心理科学进展 ›› 2025, Vol. 33 ›› Issue (1): 77-91.doi: 10.3724/SP.J.1042.2025.0077
张艳霞, 李晶
收稿日期:
2024-04-18
出版日期:
2025-01-15
发布日期:
2024-10-28
基金资助:
ZHANG Yanxia, LI Jing
Received:
2024-04-18
Online:
2025-01-15
Published:
2024-10-28
摘要: 科技的迅速发展使得人的行为越来越“自动化”, 借助逐向导航人们可以按照正确路线快速到达目的地, 然而如此高效率的寻路方式带来的可能是空间记忆的削弱。众多研究结果显示逐向导航辅助不利于空间知识的获取, 研究者们开始改进逐向导航或设计新的导航系统。在此基础上本文提出了逐向导航辅助对空间记忆的影响模型, 针对如何改进逐向导航提出相关建议。未来研究应改进大尺度环境下空间知识的测量方法, 探究逐向导航辅助削弱空间记忆的神经机制, 关注个体因素的影响以构建一个更全面的解释机制, 开发兼具寻路效率和空间知识获取的新导航系统。
中图分类号:
张艳霞, 李晶. (2025). 逐向导航辅助对大尺度环境下空间记忆的影响及改进方法. 心理科学进展 , 33(1), 77-91.
ZHANG Yanxia, LI Jing. (2025). The effect of turn-by-turn navigation on spatial memory in large-scale environments and ways to improve it. Advances in Psychological Science, 33(1), 77-91.
[1] 丁旭华. (2015). 浅析传统纸质地图的转型. [2] 马小凤, 李甜甜, 贾瑞红, 魏婕. (2022). 空间路线学习中的前向测试效应. [3] 石祝, 尚俊杰. (2024). 视频游戏对空间能力的影响与作用机制. [4] 许琴, 罗宇, 刘嘉. (2010). 方向感的加工机制及影响因素. [5] 张凤翔, 陈美璇, 蒲艺, 孔祥祯. (2023). 空间导航能力个体差异的多层次形成机制. [6] 张锦坤, 白学军, 杨丽娴. (2008). 国外关于测试效应的研究概述. [7] Afrooz A., White D.,& Parolin, B.(2018). Effects of active and passive exploration of the built environment on memory during wayfinding. [8] Aginsky V., Harris C., Rensink R.,& Beusmans, J.(1997). Two strategies for learning a route in a driving simulator. [9] Ahmadpoor N.,& Smith, A. D.(2020). Spatial knowledge acquisition and mobile maps: The role of environmental legibility. [10] Ahmadpoor N., Smith A. D.,& Heath, T.(2021). Rethinking legibility in the era of digital mobile maps: An empirical study. [11] Aslan I., Schwalm M., Baus J., Krüger A., & Schwartz T. (2006). Acquisition of spatial knowledge in location aware mobile pedestrian navigation systems. Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services(pp. 105-108). Association for Computing Machinery, New York. https://doi.org/10.1145/1152215.1152237 [12] Bakdash J. Z., Linkenauger S. A., & Proffitt D. (2008). Comparing decision-making and control for learning a virtual environment: Backseat drivers learn where they are going. [13] Ben-Elia,E.(2021). An exploratory real-world wayfinding experiment: A comparison of drivers’ spatial learning with a paper map vs. turn-by-turn audiovisual route guidance. [14] Brügger A., Richter K. -F., & Fabrikant S. I. (2018). Distributing attention between environment and navigation system to increase spatial knowledge acquisition during assisted wayfinding. In P. Fogliaroni, A. Ballatore, E. Clementini (Eds.), [15] Brügger A., Richter K. -F., & Fabrikant S. I. (2019). How does navigation system behavior influence human behavior? [16] Burnett, G. E., & Lee, K. (2005). The effect of vehicle navigation systems on the formation of cognitive maps. International Conference of Traffic and Transport Psychology(pp. 407-418). Elsevier, Oxford. https://doi.org/10.1016/B978-008044379-9/50188-6 [17] Chen W., Liu B., Li X., Wang P.,& Wang, B.(2020). Sex differences in spatial memory. [18] Cheng B., Lin E., Wunderlich A., Gramann K.,& Fabrikant, S. I.(2023). Using spontaneous eye blink-related brain activity to investigate cognitive load during mobile map-assisted navigation. [19] Cho K. W., Neely J. H., Crocco S.,& Vitrano, D.(2017). Testing enhances both encoding and retrieval for both tested and untested items. [20] Chrastil, E. R., & Warren, W. H. (2012). Active and passive contributions to spatial learning. [21] Clemenson G. D., Maselli A., Fiannaca A. J., Miller A., & Gonzalez-Franco M. (2021). Rethinking GPS navigation: Creating cognitive maps through auditory clues. [22] Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. [23] Dong W., Wu Y., Qin T., Bian X., Zhao Y., He Y., Xu Y.,& Yu, C.(2021). What is the difference between augmented reality and 2D navigation electronic maps in pedestrian wayfinding? [24] Erçevik Sönmez,B., & Erinsel Önder, D.(2019). The influence of GPS-based navigation systems on perception and image formation: A case study in urban environments. [25] Fajnerová I., Greguš D., Hlinka J., Nekovářová T., Škoch A., Zítka T., ... Horáček J. (2018). Could prolonged usage of GPS navigation implemented in augmented reality smart glasses affect hippocampal functional connectivity? [26] Fenech E. P., Drews F. A., & Bakdash J. Z. (2010). The effects of acoustic turn-by-turn navigation on wayfinding. [27] Gardony A. L., Brunyé T. T., Mahoney C. R.,& Taylor, H. A.(2013). How navigational aids impair spatial memory: Evidence for divided attention. [28] Gardony A. L., Brunyé T. T.,& Taylor, H. A.(2015). Navigational Aids and spatial memory impairment: The role of divided attention. [29] Goodman J., Brewster S., & Gray P. (2005). How can we best use landmarks to support older people in navigation? [30] Gramann K., Hoepner P.,& Karrer-Gauss, K.(2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. [31] He C.,& Hegarty, M.(2020). How anxiety and growth mindset are linked to navigation ability: Impacts of exploration and GPS use. [32] Hegarty M., Montello D. R., Richardson A. E., Ishikawa T.,& Lovelace, K.(2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. [33] Hegarty M., Richardson A. E., Montello D. R., Lovelace K., & Subbiah I. (2002). Development of a self-report measure of environmental spatial ability. [34] Hejtmánek L., Oravcová I., Motýl J., Horáček J.,& Fajnerová, I.(2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. [35] Hergan I.,& Umek, M.(2017). Comparison of children’s wayfinding, using paper map and mobile navigation. [36] Huang H., Mathis T.,& Weibel, R.(2022). Choose your own route - supporting pedestrian navigation without restricting the user to a predefined route. [37] Huang H., Schmidt M., & Gartner G. (2012). Spatial knowledge acquisition with mobile maps, augmented reality and voice in the context of GPS-based pedestrian navigation: Results from a field test. [38] Huston, V., & Hamburger, K. (2023). Navigation aid use and human wayfinding: How to engage people in active spatial learning. [39] Ishikawa, T. (2019). Satellite navigation and geospatial awareness: Long-term effects of using navigation tools on wayfinding and spatial orientation. [40] Ishikawa, T. (2021). Spatial thinking, cognitive mapping, and spatial awareness. [41] Ishikawa T., Fujiwara H., Imai O.,& Okabe, A.(2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. [42] Kapaj A., Lin E., & Lanini-Maggi, S. (2022). The effect of abstract vs. realistic 3d visualization on landmark and route knowledge acquisition. In A. Susanne (Series Ed.) & T. Ishikawa (Vol. Ed). [43] Kelly J. W., Carpenter S. K., & Sjolund L. A. (2015). Retrieval enhances route knowledge acquisition, but only when movement errors are prevented. [44] Kelly J. W., Lim A. F.,& Carpenter, S. K.(2022). Turn-by- turn route guidance does not impair route learning. [45] Knierim P., Maurer S., Wolf K., & Funk M. (2018, April). Quadcopter-projected in-situ navigation cues for improved location awareness. [46] Krüger A., Aslan I., & Zimmer H. (2004). The effects of mobile pedestrian navigation systems on the concurrent acquisition of route and survey knowledge. In S. Brewster & M. Dunlop (Eds.), [47] Kumar S., Hajela A., & Singh E. (2023). Legibility in a city: An overview of the factors affecting perceptions of way-finding in the built environment. In R. A. Khaddar, S. K. Singh, N. D. Kaushika, R. K. Tomar, S. K. Jain (Eds.), [48] Kuo T.-Y., Chang, Y. -J., & Chu, H. -K.(2023). Investigating four navigation aids for supporting navigator performance and independence in virtual reality. [49] Lakehal A., Lepreux S., Efstratiou C., Kolski C., & Nicolaou P. (2023). Spatial knowledge acquisition for pedestrian navigation: A comparative study between smartphones and AR glasses. [50] Lanini-Maggi,S., Hilton, C., & Fabrikant, S. I.(2023). Limiting the reliance on navigation assistance with navigation instructions containing emotionally salient narratives for confident wayfinding. [51] Leshed G., Velden T., Rieger O., Kot B., & Sengers P. (2008, April). In-car GPS navigation: Engagement with and disengagement from the environment. [52] Lin C. -H., Chen C. -M., & Lou Y. -C. (2014). Developing spatial orientation and spatial memory with a treasure hunting game. [53] Liu J., Singh A. K., Wunderlich A., Gramann K., & Lin C. -T. (2022). Redesigning navigational aids using virtual global landmarks to improve spatial knowledge retrieval. [54] Lu J., Han Y., Xin Y., Yue K., & Liu Y. (2021). Possibilities for designing enhancing spatial knowledge acquirements navigator: A User Study on the role of different contributors in impairing human spatial memory during navigation. In Y. Kitamura, A. Quigley, K. Isbister & T. Igarashi. [55] Lynch, K. (1960). The image of the city. Massachusetts: The MIT Press. [56] Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., & Frith C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. [57] Maguire E. A., Woollett K., & Spiers H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. [58] Martin-Gutierrez J., Luis Saorin J., Martin-Dorta N., & Contero M. (2009). Do video games improve spatial abilities of engineering students? [59] May, A. J., & Ross, T. (2006). Presence and quality of navigational landmarks: Effect on driver performance and implications for design. [60] Mazurkiewicz B., Kattenbeck M., & Giannopoulos I. (2023). Free choice navigation in the real world: giving back freedom to wayfinders. [61] McKinlay, R. (2016). Technology: Use or lose our navigation skills. [62] Miller, J., & Carlson, L. (2011). Selecting landmarks in novel environments. [63] Miola L., Meneghetti C., Muffato V.,& Pazzaglia, F.(2023). Orientation behavior in men and women: The relationship between gender stereotype, growth mindset, and spatial self-efficacy. [64] Muffato V., Borella E., Pazzaglia F., & Meneghetti C. (2022). Orientation experiences and navigation aid use: A self-report lifespan study on the role of age and visuospatial factors. [65] Murias K., Kwok K., Castillejo A. G., Liu I.,& Iaria, G.(2016). The effects of video game use on performance in a virtual navigation task. [66] Münzer S., Zimmer H. D., & Baus J. (2012). Navigation assistance: A trade-off between wayfinding support and configural learning support. [67] Münzer S., Zimmer H. D., Schwalm M., Baus J.,& Aslan, I.(2006). Computer-assisted navigation and the acquisition of route and survey knowledge. [68] Nazareth A., Huang X., Voyer D., & Newcombe N. (2019). A meta-analysis of sex differences in human navigation skills. [69] Parush A., Ahuvia S., & Erev I. (2007). Degradation in spatial knowledge acquisition when using automatic navigation systems. In S. Winter, M. Duckham, L. Kulik, & B. Kuipers (Eds.), [70] Pielot M., Poppinga B., Heuten W., & Boll S. (2012). PocketNavigator: Studying tactile navigation systems in-situ. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(pp. 3130-3140). Association for Computing Machinery, New York. https://doi.org/10.1145/2207676.2208728 [71] Qiu X., Yang Z., Yang J., Wang Q.,& Wang, D.(2023, January). Impact of AR navigation display methods on wayfinding performance and spatial knowledge acquisition. [72] Rauschnabel P. A., Felix R., Hinsch C., Shahab H.,& Alt, F.(2022). What is XR? Towards a framework for augmented and virtual reality. [73] Ruginski I. T.,Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E.(2019). GPS use negatively affects environmental learning through spatial transformation abilities. [74] Schade E., Savino G. -L., Niess J., & Schöning J. (2023). MapUncover: Fostering spatial exploration through gamification in mobile map apps. In A. Schmidt, K. Väänänen, T. Goyal, P. O. Kristensson, A. Peters, S. Mueller, J. R. Williamson & M. L. Wilson (Eds), [75] Schwering A., Krukar J., Li R., Anacta V. J.,& Fuest, S.(2017). Wayfinding through orientation. [76] Siegel A. W.,& White, S. H. (1975). The Development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior (Vol. 10, pp. 9-55). JAI Press. https://doi.org/10.1016/S0065-2407(08)60007-5 [77] Sugimoto M., Kusumi T., Nagata N.,& Ishikawa, T.(2022). Online mobile map effect: How smartphone map use impairs spatial memory. [78] Süzer, Ö. K., & Olguntürk, N. (2018). The aid of colour on visuospatial navigation of elderly people in a virtual polyclinic environment. [79] Taylor, N. (2009). Legibility and Aesthetics in Urban Design. [80] Topete A., He C., Protzko J., Schooler J., & Hegarty M. (2024). How is GPS used? Understanding navigation system use and its relation to spatial ability. [81] van Asselen M., Fritschy E., & Postma A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. [82] Velázquez R., Pissaloux E., Rodrigo P., Carrasco M., Giannoccaro N., & Lay-Ekuakille A. (2018). An outdoor navigation system for blind pedestrians using gps and tactile-foot feedback. [83] Wen W., Ishikawa T., & Sato T. (2011). Working memory in spatial knowledge acquisition: Differences in encoding processes and sense of direction. [84] Willis K. S., Hölscher C., Wilbertz G.,& Li, C.(2009). A comparison of spatial knowledge acquisition with maps and mobile maps. [85] Woollett K.,& Maguire, E. A.(2011). Acquiring “the knowledge” of london’s layout drives structural brain changes. [86] Woyciechowicz, A., & Shliselberg, R. (2005). Wayfinding in public transportation. [87] Wunderlich, A., & Gramann, K. (2018). Electrocortical evidence for long-term incidental spatial learning through modified navigation instructions. In S. Creem-Regehr, J. Schöning, & A. Klippel (Eds.), [88] Wunderlich, A., & Gramann, K. (2021a). Eye movement‐related brain potentials during assisted navigation in real- world environments. [89] Wunderlich A.,& Gramann, K.(2021b). Landmark-based navigation instructions improve incidental spatial knowledge acquisition in real-world environments. [90] Wunderlich A., Grieger S.,& Gramann, K.(2023). Landmark information included in turn-by-turn instructions induce incidental acquisition of lasting route knowledge. [91] Xu Y., Qin T., Wu Y., Yu C.,& Dong, W.(2022). How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? [92] Yan W., Li J., Mi C., Wang W., Xu Z., Xiong W., ... Wang, S.(2022). Does global positioning system-based navigation dependency make your sense of direction poor? A psychological assessment and eye-tracking study. [93] Yavuz E., He C., Gahnstrom C. J., Goodroe S., Coutrot A., Hornberger M., Hegarty M.,& Spiers, H. J.(2024). Video gaming, but not reliance on GPS, is associated with spatial navigation performance. [94] Yount Z. F., Kass S. J.,& Arruda, J. E.(2022). Route learning with augmented reality navigation aids. [95] Zhu L., Shen J., Zhou J., Stachoň Z., Hong S., & Wang X. (2022). Personalized landmark adaptive visualization method for pedestrian navigation maps: Considering user familiarity. |
[1] | 于平;徐晖;尹文娟;魏曙光;于萍. 网格细胞在空间记忆中的作用[J]. 心理科学进展, 2009, 17(6): 1228-1233. |
[2] | 牟炜民;赵民涛;李晓鸥. 人类空间记忆和空间巡航[J]. 心理科学进展, 2006, 14(4): 497-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||