Acta Psychologica Sinica ›› 2026, Vol. 58 ›› Issue (1): 15-38.doi: 10.3724/SP.J.1041.2026.0015
• Reports of Empirical Studies • Previous Articles Next Articles
LIU Peihan1, PENG Weiwei2, WANG Jinxia1, LI Hong1, LEI Yi1(
)
Published:2026-01-25
Online:2025-10-28
Contact:
LEI Yi, E-mail: leiyi821@vip.sina.com
About author:The original article is in Chinese. The Chinese version shall always prevail in case of any discrepancy or inconsistency between the Chinese version and its English translation.
LIU Peihan, PENG Weiwei, WANG Jinxia, LI Hong, LEI Yi. (2026). Acute pain modulates personal and vicarious reward processing: An ERP study. Acta Psychologica Sinica, 58(1), 15-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2026.0015
| Variable | Pain group(n = 32) | Control group(n = 36) | Statistic analysis |
|---|---|---|---|
| Age | 19.19 ± 1.45 | 20.03 ± 2.09 | t(66) =1.90, p = 0.06 |
| Gender (Male/Female) | 12/20 | 12/24 | - |
| Dominant hand (right/left) | 32/0 | 32/0 | - |
| FQQ | 72.59 ± 9.97 | 74.36 ± 8.64 | t(66) = 0.78, p = 0.44 |
| IOS | 5.5 ± 1.02 | 5.47 ± 1.13 | t(66) = -0.11, p = 0.92 |
| SVO | 1.72 ± 0.52 | 1.67 ± 0.54 | t(66) = -0.41, p = 0.69 |
| BDI | 7.06 ± 6.41 | 9.14 ± 6.46 | t(66) = 1.33, p = 0.19 |
| SPRSQ | 7.81 ± 2.52 | 8.42 ± 2.08 | t(66) = 1.08, p = 0.28 |
| FS-14 | 5.53 ± 3.56 | 6.58 ± 2.99 | t(66) = 1.32, p = 0.19 |
Table 1 Demographic Characteristics of Participants and Scale Statistics (M ± SD)
| Variable | Pain group(n = 32) | Control group(n = 36) | Statistic analysis |
|---|---|---|---|
| Age | 19.19 ± 1.45 | 20.03 ± 2.09 | t(66) =1.90, p = 0.06 |
| Gender (Male/Female) | 12/20 | 12/24 | - |
| Dominant hand (right/left) | 32/0 | 32/0 | - |
| FQQ | 72.59 ± 9.97 | 74.36 ± 8.64 | t(66) = 0.78, p = 0.44 |
| IOS | 5.5 ± 1.02 | 5.47 ± 1.13 | t(66) = -0.11, p = 0.92 |
| SVO | 1.72 ± 0.52 | 1.67 ± 0.54 | t(66) = -0.41, p = 0.69 |
| BDI | 7.06 ± 6.41 | 9.14 ± 6.46 | t(66) = 1.33, p = 0.19 |
| SPRSQ | 7.81 ± 2.52 | 8.42 ± 2.08 | t(66) = 1.08, p = 0.28 |
| FS-14 | 5.53 ± 3.56 | 6.58 ± 2.99 | t(66) = 1.32, p = 0.19 |
Figure 2. shows the changes in pain perception at different times and reward types. Note. Error bars are standard deviations (SD); *: p < 0.05, **: p < 0.01, ***: p < 0.001; the same below.
Figure 3. A. Happiness scores of personal rewards and vicarious rewards; B. Motivation and happiness scores of different reward types and monetary cues.
Figure 5. Cue-P2/CNV waveforms and topography during the reward anticipation phase: A. Different reward types and monetary cues; B. Pain group and control group.
Figure 6. Cue-P3 waveforms and topography during the reward anticipation phase: A. Different reward types and monetary cues; B. Pain group and control group.
Figure 7. FRN waveforms and topography during the reward experience phase: A. Different reward types and monetary cues; B. Pain group and control group.
Figure 8. P3 waveforms and topography during the reward experience phase: A. Different reward types and monetary cues; B. Pain group and control group.
| 变量 | 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|---|
| 1. Key Differences | Correlation coefficient | 1.000 | -0.44** | 0.01 | 0.13** | 0.04 | 0.02 |
| Significance | 0.000 | 0.896 | 0.008 | 0.425 | 0.672 | ||
| 2. Key response time | Correlation coefficient | 1.000 | -0.03 | -0.05 | 0.09 | 0.01 | |
| Significance | 0.490 | 0.370 | 0.088 | 0.861 | |||
| 3. cue-P2 | Correlation coefficient | 1.000 | 0.33** | 0.03 | -0.04 | ||
| Significance | 0.000 | 0.505 | 0.442 | ||||
| 4. cue-P3 | Correlation coefficient | 1.000 | 0.19** | 0.15** | |||
| Significance | 0.000 | 0.002 | |||||
| 5. FRN | Correlation coefficient | 1.000 | 0.73** | ||||
| Significance | 0.000 | ||||||
| 6. P3 | Correlation coefficient | 1.000 | |||||
| Significance |
Table 2 Correlation between behavioral results and ERP results
| 变量 | 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|---|
| 1. Key Differences | Correlation coefficient | 1.000 | -0.44** | 0.01 | 0.13** | 0.04 | 0.02 |
| Significance | 0.000 | 0.896 | 0.008 | 0.425 | 0.672 | ||
| 2. Key response time | Correlation coefficient | 1.000 | -0.03 | -0.05 | 0.09 | 0.01 | |
| Significance | 0.490 | 0.370 | 0.088 | 0.861 | |||
| 3. cue-P2 | Correlation coefficient | 1.000 | 0.33** | 0.03 | -0.04 | ||
| Significance | 0.000 | 0.505 | 0.442 | ||||
| 4. cue-P3 | Correlation coefficient | 1.000 | 0.19** | 0.15** | |||
| Significance | 0.000 | 0.002 | |||||
| 5. FRN | Correlation coefficient | 1.000 | 0.73** | ||||
| Significance | 0.000 | ||||||
| 6. P3 | Correlation coefficient | 1.000 | |||||
| Significance |
| [1] |
Acevedo B. P., Aron A., Fisher H. E., & Brown L. L. (2012). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, 7(2), 145-159. https://doi.org/10.1093/scan/nsq092
doi: 10.1093/scan/nsq092 URL pmid: 21208991 |
| [2] |
Ait Oumeziane B., Jones O., & Foti D. (2019). Neural sensitivity to social and monetary reward in depression: Clarifying general and domain-specific deficits. Frontiers in Behavioral Neuroscience, 13, 199. https://doi.org/10.3389/fnbeh.2019.00199
doi: 10.3389/fnbeh.2019.00199 URL |
| [3] |
Barman A., Richter S., Soch J., Deibele A., Richter A., Assmann A., ... Schott B. H. (2015). Gender-specific modulation of neural mechanisms underlying social reward processing by Autism Quotient. Social Cognitive and Affective Neuroscience, 10(11), 1537-1547. https://doi.org/10.1093/scan/nsv044
doi: 10.1093/scan/nsv044 URL pmid: 25944965 |
| [4] |
Bartra O., McGuire J. T., & Kable J. W. (2013). The valuation system: A coordinate-based meta-analysis of bold fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412-427. https://doi.org/10.1016/j.neuroimage.2013.02.063
doi: 10.1016/j.neuroimage.2013.02.063 URL pmid: 23507394 |
| [5] |
Becerra L., Breiter H. C., Wise R., Gonzalez R. G., & Borsook D. (2001). Reward circuitry activation by noxious thermal stimuli. Neuron, 32(5), 927-946. https://doi.org/10.1016/s0896-6273(01)00533-5
doi: 10.1016/s0896-6273(01)00533-5 URL pmid: 11738036 |
| [6] |
Becker S., Gandhi W., Chen Y. J., & Schweinhardt P. (2017). Subjective utility moderates bidirectional effects of conflicting motivations on pain perception. Scientific Reports, 7(1), 7790. https://doi.org/10.1038/s41598-017-08454-4
doi: 10.1038/s41598-017-08454-4 URL |
| [7] |
Becker S., Gandhi W., Elfassy N. M., & Schweinhardt P. (2013). The role of dopamine in the perceptual modulation of nociceptive stimuli by monetary wins or losses. The European Journal of Neuroscience, 38(7), 3080-3088. https://doi.org/10.1111/ejn.12303
doi: 10.1111/ejn.2013.38.issue-7 URL |
| [8] |
Becker S., Gandhi W., & Schweinhardt P. (2012). Cerebral interactions of pain and reward and their relevance for chronic pain. Neuroscience Letters, 520(2), 182-187. https://doi.org/10.1016/j.neulet.2012.03.013
doi: 10.1016/j.neulet.2012.03.013 URL pmid: 22440855 |
| [9] |
Becker S., Löffler M., & Seymour B. (2020). Reward enhances pain discrimination in humans. Psychological Science, 31(9), 1191-1199. https://doi.org/10.1177/0956797620939588
doi: 10.1177/0956797620939588 URL pmid: 32818387 |
| [10] |
Berridge K. C., & Kringelbach M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664. https://doi.org/10.1016/j.neuron.2015.02.018
doi: 10.1016/j.neuron.2015.02.018 URL pmid: 25950633 |
| [11] |
Berridge K. C., & Robinson T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience?. Brain Research Reviews, 28(3), 309-369.
doi: 10.1016/S0165-0173(98)00019-8 URL |
| [12] |
Berridge K. C., & Robinson T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513. https://doi.org/10.1016/S0166-2236(03)00233-9
doi: 10.1016/S0166-2236(03)00233-9 URL pmid: 12948663 |
| [13] |
Berridge K. C., Robinson T. E., & Aldridge J. W. (2009). Dissecting components of reward: ‘Liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 65-73. https://doi.org/10.1016/j.coph.2008.12.014
doi: 10.1016/j.coph.2008.12.014 URL pmid: 19162544 |
| [14] |
Boksem M. A., Tops M., Wester A. E., Meijman T. F., & Lorist M. M. (2006). Error-related ERP components and individual differences in punishment and reward sensitivity. Brain Research, 1101(1), 92-101. https://doi.org/10.1016/j.brainres.2006.05.004
URL pmid: 16784728 |
| [15] |
Botvinick M., & Braver T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113. https://doi.org/10.1146/annurev-psych-010814-015044
doi: 10.1146/annurev-psych-010814-015044 URL pmid: 25251491 |
| [16] |
Braams B. R., & Crone E. A. (2017). Peers and parents: A comparison between neural activation when winning for friends and mothers in adolescence. Social Cognitive and Affective Neuroscience, 12(3), 417-426. https://doi.org/10.1093/scan/nsw136
doi: 10.1093/scan/nsw136 URL pmid: 27651540 |
| [17] |
Braams B. R., Peters S., Peper J. S., Güroğlu B., & Crone E. A. (2014). Gambling for self, friends, and antagonists: Differential contributions of affective and social brain regions on adolescent reward processing. Neuroimage, 100, 281-289. https://doi.org/10.1016/j.neuroimage.2014.06.020
doi: 10.1016/j.neuroimage.2014.06.020 URL pmid: 24945662 |
| [18] |
Buckner R. L., & Carroll D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49-57. https://doi.org/10.1016/j.tics.2006.11.004
doi: 10.1016/j.tics.2006.11.004 URL pmid: 17188554 |
| [19] | Carretié L. (2014). Exogenous (automatic) attention to emotional stimuli: A review. Cognitive, Affective & Behavioral Neuroscience, 14( 4), 1228-1258. https://doi.org/10.3758/s13415-014-0270-2 |
| [20] |
Chen L. L., Huang R., & Jia S. W. (2020). Feedback-related negativity and addiction. Advances in Psychological Science, 28(6), 959-968.
doi: 10.3724/SP.J.1042.2020.00959 |
| [21] |
Darbor K. E., Lench H. C., & Carter-Sowell A. R. (2016). Do people eat the pain away? The effects of acute physical pain on subsequent consumption of sweet-tasting food. PLOS ONE, 11(11), e0166931. https://doi.org/10.1371/journal.pone.0166931
doi: 10.1371/journal.pone.0166931 URL |
| [22] |
Etkin A., Egner T., & Kalisch R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85-93. https://doi.org/10.1016/j.tics.2010.11.004
doi: 10.1016/j.tics.2010.11.004 URL pmid: 21167765 |
| [23] |
Fareri D. S., Niznikiewicz M. A., Lee V. K., & Delgado M. R. (2012). Social network modulation of reward-related signals. The Journal of Neuroscience, 32(26), 9045-9052. https://doi.org/10.1523/JNEUROSCI.0610-12.2012
doi: 10.1523/JNEUROSCI.0610-12.2012 URL |
| [24] |
Fields H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5(7), 565-575. https://doi.org/10.1038/nrn1431
doi: 10.1038/nrn1431 URL pmid: 15208698 |
| [25] |
Fields H. (2007). Understanding how opioids contribute to reward and analgesia. Regional Anesthesia and Pain Medicine, 32(3), 242-246. https://doi.org/10.1016/j.rapm.2007.01.001
URL pmid: 17543821 |
| [26] |
Flores A., Münte T. F., & Doñamayor N. (2015). Event-related EEG responses to anticipation and delivery of monetary and social reward. Biological Psychology, 109, 10-19. https://doi.org/10.1016/j.biopsycho.2015.04.005
doi: 10.1016/j.biopsycho.2015.04.005 URL pmid: 25910956 |
| [27] |
Gandhi W., Becker S., & Schweinhardt P. (2013). Pain increases motivational drive to obtain reward, but does not affect associated hedonic responses: A behavioural study in healthy volunteers. European Journal of Pain, 17(7), 1093-1103. https://doi.org/10.1002/j.1532-2149.2012.00281.x
doi: 10.1002/j.1532-2149.2012.00281.x URL pmid: 23349058 |
| [28] |
Goerlich K. S., Votinov M., Lammertz S. E., Winkler L., Spreckelmeyer K. N., Habel U., Gründer G., & Gossen A. (2017). Effects of alexithymia and empathy on the neural processing of social and monetary rewards. Brain Structure and Function, 222(5), 2235-2250. https://doi.org/10.1007/s00429-016-1339-1
doi: 10.1007/s00429-016-1339-1 URL |
| [29] | Greimel E., Bakos S., Landes I., Töllner T., Bartling J., Kohls G., & Schulte-Körne G. (2018). Sex differences in the neural underpinnings of social and monetary incentive processing during adolescence. Cognitive, Affective, & Behavioral Neuroscience, 18(2), 296-312. https://doi.org/10.3758/s13415-018-0570-z |
| [30] |
Gu R., Jiang Y., Kiser S., Black C. L., Broster L. S., Luo Y., & Kelly T. H. (2017). Impulsive personality dimensions are associated with altered behavioral performance and neural responses in the monetary incentive delay task. Neuropsychologia, 103, 59-68. https://doi.org/10.1016/j.neuropsychologia.2017.07.013
doi: S0028-3932(17)30266-X URL pmid: 28716612 |
| [31] |
Hackel L. M., Zaki J., & Van Bavel J. J. (2017). Social identity shapes social valuation: Evidence from prosocial behavior and vicarious reward. Social Cognitive and Affective Neuroscience, 12(8), 1219-1228. https://doi.org/10.1093/scan/nsx045
doi: 10.1093/scan/nsx045 URL pmid: 28402506 |
| [32] |
Hajcak G., Moser J. S., Holroyd C. B., & Simons R. F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148-154. https://doi.org/10.1016/j.biopsycho.2005.04.001
doi: 10.1016/j.biopsycho.2005.04.001 URL pmid: 16005561 |
| [33] |
Hare T. A., Camerer C. F., Knoepfle D. T., & Rangel A. (2010). Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. The Journal of Neuroscience, 30(2), 583-590. https://doi.org/10.1523/JNEUROSCI.4089-09.2010
doi: 10.1523/JNEUROSCI.4089-09.2010 URL |
| [34] |
Heydari S., & Holroyd C. B. (2016). Reward positivity: Reward prediction error or salience prediction error?. Psychophysiology, 53(8), 1185-1192. https://doi.org/10.1111/psyp.12673
doi: 10.1111/psyp.12673 URL pmid: 27184070 |
| [35] |
Holroyd C. B., & Coles M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709. https://doi.org/10.1037/0033-295X.109.4.679
doi: 10.1037/0033-295X.109.4.679 URL pmid: 12374324 |
| [36] |
Holroyd C. B., Nieuwenhuis S., Yeung N., & Cohen J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. Neuroreport, 14(18), 2481-2484. https://doi.org/10.1097/00001756-200312190-00037
URL pmid: 14663214 |
| [37] |
Huckins J. F., Adeyemo B., Miezin F. M., Power J. D., Gordon E. M., Laumann T. O., ... Kelley W. M. (2019). Reward-related regions form a preferentially coupled system at rest. Human Brain Mapping, 40(2), 361-376. https://doi.org/10.1002/hbm.24377
doi: 10.1002/hbm.24377 URL pmid: 30251766 |
| [38] |
Klawohn J., Burani K., Bruchnak A., Santopetro N., & Hajcak G. (2021). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 51(5), 741-749. https://doi.org/10.1017/S0033291719003659
doi: 10.1017/S0033291719003659 URL |
| [39] |
Knutson B., Fong G. W., Adams C. M., Varner J. L., & Hommer D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683-3687. https://doi.org/10.1097/00001756-200112040-00016
URL pmid: 11726774 |
| [40] | Kujawa A., Hajcak G., & Klein D. N. (2019). Reduced reward responsiveness moderates the effect of maternal depression on depressive symptoms in offspring: Evidence across levels of analysis. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 60(1), 82-90. https://doi.org/10.1111/jcpp.12944 |
| [41] |
LaMotte R. H., Shain C. N., Simone D. A., & Tsai E. F. (1991). Neurogenic hyperalgesia: Psychophysical studies of underlying mechanisms. Journal of Neurophysiology, 66(1), 190-211. https://doi.org/10.1152/jn.1991.66.1.190
URL pmid: 1919666 |
| [42] |
Lasaponara S., Glicksohn J., Mauro F., & Ben-Soussan T. D. (2019). Contingent negative variation and P3 modulations following mindful movement training. Progress in brain research, 244, 101-114. https://doi.org/10.1016/bs.pbr.2018.10.017
doi: S0079-6123(18)30156-0 URL pmid: 30732833 |
| [43] |
Leknes S., & Tracey I. (2008). A common neurobiology for pain and pleasure. Nature Reviews Neuroscience, 9(4), 314-320. https://doi.org/10.1038/nrn2333
doi: 10.1038/nrn2333 URL pmid: 18354400 |
| [44] |
Li D. Y., Li P., & Li H. (2018). The updated theories of feedback-related negativity in the last decade. Advances in Psychological Science, 26(9), 1642-1650.
doi: 10.3724/SP.J.1042.2018.01642 |
| [45] |
Li J., Sun Y., Yang Z. L., & Zhong Y. P. (2020). Social value orientation modulates the processing of social rewards for self: Evidence from ERPs study. Acta Psychologica Sinica, 52(6), 786-800.
doi: 10.3724/SP.J.1041.2020.00786 URL |
| [46] |
Li Q., Xu J., & Zheng Y. (2017). Stimulus-preceding negativity: An electrophysiological index of reward anticipation. Advances in Psychological Science, 25(7), 1114-1121.
doi: 10.3724/SP.J.1042.2017.01114 URL |
| [47] |
Li X., Zhou X., Zheng H., & Wang C. (2023). The modulation of pain in reward processing is reflected by increased P300 and delta oscillation. Brain and Cognition, 168, 105972. https://doi.org/10.1016/j.bandc.2023.105972
doi: 10.1016/j.bandc.2023.105972 URL |
| [48] |
Liu P. H., Zhang H. Y., Zhang X. K., Li H., & Lei Y. (2023). Effects of acute versus chronic pain on reward processing and the underlying neural mechanisms involved. Advances in Psychological Science, 31(3), 402-415.
doi: 10.3724/SP.J.1042.2023.00402 |
| [49] |
Mobbs D., Yu R., Meyer M., Passamonti L., Seymour B., Calder A. J., ... Dalgleish T. (2009). A key role for similarity in vicarious reward. Science, 324(5929), 900. https://doi.org/10.1126/science.1170539
doi: 10.1126/science.1170539 URL |
| [50] |
Modir J. G., & Wallace M. S. (2010). Human experimental pain models 3: Heat/capsaicin sensitization and intradermal capsaicin models. Methods in Molecular Biology, 617, 169-174. https://doi.org/10.1007/978-1-60327-323-7_14
doi: 10.1007/978-1-60327-323-7_14 URL pmid: 20336422 |
| [51] |
Morelli S. A., Sacchet M. D., & Zaki J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. Neuroimage, 112, 244-253. https://doi.org/10.1016/j.neuroimage.2014.12.056
doi: S1053-8119(14)01061-1 URL pmid: 25554428 |
| [52] | Nair A. K., Sasidharan A., John J. P., Mehrotra S., & Kutty B. M. (2016). Assessing neurocognition via gamified experimental logic: A novel approach to simultaneous acquisition of multiple ERPs. Frontiers in Neuroscience, 10, 1. https://doi.org/10.3389/fnins.2016.00001 |
| [53] |
Navratilova E., Morimura K., Xie J. Y., Atcherley C. W., Ossipov M. H., & Porreca F. (2016). Positive emotions and brain reward circuits in chronic pain. Journal of Comparative Neurology, 524(8), 1646-1652. https://doi.org/10.1002/cne.23968
doi: 10.1002/cne.23968 URL pmid: 26788716 |
| [54] |
Navratilova E., & Porreca F. (2014). Reward and motivation in pain and pain relief. Nature Neuroscience, 17(10), 1304-1312. https://doi.org/10.1038/nn.3811
doi: 10.1038/nn.3811 URL pmid: 25254980 |
| [55] |
Nieuwenhuis S., Aston-Jones G., & Cohen J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131(4), 510-532. https://doi.org/10.1037/0033-2909.131.4.510
URL pmid: 16060800 |
| [56] |
Peciña S., Cagniard B., Berridge K. C., Aldridge J. W., & Zhuang X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. The Journal of Neuroscience, 23(28), 9395-9402. https://doi.org/10.1523/JNEUROSCI.23-28-09395.2003
doi: 10.1523/JNEUROSCI.23-28-09395.2003 URL |
| [57] | Pedersen M. L., & Frank M. J. (2020). Simultaneous hierarchical bayesian parameter estimation for reinforcement learning and drift diffusion models: A tutorial and links to neural data. Computational Brain & Behavior, 3(4), 458-471. https://doi.org/10.1007/s42113-020-00084-w |
| [58] |
Pedersen M. L., Frank M. J., & Biele G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin & Review, 24(4), 1234-1251. https://doi.org/10.3758/s13423-016-1199-y
doi: 10.3758/s13423-016-1199-y URL |
| [59] |
Pizzagalli D. A., Holmes A. J., Dillon D. G., Goetz E. L., Birk J. L., Bogdan R., ... Fava M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166(6), 702-710. https://doi.org/10.1176/appi.ajp.2008.08081201
doi: 10.1176/appi.ajp.2008.08081201 URL pmid: 19411368 |
| [60] |
Polich J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
doi: 10.1016/j.clinph.2007.04.019 URL pmid: 17573239 |
| [61] | Porreca F., & Navratilova E. (2017). Reward, motivation, and emotion of pain and its relief. Pain, 158 (Suppl 1), S43-S49. https://doi.org/10.1097/j.pain.0000000000000798 |
| [62] |
Qin H. F., Huang R., & Jia S. W. (2021). Feedback-related negativity: A biomarker for depression. Advances in Psychological Science, 29(3), 404-413.
doi: 10.3724/SP.J.1042.2021.00404 |
| [63] |
Rainville P., Duncan G. H., Price D. D., Carrier B., & Bushnell M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277(5328), 968-971. https://doi.org/10.1126/science.277.5328.968
doi: 10.1126/science.277.5328.968 URL pmid: 9252330 |
| [64] |
Rutledge R. B., Skandali N., Dayan P., & Dolan R. J. (2014). A computational and neural model of momentary subjective well- being. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12252-12257. https://doi.org/10.1073/pnas.1407535111
doi: 10.1073/pnas.1407535111 URL pmid: 25092308 |
| [65] |
Salcido C. A., Harris Bozer A. L., McNabb C. T., & Fuchs P. N. (2018). Assessing the aversive nature of pain with an operant approach/avoidance paradigm. Physiology & Behavior, 189, 59-63. https://doi.org/10.1016/j.physbeh.2018.02.053
doi: 10.1016/j.physbeh.2018.02.053 URL |
| [66] |
Sato A., Yasuda A., Ohira H., Miyawaki K., Nishikawa M., Kumano H., & Kuboki T. (2005). Effects of value and reward magnitude on feedback negativity and P300. Neuroreport, 16(4), 407-411. https://doi.org/10.1097/00001756-200503150-00020
URL pmid: 15729147 |
| [67] |
Schrooten M. G. S., Wiech K., & Vlaeyen J. W. S. (2014). When pain meets … pain-related choice behavior and pain perception in different goal conflict situations. The Journal of Pain, 15(11), 1166-1178. https://doi.org/10.1016/j.jpain.2014.08.011
doi: 10.1016/j.jpain.2014.08.011 URL |
| [68] |
Scott D. J., Heitzeg M. M., Koeppe R. A., Stohler C. S., & Zubieta J.-K. (2006). Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. Journal of Neuroscience, 26(42), 10789-10795. https://doi.org/10.1523/JNEUROSCI.2577-06.2006
doi: 10.1523/JNEUROSCI.2577-06.2006 URL pmid: 17050717 |
| [69] |
Sescousse G., Redouté J., & Dreher J. C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. The Journal of Neuroscience, 30(39), 13095-13104. https://doi.org/10.1523/JNEUROSCI.3501-10.2010
doi: 10.1523/JNEUROSCI.3501-10.2010 URL |
| [70] | Shackman A. J., Salomons T. V., Slagter H. A., Fox A. S., Winter J. J., & Davidson R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews. Neuroscience, 12(3), 154-167. https://doi.org/10.1038/nrn2994 |
| [71] |
Sui J., & Humphreys G. W. (2015). The integrative self: How self-reference integrates perception and memory. Trends in Cognitive Sciences, 19(12), 719-728. https://doi.org/10.1016/j.tics.2015.08.015
doi: S1364-6613(15)00206-5 URL pmid: 26447060 |
| [72] |
Taylor A. M. W., Becker S., Schweinhardt P., & Cahill C. (2016). Mesolimbic dopamine signaling in acute and chronic pain: Implications for motivation, analgesia, and addiction. Pain, 157(6), 1194-1198. https://doi.org/10.1097/j.pain.0000000000000494
doi: 10.1097/j.pain.0000000000000494 URL pmid: 26797678 |
| [73] |
Telzer E. H., Masten C. L., Berkman E. T., Lieberman M. D., & Fuligni A. J. (2010). Gaining while giving: An fMRI study of the rewards of family assistance among white and Latino youth. Social Neuroscience, 5(5-6), 508-518. https://doi.org/10.1080/17470911003687913
doi: 10.1080/17470911003687913 URL pmid: 20401808 |
| [74] |
Wager T. D., Rilling J. K., Smith E. E., Sokolik A., Casey K. L., Davidson R. J., ... Cohen J. D. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303(5661), 1162-1167. https://doi.org/10.1126/science.1093065
doi: 10.1126/science.1093065 URL pmid: 14976306 |
| [75] |
Wang C., Bao C., Gao J., Gu Y., & Dong X. (2020). Pain modulates neural responses to reward in the medial prefrontal cortex. Human Brain Mapping, 41(5), 1372-1381. https://doi.org/10.1002/hbm.24882
doi: 10.1002/hbm.24882 URL pmid: 31785068 |
| [76] |
Wang C., Gao J., Ma Y., Zhu C., & Dong X.-W. (2018). Physical pain increases interpersonal trust in females. European Journal of Pain, 22(1), 150-160. https://doi.org/10.1002/ejp.1111
doi: 10.1002/ejp.1111 URL pmid: 28913979 |
| [77] |
Wang D., Liu T., & Shi J. (2020). Neural dynamic responses of monetary and social reward processes in adolescents. Frontiers in Human Neuroscience, 14, 141. https://doi.org/10.3389/fnhum.2020.00141
doi: 10.3389/fnhum.2020.00141 URL |
| [78] |
Wang Z., Li Q., Nie L., & Zheng Y. (2020). Neural dynamics of monetary and social reward processing in social anhedonia. Social Cognitive and Affective Neuroscience, 15(9), 991-1003. https://doi.org/10.1093/scan/nsaa128
doi: 10.1093/scan/nsaa128 URL pmid: 32945882 |
| [79] |
Wu Y., & Zhou X. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114-122. https://doi.org/10.1016/j.brainres.2009.06.032
doi: 10.1016/j.brainres.2009.06.032 URL pmid: 19539614 |
| [80] |
Yeung N., & Sanfey A. G. (2004). Independent coding of reward magnitude and valence in the human brain. The Journal of neuroscience, 24(28), 6258-6264. https://doi.org/10.1523/JNEUROSCI.4537-03.2004
doi: 10.1523/JNEUROSCI.4537-03.2004 URL |
| [81] |
Zaki J., & Ochsner K. N. (2012). The neuroscience of empathy: Progress, pitfalls and promise. Nature Neuroscience, 15(5), 675-680. https://doi.org/10.1038/nn.3085
doi: 10.1038/nn.3085 URL pmid: 22504346 |
| [82] |
Zhang D., Shen J., Bi R., Zhang Y., Zhou F., Feng C., & Gu R. (2022). Differentiating the abnormalities of social and monetary reward processing associated with depressive symptoms. Psychological medicine, 52(11), 2080-2094. https://doi.org/10.1017/S0033291720003967
doi: 10.1017/S0033291720003967 URL |
| [83] |
Zhang Y., Li Q., Wang Z., Liu X., & Zheng Y. (2017). Temporal dynamics of reward anticipation in the human brain. Biological Psychology, 128, 89-97. https://doi.org/10.1016/j.biopsycho.2017.07.011
doi: S0301-0511(17)30131-X URL pmid: 28735969 |
| [84] |
Zhu S., Wang Y., Gao S., & Jia S. (2019). The influence of context condition on outcome evaluation in experimental conditions: Even vs. neutral. International Journal of Psychophysiology, 141, 28-36. https://doi.org/10.1016/j.ijpsycho.2019.05.001
doi: S0167-8760(18)30945-0 URL pmid: 31071359 |
| [85] |
Zubieta J.-K., Smith Y. R., Bueller J. A., Xu Y., Kilbourn M. R., Jewett D. M., Meyer C. R., & Koeppe R. A. (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science, 293(5528), 311-315. https://doi.org/10.1126/science.1060952
doi: 10.1126/science.1060952 URL pmid: 11452128 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||