Acta Psychologica Sinica ›› 2026, Vol. 58 ›› Issue (3): 500-515.doi: 10.3724/SP.J.1041.2026.0500
• Reports of Empirical Studies • Previous Articles Next Articles
LI Xiaoyun1, WU Qiqi1, JIANG Liwen1, LU Xuejing2, PENG Weiwei1
Received:2025-08-02
Published:2026-03-25
Online:2025-12-26
CLC Number:
LI Xiaoyun, WU Qiqi, JIANG Liwen, LU Xuejing, PENG Weiwei. (2026). Neural mechanisms of binaural beats in pain modulation. Acta Psychologica Sinica, 58(3), 500-515.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2026.0500
| [1] Abd Hamid A. I., Hamzah N., Roslan S. M., Suhardi N. A. A., Rahman M. R. A., Mustafar F., … Yusoff A. N. (2025). Distinct neural mechanisms of alpha binaural beats and white noise for cognitive enhancement in young adults. [2] Ahn S., Prim J. H., Alexander M. L.,McCulloch, K. L., & Fröhlich, F.(2019). Identifying and engaging neuronal oscillations by transcranial alternating current stimulation in patients with chronic low back pain: A randomized, crossover, double-blind, sham-controlled pilot study. [3] Arendsen L. J.,Hugh-Jones, S., & Lloyd, D. M.(2018). Transcranial alternating current stimulation at alpha frequency reduces pain when the intensity of pain is uncertain. [4] Babiloni C., Brancucci A.,Del Percio, C., Capotosto, P., Arendt-Nielsen, L., Chen, A. C., & Rossini, P. M.(2006). Anticipatory electroencephalography alpha rhythm predicts subjective perception of pain intensity. [5] Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A., Tagliazucchi, E., Borisov, S., Michel, C. M., & Laufs, H.(2012). EEG microstates of wakefulness and NREM sleep. [6] Cohen S. P., Vase L., & Hooten W. M. (2021). Chronic pain: An update on burden, best practices, and new advances. [7] Custo A.,Van De Ville, D., Wells, W. M., Tomescu, M. I., Brunet, D., & Michel, C. M.(2017). Electroencephalographic resting-state networks: Source localization of microstates. [8] Delorme A.,& Makeig, S.(2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. [9] Draganova R., Ross B., Wollbrink A., & Pantev C. (2008). Cortical steady-state responses to central and peripheral auditory beats. [10] Duerden, E. G., & Albanese, M. C. (2013). Localization of pain-related brain activation: A meta-analysis of neuroimaging data. [11] Ecsy K., Jones A. K., & Brown C. A. (2017). Alpha-range visual and auditory stimulation reduces the perception of pain. [12] Fan B. F.(2020). China Pain Medical Development Report. Beijing: Tsinghua University Press. [樊碧发. (2020). 中国疼痛医学发展报告. 北京: 清华大学出版社.] [13] Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. [14] Gao X., Cao H., Ming D., Qi H., Wang X., Wang X., Chen R., & Zhou P. (2014). Analysis of EEG activity in response to binaural beats with different frequencies. [15] Garcia-Argibay M., Santed M. A., & Reales J. M. (2019). Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: A meta-analysis. [16] Garrett D. D.,Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A. R., & Grady, C. L.(2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping? [17] Gkolias V., Amaniti A., Triantafyllou A., Papakonstantinou P., Kartsidis P., Paraskevopoulos E., … Kouvelas D. (2020). Reduced pain and analgesic use after acoustic binaural beats therapy in chronic pain - A double-blind randomized control cross-over trial. [18] González-Villar A. J., Triñanes Y., Gómez-Perretta C., & Carrillo-de-la-Peña M. T. (2020). Patients with fibromyalgia show increased beta connectivity across distant networks and microstates alterations in resting-state electroencephalogram. [19] Günther T., Dasgupta P., Mann A., Miess E., Kliewer A., Fritzwanker S., Steinborn R., & Schulz S. (2018). Targeting multiple opioid receptors - improved analgesics with reduced side effects? [20] Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. [21] Herrmann C. S., Rach S., Neuling T.,& Strüber, D.(2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. [22] Hesam-Shariati N., Chang W. J., Wewege M. A., McAuley J. H., Booth A., Trost Z., … Gustin S. M. (2022). The analgesic effect of electroencephalographic neurofeedback for people with chronic pain: A systematic review and meta-analysis. [23] Hu, L., & Iannetti, G. D. (2019). Neural indicators of perceptual variability of pain across species. [24] Hu L., Peng W., Valentini E., Zhang Z.,& Hu, Y.(2013). Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. [25] Iannetti G. D., Hughes N. P., Lee M. C., & Mouraux A. (2008). Determinants of laser-evoked EEG responses: Pain perception or stimulus saliency? [26] Iannetti G. D., Truini A., Romaniello A., Galeotti F., Rizzo C., Manfredi M., & Cruccu G. (2003). Evidence of a specific spinal pathway for the sense of warmth in humans. [27] Ingendoh R. M., Posny E. S., & Heine A. (2023). Binaural beats to entrain the brain? A systematic review of the effects of binaural beat stimulation on brain oscillatory activity, and the implications for psychological research and intervention. [28] Ioannou C. I., Pereda E., Lindsen J. P., & Bhattacharya J. (2015). Electrical brain responses to an auditory illusion and the impact of musical expertise. [29] Jaltare, K. P., & Torta, D. M. (2025). Experimentally induced central sensitization is accompanied by alterations in electroencephalographical microstate parameters. [30] Jensen O., Kaiser J.,& Lachaux, J. P.(2007). Human gamma-frequency oscillations associated with attention and memory. [31] Jia T., Xia J., Wang S., Huang J., Xu X., Zhang C.,& Liu, J.(2025). EEG-guided neurobiological mechanisms and parameter optimization of HD-tACS over SM1 for pain Relief: From alpha to low gamma efficacy. [32] Jirakittayakorn N.,& Wongsawat, Y.(2017). Brain responses to 40-Hz binaural beat and effects on emotion and memory. [33] Jung T. P., Makeig S., Westerfield M., Townsend J., Courchesne E., & Sejnowski T. J. (2001). Analysis and visualization of single-trial event-related potentials. [34] Khanna A.,Pascual-Leone, A., Michel, C. M., & Farzan, F.(2015). Microstates in resting-state EEG: Current status and future directions. [35] Kim K. B., Jung J. J., Lee J. H., Kim Y. J., Kim J. S., Choi M. H., … Chung S. C. (2023). Frequency-following response effect according to gender using a 10-Hz binaural beat stimulation. [36] Klimesch, W. (2012). α-band oscillations, attention, and controlled access to stored information. [37] Li J.-W., Yang H.-Y., Hu L., & LÜ X.-J. (2023). Rhythmic auditory stimuli induced neural oscillation entrainment and its applications. [38] Li X., Jin R., Lu X., Zhan Y., Jiang N., & Peng W. (2025). Alpha transcranial alternating current stimulation modulates pain anticipation and perception in a context-dependent manner. [39] Li X., Wang X., Chen S., Zhu W., Jin R., & Peng W. (2025). Gamma-band binaural beats neuromodulation enhances P300 classification in an auditory brain-computer interface paradigm. [40] Li Y., Chen G., Lv J., Hou L., Dong Z., Wang R., Su M., & Yu S. (2022). Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. [41] Lötsch J., Oertel B. G.,& Ultsch, A.(2014). Human models of pain for the prediction of clinical analgesia. [42] Maddison R., Nazar H., Obara I., & Vuong Q. C. (2023). The efficacy of sensory neural entrainment on acute and chronic pain: A systematic review and meta-analysis. [43] May E. S., Gil Ávila C., Ta Dinh S., Heitmann H., Hohn V. D., Nickel M. M., … Ploner M. (2021). Dynamics of brain function in patients with chronic pain assessed by microstate analysis of resting-state electroencephalography. [44] May E. S., Hohn V. D., Nickel M. M., Tiemann L.,Gil Ávila, C., Heitmann, H., Sauseng, P., & Ploner, M.(2021). Modulating brain rhythms of pain using transcranial alternating current stimulation (tACS)-a sham-controlled study in healthy human participants. [45] Michel C. M.,& Koenig, T.(2018). EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. [46] Montoya, A. K., & Hayes, A. F. (2017). Two-condition within-participant statistical mediation analysis: A path- analytic framework. [47] Mouraux, A., & Iannetti, G. D. (2009). Nociceptive laser- evoked brain potentials do not reflect nociceptive-specific neural activity. [48] Orozco Perez H. D., Dumas G., & Lehmann A. (2020). Binaural beats through the auditory pathway: From brainstem to connectivity patterns. [49] Oster, G. (1973). Auditory beats in the brain. [50] Padmanabhan R., Hildreth A. J., & Laws D. (2005). A prospective, randomised, controlled study examining binaural beat audio and pre-operative anxiety in patients undergoing general anaesthesia for day case surgery. [51] Patel K., Sutherland H., Henshaw J., Taylor J. R., Brown C. A., Casson A. J., … Sivan M. (2020). Effects of neurofeedback in the management of chronic pain: A systematic review and meta-analysis of clinical trials. [52] Peng W., Babiloni C., Mao Y.,& Hu, Y.(2015). Subjective pain perception mediated by alpha rhythms. [53] Peng W., Zhan Y., Jin R., Lou W., & Li X. (2023). Aftereffects of alpha transcranial alternating current stimulation over the primary sensorimotor cortex on cortical processing of pain. [54] Pratt H., Starr A., Michalewski H. J., Dimitrijevic A., Bleich N.,& Mittelman, N.(2009). Cortical evoked potentials to an auditory illusion: Binaural beats. [55] Pratt H., Starr A., Michalewski H. J., Dimitrijevic A., Bleich N.,& Mittelman, N.(2010). A comparison of auditory evoked potentials to acoustic beats and to binaural beats. [56] Preti M. G., Bolton T. A.,& Van De Ville, D.(2017). The dynamic functional connectome: State-of-the-art and perspectives. [57] Qiu S., Lyu X., Zheng Q., He H., Jin R., & Peng W. (2023). Temporal dynamics of electroencephalographic microstates during sustained pain. [58] Schwarz D. W.,& Taylor, P.(2005). Human auditory steady state responses to binaural and monaural beats. [59] Shamsi F., Azadinia F., & Shaygan M. (2024). Does brain entrainment using binaural auditory beats affect pain perception in acute and chronic pain?: A systematic review. [60] Solcà M., Mottaz A.,& Guggisberg, A. G.(2016). Binaural beats increase interhemispheric alpha-band coherence between auditory cortices. [61] Tarailis P., Koenig T., Michel C. M., & Griškova-Bulanova I. (2024). The functional aspects of resting EEG microstates: A systematic review. [62] Tarkka, I. M., & Treede, R. D. (1993). Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. [63] Thut G., Schyns P. G.,& Gross, J.(2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. [64] Tiitinen H., Sinkkonen J., Reinikainen K., Alho K., Lavikainen J., & Näätänen R. (1993). Selective attention enhances the auditory 40-Hz transient response in humans. [65] Tu Y., Cao J., Bi Y., & Hu L. (2021). Magnetic resonance imaging for chronic pain: Diagnosis, manipulation, and biomarkers. [66] Tu Y., Zhang Z., Tan A., Peng W., Hung Y. S., Moayedi M., Iannetti G. D., & Hu L. (2016). Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. [67] Wernick, J. S., & Starr, A. (1968). Binaural interaction in the superior olivary complex of the cat: An analysis of field potentials evoked by binaural-beat stimuli. [68] Zhang L. B., Lu X. J., Huang G., Zhang H. J., Tu Y. H., Kong Y. Z.,& Hu, L.(2022). Selective and replicable neuroimaging-based indicators of pain discriminability. |
| [1] | LIU Peihan, PENG Weiwei, WANG Jinxia, LI Hong, LEI Yi. Acute pain modulates personal and vicarious reward processing: An ERP study [J]. Acta Psychologica Sinica, 2026, 58(1): 15-38. |
| [2] | HUA Shan, JIANG Xintong, GAO Yangzhenyu, MU Yan, DU Yi. The impacts of music training and music sophistication on empathy [J]. Acta Psychologica Sinica, 2025, 57(4): 544-558. |
| [3] | YANG Zhou, ZHU Jia-Wen, SU Lin, XIONG Ming-Jie, JACKSON Todd. The gaze biases towards pain-related information during the late stages predict the persistence of chronic pain: Evidence from eye movements [J]. Acta Psychologica Sinica, 2024, 56(1): 44-60. |
| [4] | ZHANG Wenyun, ZHUO Shiwei, ZHENG Qianqian, GUAN Yinglin, PENG Weiwei. Autistic traits influence pain empathy: The mediation role of pain-related negative emotion and cognition [J]. Acta Psychologica Sinica, 2023, 55(9): 1501-1517. |
| [5] | WANG Mei, CHENG Si, LI Yiwei, LI Hong, ZHANG Dandan. The role of dorsolateral prefrontal cortex on placebo effect of regulating social pain: A TMS study [J]. Acta Psychologica Sinica, 2023, 55(7): 1063-1073. |
| [6] | SUN Fang, LI Huanhuan, GUO Yueyan, WEI Shijie. “Crisis” or “opportunity”: Latent patterns of family, school, community risks and assets on psychological crisis in adolescence [J]. Acta Psychologica Sinica, 2023, 55(11): 1827-1844. |
| [7] | SUN Fang, SONG Wei, WEN Xiaotong, LI Huanhuan, OUYANG Lisheng, WEI Shijie. Efficacy of suicide ideation classification based on pain avoidance and the EEG characteristics under self-referential punishment [J]. Acta Psychologica Sinica, 2022, 54(9): 1031-1047. |
| [8] | ZHANG Wenyun, LI Xiaoyun, YAO Junjie, YE Qian, PENG Weiwei. Abnormalities in pain sensitivity among individuals with autism spectrum disorder: Evidence from meta-analysis [J]. Acta Psychologica Sinica, 2021, 53(6): 613-628. |
| [9] | CHEN Jie, WU Ke, SHI Yupeng, AI Xiaoqing. The relationship between dispositional self-construal and empathy for ingroup and outgroup members’ pain: evidence from ERPs [J]. Acta Psychologica Sinica, 2021, 53(6): 629-638. |
| [10] | MO Licheng, GUO Tianyou, ZHANG Yueyao, XU Feng, ZHANG Dandan. The role of ventrolateral prefrontal cortex on emotional regulation of social pain in depressed patients: A TMS study [J]. Acta Psychologica Sinica, 2021, 53(5): 494-504. |
| [11] | Xiong LI, Zuoshan LI, Binyang XIANG, Jing MENG. Empathy for pain in Individuals with autistic traits influenced by attention cues: Evidence from an ERP study [J]. Acta Psychologica Sinica, 2020, 52(3): 294-306. |
| [12] | Junchen SHANG, Zhihui LIU, Wenfeng CHEN, Xiaolan FU. Influence of aesthetics on unconscious processing of western paintings [J]. Acta Psychologica Sinica, 2018, 50(7): 693-702. |
| [13] | CHENG Jiaping; LUO Yuejia; CUI Fang. Empathy for pain influenced by cognitive load: Evidence from an ERP study [J]. Acta Psychologica Sinica, 2017, 49(5): 622-630. |
| [14] | SONG Juan; GUO Fengbo; ZHANG Zhen; YUAN Sheng; JIN Hua; WANG Yiwen. Interpersonal distance influences on pain empathy: Friends priming effect [J]. Acta Psychologica Sinica, 2016, 48(7): 833-844. |
| [15] | GAO Xuemei, WENG Lei, ZHOU Qun, ZHAO Cai, LI Fang. Dose Violent Offenders Have Lower Capacity of Empathy for Pain: Evidence from ERPs [J]. Acta Psychologica Sinica, 2015, 47(4): 478-487. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||