningless actions. Brain, 122(10), 1875-1887. https://doi.org/10.1093/brain/122.10.1875 |
[23] |
Gunduz Can, R., Schack, T., & Koester, D. (2017). Movement interferes with visuospatial working memory during the encoding: An ERP study. Frontiers in Psychology, 8, 871. https://doi.org/10.3389/fpsyg.2017.00871
URL pmid: 29416519 |
[24] |
Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923-925. https://doi.org/10.1038/nn.2596
URL pmid: 20622872 |
[25] |
Koester, D., Schack, T., & Westerholz, J. (2016). Neurophysiology of grasping actions: Evidence from ERPs. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01996
URL pmid: 28123372 |
[26] | Liu, S., & Wang, L. (2018). The association of motor information and verbal information: A new perspective on the mechanism of the SPT effect. Journal of Cognitive Psychology, 30(3), 321-335. https://doi.org/10.1080/20445911.2018.1443463 |
[27] | Liu, Y., Lu, X., Wu, F., Shen, M., & Gao, Z. (2019). Biological motion is stored independently from bound representation in working memory. Visual Cognition, 27(9-10), 701-713. https://doi.org/10.1080/13506285.2019.1638479 |
[28] | Logie, R. H. (1986). Visuo-spatial processing in working memory. The Quarterly Journal of Experimental Psychology Section A, 38(2), 229-247. https://doi.org/10.1080/14640748608401596 |
[29] |
Logie, R. H. (1995). Visuo-spatial working memory. Hove: Lawrence Erlbaum Associates.
doi: 10.1080/741940668 URL pmid: 8821083 |
[30] | Malhotra, P., Coulthard, E. J., & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain, 132(3), 645-660. https://doi.org/10.1093/brain/awn350 |
[31] |
Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27(3), 272-277. https://doi.org/10.1093/oxfordjournals.bmb. a070866
URL pmid: 4937273 |
[32] | Miyahara, M., Leeder, T., Francis, G., & Inghelbrecht, A. (2008). Does an instruction of a verbal labeling strategy for hand movements improve general motor coordination as well as the gestural performance? Clinical Case Studies, 7(3), 191-207. https://doi.org/10.1177/1534650107306876 |
[33] | Moar, I. T. (1978). Mental triangulation and the nature of internal representations (Unpublished doctorial dissertation). University of Cambridge. |
[34] |
Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210(5-6), 419-421. https://doi.org/10.1007/s00429-005-0039-z
URL pmid: 16222545 |
[35] |
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246-252. https://doi.org/10.1007/bf00227301
URL pmid: 8891654 |
[36] |
Rumiati, R. I., Weiss, P. H., Tessari, A., Assmus, A., Zilles, K., Herzog, H., & Fink, G. R. (2005). Common and differential neural mechanisms supporting imitation of meaningful and meaningless actions. Journal of Cognitive Neuroscience, 17(9), 1420-1431. https://doi.org/10.1162/0898929054985374
URL pmid: 16197695 |
[37] | Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225-260. https://doi.org/10.1037/h0076770 |
[38] | Scholl, B. J., Pylyshyn, Z. W., & Franconeri, S. L. (1999). When are featural and spatiotemporal properties encoded as a result of attentional allocation? Investigative Ophthalmology & Visual Science, 40(4), S797-S797. |
[39] |
Sdoia, S., Di Nocera, F., & Ferlazzo, F. (2019). Memory for positional movements as a component of the visuospatial working memory. Cognitive Processing, 20, 363-369. https://doi.org/10.1007/s10339-019-00917-y
URL pmid: 30953213 |
[40] |
Shah, D. S., Prados, J., Gamble, J., de Lillo, C., & Gibson, C. L. (2013). Sex differences in spatial memory using serial and search tasks. Behavioural Brain Research, 257, 90-99. https://doi.org/10.1016/j.bbr.2013.09.027
URL pmid: 24076150 |
[41] |
Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1332-1345. doi: 10.1037/a0036839
URL pmid: 24842069 |
[42] |
Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: Patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 40(3), 497-514. https://doi.org/10.1080/02724988843000041
doi: 10.1080/02724988843000041 URL |
[43] |
Smyth, M. M., & Pendleton, L. R. (1989). Working memory for movements. The Quarterly Journal of Experimental Psychology Section A, 41(2), 235-250. https://doi.org/10.1080/14640748908402363
doi: 10.1080/14640748908402363 URL |
[44] | Son, G., Oh, B. I., Kang, M. S., & Chong, S. C. (2020). Similarity-based clusters are representational units of visual working memory. Journal of Experimental Psychology Learning Memory and Cognition, 46(1), 46-59. https://doi.org/10.1037/xlm0000722 |
[45] |
Spiegel, M. A., Koester, D., & Schack, T. (2013). The functional role of working memory in the (re-)planning and execution of grasping movements. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1326-1339. https://doi.org/10.1037/a0031398
URL pmid: 23339349 |
[46] | Tarantino, V., de Sanctis, T., Straulino, E., Begliomini, C., & Castiello, U. (2014). Object size modulates fronto-parietal activity during reaching movements. European Journal of Neuroscience, 39(9), 1528-1537. https://doi.org/10.1111/ejn.12512 |
[47] |
Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences, 95(3), 883-890. https://doi.org/10.1073/pnas.95.3.883
doi: 10.1073/pnas.95.3.883 URL |
[48] |
Vogan, V. M., Francis, K. E., Morgan, B. R., Smith, M. L., & Taylor, M. J. (2018). Load matters: Neural correlates of verbal working memory in children with autism spectrum disorder. Journal of Neurodevelopmental Disorders, 10(1), 19. https://doi.org/10.1186/s11689-018-9236-y
URL pmid: 29950161 |
[49] |
Wickelgren, W. A. (1965). Short-term memory for phonemically similar lists. American Journal of Psychology, 78(4), 567-574. https://doi.org/10.2307/1420917
doi: 10.2307/1420917 URL |
[50] |
Williams, D. (2010). Theory of own mind in autism. Autism, 14(5), 474-494. https://doi.org/10.1177/1362361310366314
URL pmid: 20926458 |
[51] |
Wood, J. N. (2011). A core knowledge architecture of visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 357-381. https://doi.org/10.1037/a0021935
URL pmid: 21463083 |
[52] |
Wu, Y. C, & Coulson, S. (2014). A psychometric measure of working memory capacity for configured body movement. PLoS ONE, 9(1), e84834. https://doi.org/10.1371/journal.pone.0084834
URL pmid: 24498238 |
[53] |
Zhao, Y., Kuai, S., Zanto, T. P., & Ku, Y. (2019). Neural correlates underlying the precision of visual working memory. Neuroscience, 425, 301-311. https://doi.org/10.1016/j.neuroscience.2019.11.037
URL pmid: 31785351 |
[54] |
Zihl, J., & Heywood, C. A. (2015). The contribution of LM to the neuroscience of movement vision. Frontiers in Integrative Neuroscience, 9, 6. https://doi.org/10.3389/fnint.2015.00006
URL pmid: 26635551 |
[1] | 王思思; 库逸轩. 右后顶叶经颅直流电刺激提升高负荷下视觉空间工作记忆容量[J]. 心理科学进展, 2016, 24(Suppl.): 43-. |
[2] | 李松泽; 胡金生; 李骋诗; 王琦; 刘淑清; 康晓东; 崔丽 . 孤独症谱系障碍者的视觉−空间工作记忆缺陷及脑机制[J]. 心理科学进展, 2016, 24(7): 1050-1064. |
[3] | 王一峰;王荣燕;李红. 感数的认知机制:从注意到工作记忆[J]. 心理科学进展, 2011, 19(7): 967-975. |
[4] | 李雪冰;罗跃嘉. 空间及言语工作记忆任务的情绪效应:来自ERP/ fMRI的证据[J]. 心理科学进展, 2011, 19(2): 166-174. |
[5] | 陈玉英;隋光远;瞿彬. 自主控制眼跳:实验范式、神经机制和应用[J]. 心理科学进展, 2008, 16(1): 154-162. |
[6] | 潘毅;许百华;胡信奎. 视觉工作记忆在视觉搜索中的作用[J]. 心理科学进展, 2007, 15(5): 754-760. |
[7] | 罗良;刘兆敏;林崇德. 人类视空间工作记忆分离的证据与机制[J]. 心理科学进展, 2007, 15(3): 394-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||