心理科学进展 ›› 2024, Vol. 32 ›› Issue (4): 616-626.doi: 10.3724/SP.J.1042.2024.00616
收稿日期:
2023-07-19
出版日期:
2024-04-15
发布日期:
2024-02-29
通讯作者:
王小娟,杨剑峰
E-mail:wangxj@snnu.edu.cn;yangjf@snnu.edu.cn
基金资助:
ZHANG Xiangyang, WANG Xiaojuan(), YANG Jianfeng()
Received:
2023-07-19
Online:
2024-04-15
Published:
2024-02-29
Contact:
WANG Xiaojuan, YANG Jianfeng
E-mail:wangxj@snnu.edu.cn;yangjf@snnu.edu.cn
摘要:
大脑左侧角回是语言认知神经科学研究发现的一个重要语义加工脑区。该脑区在词汇语义加工中的具体功能还没有得到统一的认识, 成为研究者广泛关注的热点和焦点问题。结构上, 角回位于颞叶、枕叶和顶叶交接区, 并且具有广泛的白质纤维束连接, 这决定了它可能具有跨区域信息整合的功能。它在高水平语义表征、模态和特征信息联合表征、语义关系表征以及语义整合加工中参与激活, 可能是语义表征和加工的信息“聚合区”。然而, 左侧角回在语义表征枢纽、语义执行控制加工、默认模式网络的语义加工三方面还存在功能争论, 未来研究需要综合考虑左侧角回的解剖结构基础及其与广泛脑区连接的特点, 对角回子区域的功能进行深入细致地探讨。
中图分类号:
张向阳, 王小娟, 杨剑峰. (2024). 左侧角回在词汇语义加工中的作用. 心理科学进展 , 32(4), 616-626.
ZHANG Xiangyang, WANG Xiaojuan, YANG Jianfeng. (2024). The role of the left Angular Gyrus in lexical-semantic processing. Advances in Psychological Science, 32(4), 616-626.
[1] |
Beauchamp, M. S., & Martin, A. (2007). Grounding object concepts in perception and action: Evidence from fMRI studies of tools. Cortex, 43(3), 461-468.
pmid: 17533768 |
[2] | Bedny, M., Dravida, S., & Saxe, R. (2014). Shindigs, brunches, and rodeos: The neural basis of event words. Cognitive, Affective, & Behavioral Neuroscience, 14(3), 891-901. |
[3] |
Binder, J. R. (2016). In defense of abstract conceptual representations. Psychonomic Bulletin and Review, 23(4), 1096-1108.
doi: 10.3758/s13423-015-0909-1 URL |
[4] |
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527-536.
doi: 10.1016/j.tics.2011.10.001 pmid: 22001867 |
[5] |
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[6] |
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state: A functional MRI study. Journal of Cognitive Neuroscience, 11(1), 80-93.
doi: 10.1162/089892999563265 pmid: 9950716 |
[7] |
Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. Neuroimage, 71, 175-186.
doi: 10.1016/j.neuroimage.2013.01.006 pmid: 23333416 |
[8] |
Boylan, C., Trueswell, J. C., & Thompson-Schill, S. L. (2017). Relational vs. attributive interpretation of nominal compounds differentially engages angular gyrus and anterior temporal lobe. Brain and Language, 169, 8-21.
doi: S0093-934X(15)30147-4 pmid: 28236762 |
[9] |
Carota, F., Nili, H., Pulvermuller, F., & Kriegeskorte, N. (2021). Distinct fronto-temporal substrates of distributional and taxonomic similarity among words: Evidence from RSA of BOLD signals. Neuroimage, 224, 117408.
doi: 10.1016/j.neuroimage.2020.117408 URL |
[10] |
Caspers, S., Eickhoff, S. B., Geyer, S., Scheperjans, F., Mohlberg, H., Zilles, K., & Amunts, K. (2008). The human inferior parietal lobule in stereotaxic space. Brain Structure and Function, 212(6), 481-495.
doi: 10.1007/s00429-008-0195-z URL |
[11] |
Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability. Neuroimage, 33(2), 430-448.
doi: 10.1016/j.neuroimage.2006.06.054 pmid: 16949304 |
[12] |
Corbett, F., Jefferies, E., & Ralph, M. A. (2009). Exploring multimodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use. Neuropsychologia, 47(13), 2721-2731.
doi: 10.1016/j.neuropsychologia.2009.05.020 pmid: 19500608 |
[13] | Coutanche, M. N., Solomon, S. H., & Thompson-Schill, S. L. (2020). Conceptual combination. In D.Poeppel, G. R.Mangun, & M. S.Gazzaniga (Eds.), The cognitive neurosciences (6th ed. pp. 827-836). Boston, MA: MIT Press. |
[14] |
Croce, P., Spadone, S., Zappasodi, F., Baldassarre, A., & Capotosto, P. (2021). rTMS affects EEG microstates dynamic during evoked activity. Cortex, 138, 302-310.
doi: 10.1016/j.cortex.2021.02.014 pmid: 33774580 |
[15] |
Cummine, J., Boliek, C. A., McKibben, T., Jaswal, A., & Joanisse, M. F. (2019). Transcranial direct current stimulation (tDCS) selectively modulates semantic information during reading. Brain and Language, 188, 11-17.
doi: S0093-934X(18)30096-8 pmid: 30481690 |
[16] |
Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1-2), 25-62.
pmid: 2691184 |
[17] |
Davey, J., Cornelissen, P. L., Thompson, H. E., Sonkusare, S., Hallam, G., Smallwood, J., & Jefferies, E. (2015). Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. Journal of Neuroscience, 35(46), 15230-15239.
doi: 10.1523/JNEUROSCI.4705-14.2015 pmid: 26586812 |
[18] |
Desai, R. H., Tadimeti, U., & Riccardi, N. (2023). Proper and common names in the semantic system. Brain Structure and Function, 228(1), 239-254.
doi: 10.1007/s00429-022-02593-9 |
[19] |
de Zubicaray, G. I., Hansen, S., & McMahon, K. L. (2013). Differential processing of thematic and categorical conceptual relations in spoken word production. Journal of Experimental Psychology: General, 142(1), 131.
doi: 10.1037/a0028717 URL |
[20] |
Farahibozorg, S. R., Henson, R. N., Woollams, A. M., & Hauk, O. (2022). Distinct roles for the anterior temporal lobe and angular gyrus in the spatio-temporal cortical semantic network. Cerebral Cortex, 32(20), 4549-4564
doi: 10.1093/cercor/bhab501 URL |
[21] |
Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., Conant, L. L., & Seidenberg, M. S. (2015). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26(5), 2018-2034.
doi: 10.1093/cercor/bhv020 URL |
[22] | Fernandino, L., Tong, J. Q., Conant, L. L., Humphries, C. J., & Binder, J. R. (2022). Decoding the information structure underlying the neural representation of concepts. Proceedings of the National Academy of Sciences, 119(6), e2108091119. |
[23] |
Frey, S., Campbell, J. S., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 28(45), 11435-11444.
doi: 10.1523/JNEUROSCI.2388-08.2008 pmid: 18987180 |
[24] |
Frost, S. J., Mencl, W. E., Sandak, R., Moore, D. L., Rueckl, J. G., Katz, L., Fulbright, R. K., & Pugh, K. R. (2005). A functional magnetic resonance imaging study of the tradeoff between semantics and phonology in reading aloud. Neuroreport, 16(6), 621-624.
pmid: 15812320 |
[25] |
Geng, J., & Schnur, T. T. (2016). Role of features and categories in the organization of object knowledge: Evidence from adaptation fMRI. Cortex, 78, 174-194.
doi: S0010-9452(16)00009-5 pmid: 27085513 |
[26] |
Graessner, A., Zaccarella, E., & Hartwigsen, G. (2021). Differential contributions of left-hemispheric language regions to basic semantic composition. Brain Structure and Function, 226(2), 501-518.
doi: 10.1007/s00429-020-02196-2 |
[27] |
Graves, W. W., Boukrina, O., Mattheiss, S. R., Alexander, E. J., & Baillet, S. (2017). Reversing the standard neural signature of the word-nonword distinction. Journal of Cognitive Neuroscience, 29(1), 79-94.
pmid: 27574917 |
[28] |
Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural systems for reading aloud: A multiparametric approach. Cerebral Cortex, 20(8), 1799-1815.
doi: 10.1093/cercor/bhp245 URL |
[29] |
Graves, W. W., Purcell, J., Rothlein, D., Bolger, D. J., Rosenberg-Lee, M., & Staples, R. (2023). Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Structure and Function, 228(1), 255-271.
doi: 10.1007/s00429-022-02590-y |
[30] |
Guevara, M., Guevara, P., Roman, C., & Mangin, J. F. (2020). Superficial white matter: A review on the dMRI analysis methods and applications. Neuroimage, 212, 116673.
doi: 10.1016/j.neuroimage.2020.116673 URL |
[31] |
Hart, J., & Gordon, B. (1990). Delineation of single‐word semantic comprehension deficits in aphasia, with anatomical correlation. Annals of Neurology, 27(3), 226-231.
doi: 10.1002/ana.410270303 pmid: 2327733 |
[32] |
Humphreys, G. F., Hoffman, P., Visser, M., Binney, R. J., & Lambon Ralph, M. A. (2015). Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proceedings of the National Academy of Sciences, 112(25), 7857-7862.
doi: 10.1073/pnas.1422760112 URL |
[33] |
Humphreys, G. F., & Lambon Ralph, M. A. (2017). Mapping domain-selective and counterpointed domain-general higher cognitive functions in the lateral parietal cortex: Evidence from fMRI comparisons of difficulty-varying semantic versus visuo-spatial tasks, and functional connectivity analyses. Cerebral Cortex, 27(8), 4199-4212.
doi: 10.1093/cercor/bhx107 URL |
[34] |
Humphreys, G. F., Lambon Ralph, M. A., & Simons, J. S. (2021). A unifying account of angular gyrus contributions to episodic and semantic cognition. Trends in Neurosciences, 44(6), 452-463.
doi: 10.1016/j.tins.2021.01.006 pmid: 33612312 |
[35] |
Jackson, R. L. (2021). The neural correlates of semantic control revisited. Neuroimage, 224, 117444.
doi: 10.1016/j.neuroimage.2020.117444 URL |
[36] |
Jackson, R. L., Cloutman, L. L., & Lambon Ralph, M. A. (2019). Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex, 113, 279-297.
doi: S0010-9452(19)30001-2 pmid: 30716610 |
[37] |
Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49(3), 611-625.
doi: 10.1016/j.cortex.2012.10.008 pmid: 23260615 |
[38] |
Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129(Pt 8), 2132-2147.
doi: 10.1093/brain/awl153 pmid: 16815878 |
[39] |
Jefferies, E., Patterson, K., & Ralph, M. A. L. (2008). Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia, 46(2), 649-658.
doi: 10.1016/j.neuropsychologia.2007.09.007 pmid: 17961610 |
[40] |
Jung, J., & Lambon Ralph, M. A. (2023). Distinct but cooperating brain networks supporting semantic cognition. Cereb Cortex, 33(5), 2021-2036.
doi: 10.1093/cercor/bhac190 URL |
[41] |
Kuhnke, P., Beaupain, M. C., Arola, J., Kiefer, M., & Hartwigsen, G. (2023). Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neuroscience and Biobehavioral Reviews, 144, 104994.
doi: 10.1016/j.neubiorev.2022.104994 URL |
[42] |
Kuhnke, P., Beaupain, M. C., Cheung, V. K. M., Weise, K., Kiefer, M., & Hartwigsen, G. (2020). Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. Neuroimage, 219, 117041.
doi: 10.1016/j.neuroimage.2020.117041 URL |
[43] |
Kuhnke, P., Chapman, C. A., Cheung, V. K. M., Turker, S., Graessner, A., Martin, S., Williams, K. A., & Hartwigsen, G. (2022). The role of the angular gyrus in semantic cognition: A synthesis of five functional neuroimaging studies. Brain Structure and Function, 228(1), 273-291.
doi: 10.1007/s00429-022-02493-y |
[44] |
Kuhnke, P., Kiefer, M., & Hartwigsen, G. (2020). Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cerebral Cortex, 30(7), 3938-3959.
doi: 10.1093/cercor/bhaa010 URL |
[45] |
Kuhnke, P., Kiefer, M., & Hartwigsen, G. (2021). Task-dependent functional and effective connectivity during conceptual processing. Cerebral Cortex, 31(7), 3475-3493.
doi: 10.1093/cercor/bhab026 URL |
[46] |
Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42-55.
doi: 10.1038/nrn.2016.150 pmid: 27881854 |
[47] |
Lewis, G. A., Poeppel, D., & Murphy, G. L. (2015). The neural bases of taxonomic and thematic conceptual relations: An MEG study. Neuropsychologia, 68, 176-189.
doi: 10.1016/j.neuropsychologia.2015.01.011 pmid: 25582406 |
[48] |
Lin, N., Wang, X., Xu, Y., Wang, X., Hua, H., Zhao, Y., & Li, X. (2018). Fine subdivisions of the semantic network supporting social and sensory-motor semantic processing. Cerebral Cortex, 28(8), 2699-2710.
doi: 10.1093/cercor/bhx148 URL |
[49] |
Longo, F., Braun, M., Hutzler, F., & Richlan, F. (2022). Impaired semantic categorization during transcranial direct current stimulation of the left and right inferior parietal lobule. Journal of Neurolinguistics, 62, 101058.
doi: 10.1016/j.jneuroling.2022.101058 URL |
[50] |
Makris, N., Papadimitriou, G. M., Kaiser, J. R., Sorg, S., Kennedy, D. N., & Pandya, D. N. (2009). Delineation of the middle longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 19(4), 777-785.
doi: 10.1093/cercor/bhn124 URL |
[51] |
Mars, R. B., Jbabdi, S., Sallet, J., O'Reilly, J. X., Croxson, P. L., Olivier, E.,... Rushworth, M. F. (2011). Diffusion- weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. Journal of Neuroscience, 31(11), 4087-4100.
doi: 10.1523/JNEUROSCI.5102-10.2011 URL |
[52] |
Martin, A. (2016). GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin and Review, 23(4), 979-990.
doi: 10.3758/s13423-015-0842-3 URL |
[53] |
Martin, S., Saur, D., & Hartwigsen, G. (2022). Age- dependent contribution of domain-general networks to semantic cognition. Cerebral Cortex, 32(4), 870-890.
doi: 10.1093/cercor/bhab252 URL |
[54] |
Mattheiss, S. R., Levinson, H., & Graves, W. W. (2018). Duality of function: Activation for meaningless nonwords and semantic codes in the same brain areas. Cerebral Cortex, 28(7), 2516-2524.
doi: 10.1093/cercor/bhy053 URL |
[55] |
Mesulam, M.-M. (1998). From sensation to cognition. Brain, 121(6), 1013-1052.
doi: 10.1093/brain/121.6.1013 URL |
[56] |
Mirman, D., & Graziano, K. M. (2012). Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension. Neuropsychologia, 50(8), 1990-1997.
doi: 10.1016/j.neuropsychologia.2012.04.024 pmid: 22571932 |
[57] |
Mirman, D., Landrigan, J. F., & Britt, A. E. (2017). Taxonomic and thematic semantic systems. Psychological Bulletin, 143(5), 499-520.
doi: 10.1037/bul0000092 pmid: 28333494 |
[58] |
Molinaro, N., Paz-Alonso, P. M., Duñabeitia, J. A., & Carreiras, M. (2015). Combinatorial semantics strengthens angular-anterior temporal coupling. Cortex, 65, 113-127.
doi: 10.1016/j.cortex.2015.01.004 pmid: 25682046 |
[59] |
Nakajima, R., Kinoshita, M., Shinohara, H., & Nakada, M. (2020). The superior longitudinal fascicle: Reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging and Behavior, 14(6), 2817-2830.
doi: 10.1007/s11682-019-00187-4 |
[60] |
Niu, M., & Palomero-Gallagher, N. (2023). Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Structure and Function, 228(1), 47-61.
doi: 10.1007/s00429-022-02509-7 |
[61] |
Noonan, K. A., Jefferies, E., Corbett, F., & Ralph, M. A. L. (2010). Elucidating the nature of deregulated semantic cognition in semantic aphasia: Evidence for the roles of prefrontal and temporo-parietal cortices. Journal of Cognitive Neuroscience, 22(7), 1597-1613.
doi: 10.1162/jocn.2009.21289 pmid: 19580383 |
[62] |
Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25(11), 1824-1850.
doi: 10.1162/jocn_a_00442 pmid: 23859646 |
[63] |
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976-987.
doi: 10.1038/nrn2277 pmid: 18026167 |
[64] |
Petit, L., Ali, K. M., Rheault, F., Bore, A., Cremona, S., Corsini, F., De Benedictis, A., Descoteaux, M., & Sarubbo, S. (2023). The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Structure and Function, 228(1), 103-120.
doi: 10.1007/s00429-022-02551-5 |
[65] |
Price, A. R., Bonner, M. F., Peelle, J. E., & Grossman, M. (2015). Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. Journal of Neuroscience, 35(7), 3276-3284.
doi: 10.1523/JNEUROSCI.3446-14.2015 pmid: 25698762 |
[66] |
Price, A. R., Peelle, J. E., Bonner, M. F., Grossman, M., & Hamilton, R. H. (2016). Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation. Journal of Neuroscience, 36(13), 3829-3838.
doi: 10.1523/JNEUROSCI.3120-15.2016 pmid: 27030767 |
[67] | Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New Youk Academy of Sciences, 1191(1), 62-88. |
[68] |
Pylkkänen, L. (2019). The neural basis of combinatory syntax and semantics. Science, 366(6461), 62-66.
doi: 10.1126/science.aax0050 pmid: 31604303 |
[69] | Pylkkänen, L. (2020). Neural basis of basic composition: What we have learned from the red-boat studies and their extensions. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1791), 20190299. |
[70] |
Rahimi, S., Farahibozorg, S. R., Jackson, R., & Hauk, O. (2022). Task modulation of spatiotemporal dynamics in semantic brain networks: An EEG/MEG study. Neuroimage, 246, 118768.
doi: 10.1016/j.neuroimage.2021.118768 URL |
[71] |
Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38, 433-447.
doi: 10.1146/annurev-neuro-071013-014030 pmid: 25938726 |
[72] |
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682.
doi: 10.1073/pnas.98.2.676 URL |
[73] | Roxbury, T., McMahon, K., & Copland, D. A. (2014). An fMRI study of concreteness effects in spoken word recognition. Behavioral and Brain Functions, 10(1), 34. |
[74] |
Rundle, M. M., Coch, D., Connolly, A. C., & Granger, R. H. (2018). Dissociating frequency and animacy effects in visual word processing: An fMRI study. Brain and Language, 183, 54-63.
doi: S0093-934X(17)30186-4 pmid: 29940339 |
[75] |
Rushworth, M. F., Behrens, T. E., & Johansen-Berg, H. (2006). Connection patterns distinguish 3 regions of human parietal cortex. Cerebral Cortex, 16(10), 1418-1430.
doi: 10.1093/cercor/bhj079 pmid: 16306320 |
[76] |
Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. Neuroimage, 27(1), 188-200.
doi: 10.1016/j.neuroimage.2005.04.012 pmid: 15893940 |
[77] |
Sarubbo, S., De Benedictis, A., Maldonado, I. L., Basso, G., & Duffau, H. (2013). Frontal terminations for the inferior fronto-occipital fascicle: Anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Structure and Function, 218(1), 21-37.
doi: 10.1007/s00429-011-0372-3 URL |
[78] |
Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Brecher, A., Faseyitan, O. K., Dell, G. S., Mirman, D., & Coslett, H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proceedings of the National Academy of Sciences, 108(20), 8520-8524.
doi: 10.1073/pnas.1014935108 URL |
[79] |
Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist, 19(1), 43-61.
doi: 10.1177/1073858412440596 pmid: 22547530 |
[80] |
Seghier, M. L. (2022). Multiple functions of the angular gyrus at high temporal resolution. Brain Structure and Function, 228(1), 7-46.
doi: 10.1007/s00429-022-02512-y |
[81] |
Seghier, M. L., Fagan, E., & Price, C. J. (2010). Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. The Journal of Neuroscience, 30(50), 16809-16817.
doi: 10.1523/JNEUROSCI.3377-10.2010 URL |
[82] |
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage, 53(1), 303-317.
doi: 10.1016/j.neuroimage.2010.06.016 pmid: 20600998 |
[83] |
Taylor, J. S., Rastle, K., & Davis, M. H. (2014). Interpreting response time effects in functional imaging studies. Neuroimage, 99, 419-433.
doi: 10.1016/j.neuroimage.2014.05.073 pmid: 24904992 |
[84] |
Taylor, K. I., Stamatakis, E. A., & Tyler, L. K. (2009). Crossmodal integration of object features: Voxel-based correlations in brain-damaged patients. Brain, 132(Pt 3), 671-683.
doi: 10.1093/brain/awn361 pmid: 19190042 |
[85] |
Tong, J., Binder, J. R., Humphries, C., Mazurchuk, S., Conant, L. L., & Fernandino, L. (2022). A distributed network for multimodal experiential representation of concepts. Journal of Neuroscience, 42(37), 7121-7130.
doi: 10.1523/JNEUROSCI.1243-21.2022 URL |
[86] |
Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5, 1.
doi: 10.3389/fnsys.2011.00001 pmid: 21347218 |
[87] |
Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: Evidence from functional and structural connectivity. Cerebral Cortex, 20(11), 2636-2646.
doi: 10.1093/cercor/bhq011 URL |
[88] |
Ulrich, M., Harpaintner, M., Trumpp, N. M., Berger, A., & Kiefer, M. (2023). Academic training increases grounding of scientific concepts in experiential brain systems. Cerebral Cortex, 33(9), 5646-5657.
doi: 10.1093/cercor/bhac449 URL |
[89] |
Vavassori, L., Sarubbo, S., & Petit, L. (2021). Hodology of the superior longitudinal system of the human brain: A historical perspective, the current controversies, and a proposal. Brain Structure and Function, 226(5), 1363-1384.
doi: 10.1007/s00429-021-02265-0 |
[90] | Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Humman Brain Mapping, 31(10), 1459-1468. |
[91] |
Wang, X., Yang, J., Shu, H., & Zevin, J. D. (2011). Left fusiform BOLD responses are inversely related to word-likeness in a one-back task. Neuroimage, 55(3), 1346-1356.
doi: 10.1016/j.neuroimage.2010.12.062 pmid: 21216293 |
[92] |
Wang, X., Zhao, R., Zevin, J. D., & Yang, J. (2016). The neural correlates of the interaction between semantic and phonological processing for Chinese character reading. Frontiers in Psychology, 7, 947.
doi: 10.3389/fpsyg.2016.00947 pmid: 27445914 |
[93] |
Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011). Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. Neuroimage, 54(4), 3057-3066.
doi: 10.1016/j.neuroimage.2010.10.039 pmid: 20965253 |
[94] |
Xu, Y., He, Y., & Bi, Y. (2017). A tri-network model of human semantic processing. Frontiers in psychology, 8, 1538.
doi: 10.3389/fpsyg.2017.01538 pmid: 28955266 |
[95] |
Xu, Y., Lin, Q., Han, Z., He, Y., & Bi, Y. (2016). Intrinsic functional network architecture of human semantic processing: Modules and hubs. Neuroimage, 132, 542-555.
doi: S1053-8119(16)00200-7 pmid: 26973170 |
[96] |
Xu, Y., Wang, X., Wang, X., Men, W., Gao, J. H., & Bi, Y. (2018). Doctor, Teacher, and Stethoscope: Neural representation of different types of semantic relations. Journal of Neuroscience, 38(13), 3303-3317.
doi: 10.1523/JNEUROSCI.2562-17.2018 pmid: 29476016 |
[97] |
Yakar, F., Celtikci, P., Dogruel, Y., Egemen, E., & Güngör, A. (2023). The connectivity-based parcellation of the angular gyrus: Fiber dissection and MR tractography study. Brain Structure and Function, 228(1), 121-130.
doi: 10.1007/s00429-022-02555-1 |
[98] |
Zhang, G., Hung, J., & Lin, N. (2023). Coexistence of the social semantic effect and non-semantic effect in the default mode network. Brain Structure and Function, 228(1), 321-339.
doi: 10.1007/s00429-022-02476-z |
[99] | Zhang, W., Xiang, M., & Wang, S. (2022). The role of left angular gyrus in the representation of linguistic composition relations. Humman Brain Mapping, 43(7): 2204-2217. |
[100] |
Zhang, Y., Han, K., Worth, R., & Liu, Z. (2020). Connecting concepts in the brain by mapping cortical representations of semantic relations. Nature Communications, 11(1), 1-13.
doi: 10.1038/s41467-019-13993-7 |
[101] |
Zhang, Y., Mirman, D., & Hoffman, P. (2023). Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. Brain and Language, 242, 105287.
doi: 10.1016/j.bandl.2023.105287 URL |
[102] |
Zhao, R., Fan, R., Liu, M. X., Wang, X. J., & Yang, J. F. (2017). Rethinking the function of brain regions for reading Chinese characters in a meta-analysis of fMRI studies. Journal of Neurolinguistics, 44, 120-133.
doi: 10.1016/j.jneuroling.2017.04.001 URL |
[1] | 包寒吴霜, 王梓西, 程曦, 苏展, 杨盈, 张光耀, 王博, 蔡华俭. 基于词嵌入技术的心理学研究:方法及应用[J]. 心理科学进展, 2023, 31(6): 887-904. |
[2] | 蒋嘉浩, 赵国钰, 马英博, 丁国盛, 刘兰芳. 语义在人脑中的分布式表征:来自自然语言处理技术的证据[J]. 心理科学进展, 2023, 31(6): 1002-1019. |
[3] | 杨剑峰, 党敏, 张瑞, 王小娟. 汉字阅读的语义神经回路及其与语音回路的协作机制[J]. 心理科学进展, 2018, 26(3): 381-390. |
[4] | 李松清;赵庆柏;周治金;张依. 多媒体学习中图文加工的认知神经机制[J]. 心理科学进展, 2015, 23(8): 1361-1370. |
[5] | 蔡林;张亚旭. 句子理解过程中句法与语义加工的EEG时频分析[J]. 心理科学进展, 2014, 22(7): 1112-1121. |
[6] | 张玲燕;金檀;田朝霞. 聚焦词素语义加工的时间轴 —— 先形后义还是形义并行?[J]. 心理科学进展, 2013, 21(8): 1382-1389. |
[7] | 张烨; 张庆林. 识别电位认知功能探析[J]. 心理科学进展, 2010, 18(1): 28-33. |
[8] | 曾红玲;刘思耘. 语篇语境对句子理解的影响:来自N400的证据[J]. 心理科学进展, 2009, 17(2): 314-320. |
[9] | 杨双,刘翔平,王斌. 阅读理解困难儿童的认知加工[J]. 心理科学进展, 2006, 14(3): 368-374. |
[10] | 白学军;阴国恩. 有关眼动的几个理论模型[J]. 心理科学进展, 1996, 4(3): 30-356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||