[1] |
陈玉田, 陈睿, 李鹏. (2022). 工作记忆中“组块”概念的演化及理论模型. 心理科学进展, 30(12), 2708-2717.
doi: 10.3724/SP.J.1042.2022.02708
|
[2] |
程勇民. (2006). 运动水平、知识表征及其年龄对羽毛球竞赛情景中直觉性运动决策的影响. 体育科学, 26(1), 86-95.
|
[3] |
杜建政, 李明. (2006). CLARION模型:内隐与外显技能学习的整合. 心理科学进展, 24(6), 844-850.
|
[4] |
杜鹏飞, 李小勇, 高雅丽. (2021). 多模态视觉语言表征学习研究综述. 软件学报, 32(2), 327-348.
|
[5] |
付全. (2005). 信息量与认知风格对击剑运动员决策速度和准确性的影响. 体育科学, 25(8), 33-38.
|
[6] |
梁宁建. (2014). 当代认知心理学 (修订版). 上海: 上海教育出版社.
|
[7] |
刘扬, 孙彦. (2014). 行为决策中框架效应研究新思路——从风险决策到跨期决策, 从言语框架到图形框架. 心理科学进展, 22(8), 1205-1217.
doi: 10.3724/SP.J.1042.2014.01205
|
[8] |
陆颖之, 王小春, 周成林. (2023). 认知神经科学视角下冬奥心理科技攻关服务新体系的构建与应用. 上海体育学院学报, 47(11), 57-67.
|
[9] |
吕慧青, 王进. (2014). 运动技能学习效率的顿悟解释模型探索. 体育科学, 34(4), 30-40.
|
[10] |
孟繁莹, 耿家先, 李安民. (2022). 运动经验对乒乓球运动员无意识加工的影响:来自ERP和行为实验的证据. 中国体育科技, 58(6), 32-40.
|
[11] |
苗浩飞, 迟立忠. (2023). 动作视频游戏专业玩家的认知神经特征. 心理科学进展, 31(1), 127-144.
doi: 10.3724/SP.J.1042.2023.00127
|
[12] |
漆昌柱, 贺梦阳, 王浩宇. (2021). 运动专长的记忆痕迹:基于注意竞争优势的脑机制研究. 武汉体育学院学报, 55(2), 68-75.
|
[13] |
任占兵, 胡琳琳, 张远超, 徐敏, 李论雄, 夏丰光, 黄瑞旺. (2019). 运动技能专家脑可塑性研究进展:来自核磁共振成像的证据. 中国体育科技, 55(2), 3-18.
|
[14] |
史鹏, 王国动, 魏征, 孙金月, 章冬杨, 张铎耀. (2023). 足球运动员进攻战术预判决策的视觉搜索特征:空间工作记忆容量的影响. 中国体育科技, 59(5), 27-34.
|
[15] |
孙文芳, 王馨悦, 王长生, 赵明, 王斌. (2018). 专家运动员的视觉搜索特征:基于眼动研究的Meta分析. 天津体育学院学报, 33(4), 321-328.
|
[16] |
王晓莎, 毕彦超. (2019). 抽象概念语义表征的认知神经基础研究. 生理学报, 71(1), 117-126.
|
[17] |
王莹莹, 陆颖之, 杨甜甜, 顾楠, 周成林. (2020). 概念经验对乒乓球运动员动作加工的影响——一项ERP研究. 上海体育学院学报, 44(7), 69-76.
|
[18] |
魏高峡, 李佑发. (2012). 21世纪中国运动心理学的新方向:运动认知神经科学研究. 体育科学, 32(1), 54-63.
|
[19] |
叶浩生. (2021). 身体的意义:从现象学的视角看体育运动的认识论价值. 体育科学, 41(1), 83-88.
|
[20] |
殷融, 叶浩生. (2014). 多元表征假设:概念表征机制的新观点. 心理科学, 37(2), 483-489.
|
[21] |
于志华, 章建成, 黄银华, 李岩峰. (2011). 类比学习与外显学习的不同组合方式对不同性质网球技能学习的影响——从闭锁性和开放性技能的视角. 体育科学, 31(5), 65-74.
|
[22] |
张恩涛, 方杰, 林文毅, 罗俊龙. (2013). 抽象概念表征的具身认知观. 心理科学进展, 21(3), 429-436.
doi: 10.3724/SP.J.1042.2013.00429
|
[23] |
张怡, 周成林. (2012). 网球运动员击球线路预判能力及ERP特征研究. 体育科学, 32(12), 24-34.
|
[24] |
赵冰洁, 张琪涵, 陈怡馨, 章鹏, 白学军. (2022). 智力运动专家领域内知觉与记忆的加工特点及其机制. 心理科学进展, 30(9), 1993-2003.
doi: 10.3724/SP.J.1042.2022.01993
|
[25] |
赵祁伟, 陆颖之, 周成林. (2020). 新兴技术融合发展下竞技运动心理学研究进展、实践与展望. 上海体育学院学报, 44(11), 18-27.
|
[26] |
周成林, 刘微娜. (2010). 竞技比赛过程中认知优势现象的诠释与思考. 体育科学, 30(10), 13-22.
|
[27] |
Al-Tahan, H., & Mohsenzadeh, Y. (2021). Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder. PLoS Computational Biology, 17(3), e1008775.
|
[28] |
Bhandari, A., & Badre, D. (2018). Learning and transfer of working memory gating policies. Cognition, 172, 89-100.
doi: S0010-0277(17)30303-7
pmid: 29245108
|
[29] |
Bilalić, M. (2017). The neuroscience of expertise. Cambridge, United Kingdom: Cambridge University Press.
|
[30] |
Craik, F. I. M. (2020). Remembering: An activity of mind and brain. Annual Review of Psychology, 71, 1-24.
doi: 10.1146/annurev-psych-010419-051027
pmid: 31283427
|
[31] |
Dasgupta, I., & Gershman, S. J. (2021). Memory as a computational resource. Trends in Cognitive Sciences, 25(3), 240-251.
doi: 10.1016/j.tics.2020.12.008
pmid: 33454217
|
[32] |
Du, Y., Krakauer, J. W., & Haith, A. M. (2022). The relationships between habits and motor skills in humans. Trends in Cognitive Sciences, 26(5), 371-387.
doi: 10.1016/j.tics.2022.02.002
URL
|
[33] |
Ericsson, K. A., Hoffman, R. R., Kozbelt, A., & Williams, A. M. (2018). The Cambridge handbook of expertise and expert performance. Cambridge, United Kingdom: Cambridge University Press.
|
[34] |
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211-245.
pmid: 7740089
|
[35] |
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363-406.
doi: 10.1037/0033-295X.100.3.363
URL
|
[36] |
Garner, K. G., & Dux, P. E. (2023). Knowledge generalization and the costs of multitasking. Nature Reviews Neuroscience, 24(2), 98-112.
doi: 10.1038/s41583-022-00653-x
|
[37] |
Gershman, S. J. (2019). The generative adversarial brain. Frontiers in Artificial Intelligence, 2, 18.
doi: 10.3389/frai.2019.00018
pmid: 33733107
|
[38] |
Gerson, S. A., Meyer, M., Hunnius, S., & Bekkering, H. (2017). Unravelling the contributions of motor experience and conceptual knowledge in action perception: A training study. Scientific Reports, 7, 46761.
doi: 10.1038/srep46761
pmid: 28440338
|
[39] |
Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618-630.
doi: S1364-6613(17)30086-4
pmid: 28551107
|
[40] |
Haith, A. M., & Krakauer, J. W. (2018). The multiple effects of practice: Skill, habit and reduced cognitive load. Current Opinion in Behavioral Sciences, 20, 196-201.
doi: 10.1016/j.cobeha.2018.01.015
pmid: 30944847
|
[41] |
Helsen, W. F., Starkes, J. L., & Hodges, N. J. (1998). Team sports and the theory of deliberate practice. Journal of Sport & Exercise Psychology, 20(1), 12-34.
|
[42] |
Ho, M. K., Abel, D., Correa, C. G., Littman, M. L., Cohen, J. D., & Griffiths, T. L. (2022). People construct simplified mental representations to plan. Nature, 606(7912), 129-136.
doi: 10.1038/s41586-022-04743-9
|
[43] |
Huys, Q. J. M., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S. J., … Roiser, J. P. (2015). Interplay of approximate planning strategies. Proceedings of the National Academy of Sciences USA, 112(10), 3098-3103.
doi: 10.1073/pnas.1414219112
URL
|
[44] |
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
doi: 10.1126/science.aaa8415
pmid: 26185243
|
[45] |
Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences USA, 105(31), 10687-10692.
doi: 10.1073/pnas.0802631105
URL
|
[46] |
Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models of inductive reasoning. Psychological Review, 116(1), 20-58.
doi: 10.1037/a0014282
pmid: 19159147
|
[47] |
Krakauer, J. W. (2019). The intelligent reflex. Philosophical Psychology, 32(5), 823-831.
doi: 10.1080/09515089.2019.1607281
|
[48] |
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332-1338.
doi: 10.1126/science.aab3050
pmid: 26659050
|
[49] |
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral & Brain Sciences, 40, e253.
|
[50] |
Lansdell, B. J., & Kording, K. P. (2019). Towards learning- to-learn. Current Opinion in Behavioral Sciences, 29, 45-50.
doi: 10.1016/j.cobeha.2019.04.005
URL
|
[51] |
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
doi: 10.1038/nature14539
|
[52] |
Macnamara, B. N., Hambrick, D. Z., & Oswald, F. L. (2014). Deliberate practice and performance in music, games, sports, education, and professions: A meta-analysis. Psychological Science, 25(8), 1608-1618.
doi: 10.1177/0956797614535810
pmid: 24986855
|
[53] |
Macnamara, B. N., Moreau, D., & Hambrick, D. Z. (2016). The relationship between deliberate practice and performance in sports: A meta-analysis. Perspectives on Psychological Science, 11(3), 333-350.
doi: 10.1177/1745691616635591
pmid: 27217246
|
[54] |
Mattar, M. G., & Lengyel, M. (2022). Planning in the brain. Neuron, 110(6), 914-934.
doi: 10.1016/j.neuron.2021.12.018
pmid: 35041804
|
[55] |
McClelland, J. L. (2022). Capturing advanced human cognitive abilities with deep neural networks. Trends in Cognitive Sciences, 26(12), 1047-1050.
doi: 10.1016/j.tics.2022.09.018
pmid: 36335015
|
[56] |
Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449-461.
doi: S1364-6613(17)30053-0
pmid: 28454719
|
[57] |
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews of Neuroscience, 6(7), 576-582.
doi: 10.1038/nrn1706
|
[58] |
Radulescu, A., Niv, Y., & Ballard, I. (2019). Holistic reinforcement learning: The role of structure and attention. Trends in Cognitive Sciences, 23(4), 278-292.
doi: S1364-6613(19)30036-1
pmid: 30824227
|
[59] |
Radulescu, A., Shin, Y. S., & Niv, Y. (2021). Human representation learning. Annual Review of Neuroscience, 44, 253-273.
doi: 10.1146/annurev-neuro-092920-120559
pmid: 33730510
|
[60] |
Sabah, K., Meiran, N., & Dreisbach, G. (2021). Examining the trainability and transferability of working-memory gating policies. Journal of Cognitive Enhancement, 5, 330-342.
doi: 10.1007/s41465-021-00205-8
|
[61] |
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279-1285.
|
[62] |
Tsetsos, K. (2023). Unlocking a new dimension in the speed-accuracy trade-off. Trends in Cognitive Sciences, 27(6), 510-511.
doi: 10.1016/j.tics.2023.03.005
URL
|
[63] |
Vaidya, A. R., & Badre, D. (2022). Abstract task representations for inference and control. Trends in Cognitive Sciences, 26(6), 484-498.
doi: 10.1016/j.tics.2022.03.009
pmid: 35469725
|
[64] |
Ward, P., Hodges, N. J., Starkes, J. L., & Williams, M. A. (2007). The road to excellence: Deliberate practice and the development of expertise. High Ability Studies, 18(2), 119-153.
doi: 10.1080/13598130701709715
URL
|
[65] |
Williams, A. M., & Ford, P. R. (2008). Expertise and expert performance in sport. International Review of Sport & Exercise Psychology, 1(1), 4-18.
|
[66] |
Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356-365.
doi: 10.1038/nn.4244
pmid: 26906502
|
[67] |
Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nature Reviews of Neuroscience, 10(8), 585-596.
doi: 10.1038/nrn2672
|