Acta Psychologica Sinica ›› 2025, Vol. 57 ›› Issue (8): 1333-1348.doi: 10.3724/SP.J.1041.2025.1333
• Reports of Empirical Studies • Previous Articles Next Articles
HE Quanxing1, LI Zhaolan1, YANG Haibo1,2,3(
)
Published:2025-08-25
Online:2025-05-22
Contact:
YANG Haibo
E-mail:yanghaibo@tjnu.edu.cn
HE Quanxing, LI Zhaolan, YANG Haibo. (2025). Dual-system perspectives: A meta-analytic comparison of striatal and prefrontal cortex activation patterns in substance addiction versus behavioral addiction. Acta Psychologica Sinica, 57(8), 1333-1348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2025.1333
Figure 1. Two Key Stages of Addiction Development: “Feels Better” and “Must Do”: The “feels better” circuit operates through the ventral striatum, while the “must do” circuit functions through the dorsal striatum. The regulatory role of executive functions is facilitated through the “stop now” circuit, which primarily involves the dorsolateral prefrontal cortex and is crucial for managing impulsive and addictive behaviors.
Figure 2. Literature Screening Flowchart. Note: A total of 161 articles met the “2.2 Literature Selection and Coding” Among these, we further selected 102 articles as the subjects of analysis for this study. These studies encompass two main categories: reward-related tasks and inhibition-related tasks. The articles used in this research are presented in the appendix. A complete list of all studies can be accessed via the following link: https://osf.io/7gkz6/
| Study | Addiction | Mean age (M ± SD) | HC | HC mean age (M ± SD) | Substance | task | ||
|---|---|---|---|---|---|---|---|---|
| male | female | male | female | |||||
| inhibitory control | ||||||||
| Ahmadi et al., (2013) | 12 | 23 | 18.97 ± 0.45 | 31 | 25 | 18.80 ± 0.97 | Alcohol | Go/no-go |
| Ceceli, King, et al., ( | 31 | 9 | 40.90 ± 9.20 | 15 | 9 | 41.70 ± 11.30 | Heroin | Stop signal task |
| Ceceli, Parvaz, et al., ( | 24 | 4 | 44.07 ± 8.18 | 21 | 5 | 42.66 ± 7.05 | Cocaine | Stop signal task |
| Cyr et al., (2019) | 17 | 11 | 19.30 ± 2 | 17 | 15 | 18.90 ± 2.70 | Cannabis | Simon task |
| Czapla et al., ( | 17 | 2 | 51.21 ± 7.36 | 17 | 4 | 41.95 ± 9.99 | Alcohol | Go/no-go |
| Fu et al., (2008) | 28 | 33.39 ± 5.98 | 15 | 29.59 ± 6.94 | Heroin | Go/no-go | ||
| Gerhardt et al., (2021) | 13 | 2 | 47 ± 12.30 | 9 | 6 | 41.90 ± 14.40 | Alcohol | Simon-task & Go-/no-no & Stop-signal tsk |
| Hester et al., (2013) | 13 | 2 | 38.20 | 13 | 2 | 42.70 | Cocaine | Go/no-go |
| Jan et al., ( | 7 | 0 | 38.30 ± 5.60 | 7 | 3 | 32.30 ± 8.70 | methamphetamine | Stroop |
| Kalhan et al., (2022) | 10 | 10 | 24.30 ± 4.70 | 10 | 10 | 23.70 ± 4.30 | tobacco | Stop-Signal Task |
| Kober et al., ( | 20 | 26.65 ± 9.81 | 20 | 29.20 ± 10.06 | Cannabis | Stroop color-word interference task | ||
| Li et al., (2008) | 15 | 37.70 ± 6.80 | 15 | 36.60 ± 6 | Cocaine | Stop signal task | ||
| Li et al., (2009) | 18 | 6 | 38.70 ± 8.30 | 18 | 6 | 35.50 ± 5.90 | Alcohol | Stop signal task |
| Ma et al., (2015) | 12 | 1 | 37.40 ± 5.30 | 7 | 3 | 35.20 ± 7.30 | Cocaine | Easy no-go |
| Moeller et al., (2012) | 28 | 5 | 44.20 ± 6.30 | 17 | 3 | 39.80 ± 5 | Cocaine | Stroop |
| Moeller et al., (2014) | 28 | 5 | 18 | 2 | 39.60 ± 5.50 | Cocaine | Stroop | |
| Morein-Zamir et al., (2013) | 30 | 2 | 34.53 ± 7.81 | 26 | 15 | 31.68 ± 8.49 | stimulant-dependent | Stop-Signal Task |
| Müller-Oehring et al., (2019) | 10 | 8 | 49.60 ± 11 | 17 | 4 | 50.30 ± 9.50 | Alcohol | Addiction-Stroop color match-to-sample task |
| Nestor et al., (2011) | 5 | 5 | 33.50 ± 9.30 | 11 | 7 | 36.40 ± 10.40 | methamphetamine | Color-world Stroop |
| Schulte et al., ( | 18 | 51 ± 6.60 | 17 | 50 ± 14.90 | Alcohol | Stroop match-to-sample task | ||
| Stein et al., (2021) | 10 | 3 | 45.62 ± 10.01 | 9 | 5 | 37.71 ±12.82 | Alcohol | Go/no-go |
| Zerekidze et al., (2023) | 14 | 4 | 32.40 ± 7.40 | 14 | 7 | 27.60 ± 3.50 | methamphetamine | Stroop |
| Fu, Bi, Wang, et al. (2008) | 30 | 33 ± 6 | 18 | 29 ± 7 | Heroin | Go/no-go | ||
| rewarding process | ||||||||
| Blaine et al., (2020) | 28 | 16 | 33 ± 11 | 23 | 20 | 32 ± 10 | Alcohol | Cue-reactivity task |
| Conti et al., (2024) | 14 | 9 | 11 | 8 | tobacco | Decision-making task | ||
| Dakhili et al., (2022) | 53 | 32.12 ± 5.89 | 23 | 31.17 ± 5.69 | methamphetamine | Cue-reactivity task | ||
| Dennis et al., (2020) | 29 | 10 | - | 28 | 18 | 35 ± 11.80 | Alcohol | Probabilistic delay discounting task |
| Filbey et al., (2013) | 46 | 13 | 23.49 ± 6.37 | 5 | 22 | 30.32 ± 10.09 | Cannabis | Monetary incentive delay task |
| Forbes et al., (2014) | 15 | 9 | 27.20 ± 4.90 | 14 | 10 | 27.20 ± 3.70 | Alcohol | Monetary reward task |
| Gilman & Hommer et al., (2008) | 12 | 41.83 ± 8.39 | 12 | 38.08 ± 6.97 | Alcohol | Visual stimulation task | ||
| Gilman et al., (2015) | 12 | 6 | 30.50 ± 5.06 | 12 | 6 | 30.67 ± 7.10 | Alcohol | Risk-taking task |
| Goudriaan et al., (2010) | 10 | - | 17 | 34.70 ± 9.70 | tobacco | Cue-reactivity task | ||
| Grodin et al., (2016) | 11 | 6 | 32.25 ± 6.94 | 9 | 8 | 27.72 ± 4.25 | Alcohol | Monetary incentive delay task |
| Heinz et al., (2007) | 6 | 6 | 39 ± 7 | 6 | 6 | 40 ± 8 | Alcohol | Cue-reactivity task |
| Hong et al., (2017) | 15 | 39.90 ± 4.90 | 15 | 39.20 ± 5.20 | tobacco | Cue-reactivity task | ||
| Huang et al., (2018) | 28 | 31.68 ± 7.06 | 27 | 33.93 ± 7.21 | methamphetamine | Cue-reactivity task | ||
| Huang et al., (2023) | 25 | 7 | 40.25 ± 8.82 | 13 | 8 | 40.58 ± 10.84 | Heroin | Cue-reactivity task |
| Jia et al., (2011) | 12 | 8 | 38.60 ± 9.29 | 12 | 8 | 35.25 ± 10.19 | Cocaine | Monetary incentive delay task |
| Li et al., (2012) | 24 | 32.80 ± 6.60 | 20 | 35 ± 7 | Heroin | Cue-reactivity task | ||
| Luo et al., ( | 20 | 15 | 34.10 ± 7.90 | 23 | 13 | 31.30 ± 7.10 | tobacco | Modified monetary incentive |
| May et al., (2024) | 18 | 28 | 35.09 ± 8.42 | 32 | 58 | 33.51 ± 11.47 | Amphetamine | Monetary incentive delay |
| Moeller et al., (2018) | 28 | 9 | 18 | 8 | 43.10 ± 7.20 | Cocaine | Drug-choice task | |
| Monterosso et al., (2007) | 8 | 4 | 33.80 ± 8.10 | 12 | 5 | 29.70 ± 7.20 | methamphetamine | Delay discounting task |
| Schulte et al., (2017) | 18 | 8 | 49.90 ± 9.50 | 17 | 9 | 49.10 ± 11 | Alcohol | Cue-reactivity task |
| Seo et al., (2016) | 29 | 8 | 37.20 ± 7.90 | 23 | 14 | 34.30 ± 8.60 | Alcohol | Cue-reactivity task |
| Sjoerds et al., (2014) | 16 | 14 | 46.50 ± 8.50 | 11 | 4 | 46.80 ± 10 | Alcohol | Cue-reactivity task |
| Tapert et al., (2003) | 9 | 6 | 16.96 ± 0.78 | 9 | 6 | 16.35± 1.02 | Alcohol | Alcoholic beverage pictures task |
| Wesley et al., (2014) | 20 | 5 | 34.70 ± 20.90 | 13 | 12 | 39.90 ± 22.20 | Cocaine | Two cross-commodity temporal decision-making tasks |
| Wrase et al., ( | 16 | 42.38 ± 7.52 | 16 | 39.94 ± 8.59 | Alcohol | Cue-reactivity task | ||
| Yip et al., (2014) | 20 | 26.65 ± 2.19 | 20 | 29.20 ± 2.25 | Cannabis | Monetary incentive delay | ||
| Zhou et al., (2019) | 18 | 22.94 ± 2.71 | 44 | 23.20 ± 4.32 | Cannabis | Cue-reactivity task | ||
| Zühlsdorff et al., (2023) | 19 | 1 | 34.30 ± 6.90 | 17 | 1 | 31.20 ± 4.70 | Cocaine | Probabilistic reversal learning |
| Li et al., (2013) | 18 | 34.60 ± 6.80 | 20 | 35 ± 7 | Heroin | Cue-reactivity task | ||
Table 1 Basic Information of Articles Included in the Analysis of Substance Addiction
| Study | Addiction | Mean age (M ± SD) | HC | HC mean age (M ± SD) | Substance | task | ||
|---|---|---|---|---|---|---|---|---|
| male | female | male | female | |||||
| inhibitory control | ||||||||
| Ahmadi et al., (2013) | 12 | 23 | 18.97 ± 0.45 | 31 | 25 | 18.80 ± 0.97 | Alcohol | Go/no-go |
| Ceceli, King, et al., ( | 31 | 9 | 40.90 ± 9.20 | 15 | 9 | 41.70 ± 11.30 | Heroin | Stop signal task |
| Ceceli, Parvaz, et al., ( | 24 | 4 | 44.07 ± 8.18 | 21 | 5 | 42.66 ± 7.05 | Cocaine | Stop signal task |
| Cyr et al., (2019) | 17 | 11 | 19.30 ± 2 | 17 | 15 | 18.90 ± 2.70 | Cannabis | Simon task |
| Czapla et al., ( | 17 | 2 | 51.21 ± 7.36 | 17 | 4 | 41.95 ± 9.99 | Alcohol | Go/no-go |
| Fu et al., (2008) | 28 | 33.39 ± 5.98 | 15 | 29.59 ± 6.94 | Heroin | Go/no-go | ||
| Gerhardt et al., (2021) | 13 | 2 | 47 ± 12.30 | 9 | 6 | 41.90 ± 14.40 | Alcohol | Simon-task & Go-/no-no & Stop-signal tsk |
| Hester et al., (2013) | 13 | 2 | 38.20 | 13 | 2 | 42.70 | Cocaine | Go/no-go |
| Jan et al., ( | 7 | 0 | 38.30 ± 5.60 | 7 | 3 | 32.30 ± 8.70 | methamphetamine | Stroop |
| Kalhan et al., (2022) | 10 | 10 | 24.30 ± 4.70 | 10 | 10 | 23.70 ± 4.30 | tobacco | Stop-Signal Task |
| Kober et al., ( | 20 | 26.65 ± 9.81 | 20 | 29.20 ± 10.06 | Cannabis | Stroop color-word interference task | ||
| Li et al., (2008) | 15 | 37.70 ± 6.80 | 15 | 36.60 ± 6 | Cocaine | Stop signal task | ||
| Li et al., (2009) | 18 | 6 | 38.70 ± 8.30 | 18 | 6 | 35.50 ± 5.90 | Alcohol | Stop signal task |
| Ma et al., (2015) | 12 | 1 | 37.40 ± 5.30 | 7 | 3 | 35.20 ± 7.30 | Cocaine | Easy no-go |
| Moeller et al., (2012) | 28 | 5 | 44.20 ± 6.30 | 17 | 3 | 39.80 ± 5 | Cocaine | Stroop |
| Moeller et al., (2014) | 28 | 5 | 18 | 2 | 39.60 ± 5.50 | Cocaine | Stroop | |
| Morein-Zamir et al., (2013) | 30 | 2 | 34.53 ± 7.81 | 26 | 15 | 31.68 ± 8.49 | stimulant-dependent | Stop-Signal Task |
| Müller-Oehring et al., (2019) | 10 | 8 | 49.60 ± 11 | 17 | 4 | 50.30 ± 9.50 | Alcohol | Addiction-Stroop color match-to-sample task |
| Nestor et al., (2011) | 5 | 5 | 33.50 ± 9.30 | 11 | 7 | 36.40 ± 10.40 | methamphetamine | Color-world Stroop |
| Schulte et al., ( | 18 | 51 ± 6.60 | 17 | 50 ± 14.90 | Alcohol | Stroop match-to-sample task | ||
| Stein et al., (2021) | 10 | 3 | 45.62 ± 10.01 | 9 | 5 | 37.71 ±12.82 | Alcohol | Go/no-go |
| Zerekidze et al., (2023) | 14 | 4 | 32.40 ± 7.40 | 14 | 7 | 27.60 ± 3.50 | methamphetamine | Stroop |
| Fu, Bi, Wang, et al. (2008) | 30 | 33 ± 6 | 18 | 29 ± 7 | Heroin | Go/no-go | ||
| rewarding process | ||||||||
| Blaine et al., (2020) | 28 | 16 | 33 ± 11 | 23 | 20 | 32 ± 10 | Alcohol | Cue-reactivity task |
| Conti et al., (2024) | 14 | 9 | 11 | 8 | tobacco | Decision-making task | ||
| Dakhili et al., (2022) | 53 | 32.12 ± 5.89 | 23 | 31.17 ± 5.69 | methamphetamine | Cue-reactivity task | ||
| Dennis et al., (2020) | 29 | 10 | - | 28 | 18 | 35 ± 11.80 | Alcohol | Probabilistic delay discounting task |
| Filbey et al., (2013) | 46 | 13 | 23.49 ± 6.37 | 5 | 22 | 30.32 ± 10.09 | Cannabis | Monetary incentive delay task |
| Forbes et al., (2014) | 15 | 9 | 27.20 ± 4.90 | 14 | 10 | 27.20 ± 3.70 | Alcohol | Monetary reward task |
| Gilman & Hommer et al., (2008) | 12 | 41.83 ± 8.39 | 12 | 38.08 ± 6.97 | Alcohol | Visual stimulation task | ||
| Gilman et al., (2015) | 12 | 6 | 30.50 ± 5.06 | 12 | 6 | 30.67 ± 7.10 | Alcohol | Risk-taking task |
| Goudriaan et al., (2010) | 10 | - | 17 | 34.70 ± 9.70 | tobacco | Cue-reactivity task | ||
| Grodin et al., (2016) | 11 | 6 | 32.25 ± 6.94 | 9 | 8 | 27.72 ± 4.25 | Alcohol | Monetary incentive delay task |
| Heinz et al., (2007) | 6 | 6 | 39 ± 7 | 6 | 6 | 40 ± 8 | Alcohol | Cue-reactivity task |
| Hong et al., (2017) | 15 | 39.90 ± 4.90 | 15 | 39.20 ± 5.20 | tobacco | Cue-reactivity task | ||
| Huang et al., (2018) | 28 | 31.68 ± 7.06 | 27 | 33.93 ± 7.21 | methamphetamine | Cue-reactivity task | ||
| Huang et al., (2023) | 25 | 7 | 40.25 ± 8.82 | 13 | 8 | 40.58 ± 10.84 | Heroin | Cue-reactivity task |
| Jia et al., (2011) | 12 | 8 | 38.60 ± 9.29 | 12 | 8 | 35.25 ± 10.19 | Cocaine | Monetary incentive delay task |
| Li et al., (2012) | 24 | 32.80 ± 6.60 | 20 | 35 ± 7 | Heroin | Cue-reactivity task | ||
| Luo et al., ( | 20 | 15 | 34.10 ± 7.90 | 23 | 13 | 31.30 ± 7.10 | tobacco | Modified monetary incentive |
| May et al., (2024) | 18 | 28 | 35.09 ± 8.42 | 32 | 58 | 33.51 ± 11.47 | Amphetamine | Monetary incentive delay |
| Moeller et al., (2018) | 28 | 9 | 18 | 8 | 43.10 ± 7.20 | Cocaine | Drug-choice task | |
| Monterosso et al., (2007) | 8 | 4 | 33.80 ± 8.10 | 12 | 5 | 29.70 ± 7.20 | methamphetamine | Delay discounting task |
| Schulte et al., (2017) | 18 | 8 | 49.90 ± 9.50 | 17 | 9 | 49.10 ± 11 | Alcohol | Cue-reactivity task |
| Seo et al., (2016) | 29 | 8 | 37.20 ± 7.90 | 23 | 14 | 34.30 ± 8.60 | Alcohol | Cue-reactivity task |
| Sjoerds et al., (2014) | 16 | 14 | 46.50 ± 8.50 | 11 | 4 | 46.80 ± 10 | Alcohol | Cue-reactivity task |
| Tapert et al., (2003) | 9 | 6 | 16.96 ± 0.78 | 9 | 6 | 16.35± 1.02 | Alcohol | Alcoholic beverage pictures task |
| Wesley et al., (2014) | 20 | 5 | 34.70 ± 20.90 | 13 | 12 | 39.90 ± 22.20 | Cocaine | Two cross-commodity temporal decision-making tasks |
| Wrase et al., ( | 16 | 42.38 ± 7.52 | 16 | 39.94 ± 8.59 | Alcohol | Cue-reactivity task | ||
| Yip et al., (2014) | 20 | 26.65 ± 2.19 | 20 | 29.20 ± 2.25 | Cannabis | Monetary incentive delay | ||
| Zhou et al., (2019) | 18 | 22.94 ± 2.71 | 44 | 23.20 ± 4.32 | Cannabis | Cue-reactivity task | ||
| Zühlsdorff et al., (2023) | 19 | 1 | 34.30 ± 6.90 | 17 | 1 | 31.20 ± 4.70 | Cocaine | Probabilistic reversal learning |
| Li et al., (2013) | 18 | 34.60 ± 6.80 | 20 | 35 ± 7 | Heroin | Cue-reactivity task | ||
| Study | Addiction | Mean age (M ± SD) | HC | HC mean age (M ± SD) | type | task | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| male | female | male | female | ||||||||
| inhibitory control | |||||||||||
| Ding et al., (2014) | 14 | 3 | 16.41 ± 3.20 | 14 | 3 | 16.29 ± 2.95 | IGD | Go/no-go | |||
| Dong et al., (2012) | 12 | 23.60 ± 3.50 | 12 | 24.20 ± 3.10 | IGD | Stroop | |||||
| Dong et al., (2017) | 18 | 21 ± 2.83 | 21 | 22 ± 2.45 | IGD | Color-word interference Stroop task | |||||
| Dong et al., ( | 15 | 23.80 ± 3.70 | 15 | 24.10 ± 3.30 | IGD | Stroop | |||||
| Ko et al., (2014) | 26 | 24.58 ± 3.23 | 23 | 24.35 ± 2.12 | IGD | Go/no-go | |||||
| Lee et al., (2015) | 18 | 13.60 ± 0.90 | 18 | 13.40 ± 1 | IGD | Stroop match-to-sample task | |||||
| Liu et al., (2014) | 11 | 23.45 ± 2.34 | 11 | 22.45 ± 1.70 | IGD | Go/no-go | |||||
| Luijten et al., ( | 18 | 20.83 ± 3.05 | 16 | 21.38 ± 3.03 | PG | Go/no-go & Stroop | |||||
| Shen et al., ( | 10 | 18 | - | 10 | 20 | - | PMVG | Stroop | |||
| Wang, Yang, Zheng, Li, Wei et al., (2021) | 15 | 22.60 ± 2.25 | 25 | 23 ± 2.50 | IGD | Stop signal task | |||||
| Zhang, Lin, et al., (2016) | 19 | 22.20 ± 3.10 | 21 | 22.80 ± 2.40 | IGD | Stroop | |||||
| Zhou et al., (2018) | 8 | 2 | 15.60 ± 3.10 | 8 | 2 | 15.30 ± 2.90 | IGD | Stroop | |||
| rewarding process | |||||||||||
| Balodis et al., (2012) | 10 | 4 | 35.80 ± 11.70 | 10 | 4 | 37.10 ± 11.30 | PG | Monetary incentive delay task | |||
| Choi et al., (2012) | 15 | 27.93 ± 3.59 | 15 | 26.60 ± 4.29 | PG | Monetary incentive task | |||||
| Crockford et al., (2005) | 10 | 39.30 ± 7.60 | 10 | 39.20 ± 8.30 | PG | Cue-reactivity task | |||||
| Dong et al., (2011) | 14 | 23.40 ± 3.30 | 13 | 24.10 ± 3.20 | Internet addiction | Guessing task | |||||
| Dong et al., (2017) | 18 | 21 ± 2.83 | 21 | 22 ± 2.45 | IGD | Guessing task | |||||
| Dong, Hu, & Lin (2013) | 16 | 21.40 ± 3.10 | 15 | 22.10 ± 3.60 | Internet addiction | Reality-simulated guessing task | |||||
| Dong, Hu, Lin, et al., (2013) | 16 | 21.40 ± 3.10 | 15 | 22.10 ± 3.60 | Internet addiction | Continuous win/ losses | |||||
| Gelskov et al., (2016) | 14 | 29.43 ± 6.05 | 15 | 29.87 ± 6.06 | PG | Gambling task | |||||
| Goudriaan et al., (2010) | 17 | 35.30 ± 9.40 | 17 | 34.70 ± 9.70 | PG | Cue-reactivity task | |||||
| Kim et al., (2014) | 15 | 13.87 ± 0.83 | 15 | 13.87 ± 0.83 | Internet addiction | Right-left discrimination test | |||||
| Kim et al., (2017) | 18 | 22.20 ± 2 | 20 | 21.20 ± 2.20 | IGD | The feedback type | |||||
| Ko et al., (2009) | 10 | 22 | 10 | 22.70 | IGD | Cue-reactivity task | |||||
| Ko et al., (2013) | 15 | 24.67 ± 3.11 | 15 | 24.47 ± 2.83 | IGD | Cue-reactivity task | |||||
| Lei et al., (2022) | 45 | 20.82 ± 1.37 | 42 | 21.29 ± 1.52 | IGD | Reward-related prediction- error task | |||||
| Limbrick-Oldfield et al., (2017) | 19 | 31 | 19 | 28 | PG | Cue-reactivity task | |||||
| Lin et al., (2015) | 19 | 22.20 ± 3.08 | 21 | 22.80 ± 2.35 | IGD | Probability discounting task | |||||
| Liu et al., (2016) | 11 | 8 | 21.40 ± 1 | 11 | 8 | 20.80 ± 1.10 | IGD | Internet game video task | |||
| Liu, Yip, et al., ( | 39 | 22.64 ± 2.12 | 23 | 23.09 ± 2.13 | IGD | Cue-reactivity task | |||||
| Liu, Xue, et al., (2017) | 41 | 21.93 ± 1.88 | 27 | 22.74 ± 2.35 | IGD | The cups task | |||||
| Lorenz et al., (2013) | 8 | 25 ± 7.40 | 9 | 24.80 ± 6.90 | PMVG | Dot probe paradigm | |||||
| Miedl et al., (2012) | 15 | 1 | 35 ± 2 | 15 | 1 | 38 ± 2 | PG | Delay discounting Probabilistic discounting | |||
| Miedl et al., (2015) | 15 | 36.70 ± 5.80 | 15 | 36.80 ± 5.60 | PG | Monetary-choice task | |||||
| Power et al., (2012) | 13 | 42.40 ± 10.80 | 13 | 41 ± 11 | PG | Iowa gambling task | |||||
| Schmidt et al., (2021) | 25 | 27.90 ± 9.30 | 28 | 26.80 ± 5.80 | PG | Monetary incentive delay task | |||||
| Seok et al., (2015) | 15 | 22.20 ± 3.07 | 15 | 22.47 ± 2.53 | Internet addiction | Financial decision-making task | |||||
| Sescousse et al., (2013) | 18 | 34.10 ± 11.60 | 20 | 31 ± 7.30 | PG | Incentive delay task | |||||
| Sun et al., (2012) | 10 | 20.40 ± 1.51 | 10 | 20.30 ± 0.68 | IGD | Cue-reactivity task | |||||
| Wang, Hu, et al., (2017) | 18 | 22.10 ± 3.20 | 21 | 23.10 ± 2 | IGD | Delay discounting task | |||||
| Wang, Wu, et al., (2017) | 27 | 3 | 21.07 ± 1.34 | 26 | 4 | 21.45 ± 1.32 | IGD | Cue-reactivity task | |||
| Wang, Yang, Zheng, Li, Qi, et al., ( | 27 | 22.52 ± 2.33 | 26 | 23.23 ± 2.37 | IGD | Timeline of the roulette task | |||||
| Zhang, Yao, et al., (2016) | 40 | 21.95 ± 1.84 | 19 | 22.89 ± 2.23 | IGD | Cue-reactivity video task | |||||
| Zhang et al., (2023) | 24 | 6 | 21.13 ± 2.33 | 33 | 19 | 21.44 ± 2.07 | IGD | Playing an online game | |||
| Zhang, Hu, et al., (2020) | 29 | 25 | 36 | 21 | IGD | Card-guessing task | |||||
| Zheng et al., (2023) | 33 | 26 | 41 | 23 | IGD | Delay discounting task | |||||
| Zhou et al., (2021) | 10 | 11 | 21.29 ± 1.52 | 15 | 8 | 21.61 ± 1.95 | IGD | Cue-reactivity task | |||
| Zühlsdorff et al., (2023) | 16 | 2 | 33.60 ± 8 | 17 | 1 | 31.20 ± 4.70 | PG | Probabilistic reversal learning | |||
| Ding et al., (2013) | 14 | 3 | 16.41 ± 3.20 | 14 | 3 | 16.29 ± 2.95 | IGD | Probabilistic guessing task | |||
Table 2 Basic Information of Articles Included in the Analysis of Behavioral Addiction
| Study | Addiction | Mean age (M ± SD) | HC | HC mean age (M ± SD) | type | task | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| male | female | male | female | ||||||||
| inhibitory control | |||||||||||
| Ding et al., (2014) | 14 | 3 | 16.41 ± 3.20 | 14 | 3 | 16.29 ± 2.95 | IGD | Go/no-go | |||
| Dong et al., (2012) | 12 | 23.60 ± 3.50 | 12 | 24.20 ± 3.10 | IGD | Stroop | |||||
| Dong et al., (2017) | 18 | 21 ± 2.83 | 21 | 22 ± 2.45 | IGD | Color-word interference Stroop task | |||||
| Dong et al., ( | 15 | 23.80 ± 3.70 | 15 | 24.10 ± 3.30 | IGD | Stroop | |||||
| Ko et al., (2014) | 26 | 24.58 ± 3.23 | 23 | 24.35 ± 2.12 | IGD | Go/no-go | |||||
| Lee et al., (2015) | 18 | 13.60 ± 0.90 | 18 | 13.40 ± 1 | IGD | Stroop match-to-sample task | |||||
| Liu et al., (2014) | 11 | 23.45 ± 2.34 | 11 | 22.45 ± 1.70 | IGD | Go/no-go | |||||
| Luijten et al., ( | 18 | 20.83 ± 3.05 | 16 | 21.38 ± 3.03 | PG | Go/no-go & Stroop | |||||
| Shen et al., ( | 10 | 18 | - | 10 | 20 | - | PMVG | Stroop | |||
| Wang, Yang, Zheng, Li, Wei et al., (2021) | 15 | 22.60 ± 2.25 | 25 | 23 ± 2.50 | IGD | Stop signal task | |||||
| Zhang, Lin, et al., (2016) | 19 | 22.20 ± 3.10 | 21 | 22.80 ± 2.40 | IGD | Stroop | |||||
| Zhou et al., (2018) | 8 | 2 | 15.60 ± 3.10 | 8 | 2 | 15.30 ± 2.90 | IGD | Stroop | |||
| rewarding process | |||||||||||
| Balodis et al., (2012) | 10 | 4 | 35.80 ± 11.70 | 10 | 4 | 37.10 ± 11.30 | PG | Monetary incentive delay task | |||
| Choi et al., (2012) | 15 | 27.93 ± 3.59 | 15 | 26.60 ± 4.29 | PG | Monetary incentive task | |||||
| Crockford et al., (2005) | 10 | 39.30 ± 7.60 | 10 | 39.20 ± 8.30 | PG | Cue-reactivity task | |||||
| Dong et al., (2011) | 14 | 23.40 ± 3.30 | 13 | 24.10 ± 3.20 | Internet addiction | Guessing task | |||||
| Dong et al., (2017) | 18 | 21 ± 2.83 | 21 | 22 ± 2.45 | IGD | Guessing task | |||||
| Dong, Hu, & Lin (2013) | 16 | 21.40 ± 3.10 | 15 | 22.10 ± 3.60 | Internet addiction | Reality-simulated guessing task | |||||
| Dong, Hu, Lin, et al., (2013) | 16 | 21.40 ± 3.10 | 15 | 22.10 ± 3.60 | Internet addiction | Continuous win/ losses | |||||
| Gelskov et al., (2016) | 14 | 29.43 ± 6.05 | 15 | 29.87 ± 6.06 | PG | Gambling task | |||||
| Goudriaan et al., (2010) | 17 | 35.30 ± 9.40 | 17 | 34.70 ± 9.70 | PG | Cue-reactivity task | |||||
| Kim et al., (2014) | 15 | 13.87 ± 0.83 | 15 | 13.87 ± 0.83 | Internet addiction | Right-left discrimination test | |||||
| Kim et al., (2017) | 18 | 22.20 ± 2 | 20 | 21.20 ± 2.20 | IGD | The feedback type | |||||
| Ko et al., (2009) | 10 | 22 | 10 | 22.70 | IGD | Cue-reactivity task | |||||
| Ko et al., (2013) | 15 | 24.67 ± 3.11 | 15 | 24.47 ± 2.83 | IGD | Cue-reactivity task | |||||
| Lei et al., (2022) | 45 | 20.82 ± 1.37 | 42 | 21.29 ± 1.52 | IGD | Reward-related prediction- error task | |||||
| Limbrick-Oldfield et al., (2017) | 19 | 31 | 19 | 28 | PG | Cue-reactivity task | |||||
| Lin et al., (2015) | 19 | 22.20 ± 3.08 | 21 | 22.80 ± 2.35 | IGD | Probability discounting task | |||||
| Liu et al., (2016) | 11 | 8 | 21.40 ± 1 | 11 | 8 | 20.80 ± 1.10 | IGD | Internet game video task | |||
| Liu, Yip, et al., ( | 39 | 22.64 ± 2.12 | 23 | 23.09 ± 2.13 | IGD | Cue-reactivity task | |||||
| Liu, Xue, et al., (2017) | 41 | 21.93 ± 1.88 | 27 | 22.74 ± 2.35 | IGD | The cups task | |||||
| Lorenz et al., (2013) | 8 | 25 ± 7.40 | 9 | 24.80 ± 6.90 | PMVG | Dot probe paradigm | |||||
| Miedl et al., (2012) | 15 | 1 | 35 ± 2 | 15 | 1 | 38 ± 2 | PG | Delay discounting Probabilistic discounting | |||
| Miedl et al., (2015) | 15 | 36.70 ± 5.80 | 15 | 36.80 ± 5.60 | PG | Monetary-choice task | |||||
| Power et al., (2012) | 13 | 42.40 ± 10.80 | 13 | 41 ± 11 | PG | Iowa gambling task | |||||
| Schmidt et al., (2021) | 25 | 27.90 ± 9.30 | 28 | 26.80 ± 5.80 | PG | Monetary incentive delay task | |||||
| Seok et al., (2015) | 15 | 22.20 ± 3.07 | 15 | 22.47 ± 2.53 | Internet addiction | Financial decision-making task | |||||
| Sescousse et al., (2013) | 18 | 34.10 ± 11.60 | 20 | 31 ± 7.30 | PG | Incentive delay task | |||||
| Sun et al., (2012) | 10 | 20.40 ± 1.51 | 10 | 20.30 ± 0.68 | IGD | Cue-reactivity task | |||||
| Wang, Hu, et al., (2017) | 18 | 22.10 ± 3.20 | 21 | 23.10 ± 2 | IGD | Delay discounting task | |||||
| Wang, Wu, et al., (2017) | 27 | 3 | 21.07 ± 1.34 | 26 | 4 | 21.45 ± 1.32 | IGD | Cue-reactivity task | |||
| Wang, Yang, Zheng, Li, Qi, et al., ( | 27 | 22.52 ± 2.33 | 26 | 23.23 ± 2.37 | IGD | Timeline of the roulette task | |||||
| Zhang, Yao, et al., (2016) | 40 | 21.95 ± 1.84 | 19 | 22.89 ± 2.23 | IGD | Cue-reactivity video task | |||||
| Zhang et al., (2023) | 24 | 6 | 21.13 ± 2.33 | 33 | 19 | 21.44 ± 2.07 | IGD | Playing an online game | |||
| Zhang, Hu, et al., (2020) | 29 | 25 | 36 | 21 | IGD | Card-guessing task | |||||
| Zheng et al., (2023) | 33 | 26 | 41 | 23 | IGD | Delay discounting task | |||||
| Zhou et al., (2021) | 10 | 11 | 21.29 ± 1.52 | 15 | 8 | 21.61 ± 1.95 | IGD | Cue-reactivity task | |||
| Zühlsdorff et al., (2023) | 16 | 2 | 33.60 ± 8 | 17 | 1 | 31.20 ± 4.70 | PG | Probabilistic reversal learning | |||
| Ding et al., (2013) | 14 | 3 | 16.41 ± 3.20 | 14 | 3 | 16.29 ± 2.95 | IGD | Probabilistic guessing task | |||
| cluster | volume/mm3 | ALE/×10-3 | Z | X | Y | Z | BA | Label | Number of contri-buting studies | FSN |
|---|---|---|---|---|---|---|---|---|---|---|
| Enhanced Inhibitory Control Activation in Substance Addiction (k = 13) | ||||||||||
| 1 | 400 | 10.36 | 3.72 | 4 | 50 | ?2 | 32 | Right Anterior Cingulate | 2 | 4 < FSN <27 |
| 2 | 368 | 13.40 | 4.31 | ?12 | ?40 | ?16 | Left Anterior Lobe | 2 | 4 < FSN < 27 | |
| Decreased Inhibitory Control Activation in Substance Addiction (k = 20) | ||||||||||
| 1 | 472 | 15.26 | 4.20 | 60 | 10 | 22 | 9 | Right Inferior Frontal Gyrus | 2 | > 20 |
| 2 | 472 | 18.17 | 4.70 | ?54 | 14 | 38 | 8 | Left Middle Frontal Gyrus | 3 | 6 < FSN < 40 |
| 3 | 464 | 14.72 | 4.09 | 32 | ?14 | 56 | 6 | Right Precentral Gyrus | 3 | 6 < FSN < 40 |
| 4 | 392 | 14.53 | 4.06 | 54 | 4 | ?26 | 21 | Right Middle Temporal Gyrus | 2 | 6 < FSN < 20 |
| 5 | 352 | 15.30 | 4.21 | ?44 | 8 | ?28 | 38 | Left Superior Temporal Gyrus | 2 | 6 < FSN < 20 |
| 6 | 352 | 16.84 | 4.49 | ?12 | ?12 | ?8 | Left Subthalamic Nucleus | 2 | 6 < FSN < 20 | |
| 7 | 352 | 14.06 | 3.96 | 44 | 0 | 48 | 6 | Right Middle Frontal Gyrus | 2 | > 20 |
| 8 | 304 | 12.68 | 3.68 | 18 | 34 | 24 | 32 | Right Cingulate Gyrus | 2 | < 6 |
| 12.67 | 3.68 | 18 | 32 | 28 | 9 | Right Medial Frontal Gyrus | ||||
| 9 | 256 | 14.66 | 4.08 | ?60 | ?28 | 26 | 40 | Left Inferior Parietal Lobule | 2 | < 6 |
| 10 | 256 | 12.40 | 3.63 | ?32 | ?60 | 44 | 39 | Left Angular Gyrus | 2 | < 6 |
| 11.68 | 3.50 | ?30 | ?62 | 48 | 19 | Left Precuneus | ||||
| Enhanced Inhibitory Control Activation in Behavioral Addiction (k = 9) | ||||||||||
| 1 | 568 | 13.47 | 4.76 | 30 | 32 | 28 | 9 | Right Middle Frontal Gyrus | 2 | > 31 |
| 2 | 336 | 9.48 | 4.00 | ?16 | ?12 | 54 | 6 | Left Middle Frontal Gyrus | 2 | 3 < FSN < 31 |
Table 3 Differences in Inhibitory Control Activation Between Substance Addiction and Behavioral Addiction
| cluster | volume/mm3 | ALE/×10-3 | Z | X | Y | Z | BA | Label | Number of contri-buting studies | FSN |
|---|---|---|---|---|---|---|---|---|---|---|
| Enhanced Inhibitory Control Activation in Substance Addiction (k = 13) | ||||||||||
| 1 | 400 | 10.36 | 3.72 | 4 | 50 | ?2 | 32 | Right Anterior Cingulate | 2 | 4 < FSN <27 |
| 2 | 368 | 13.40 | 4.31 | ?12 | ?40 | ?16 | Left Anterior Lobe | 2 | 4 < FSN < 27 | |
| Decreased Inhibitory Control Activation in Substance Addiction (k = 20) | ||||||||||
| 1 | 472 | 15.26 | 4.20 | 60 | 10 | 22 | 9 | Right Inferior Frontal Gyrus | 2 | > 20 |
| 2 | 472 | 18.17 | 4.70 | ?54 | 14 | 38 | 8 | Left Middle Frontal Gyrus | 3 | 6 < FSN < 40 |
| 3 | 464 | 14.72 | 4.09 | 32 | ?14 | 56 | 6 | Right Precentral Gyrus | 3 | 6 < FSN < 40 |
| 4 | 392 | 14.53 | 4.06 | 54 | 4 | ?26 | 21 | Right Middle Temporal Gyrus | 2 | 6 < FSN < 20 |
| 5 | 352 | 15.30 | 4.21 | ?44 | 8 | ?28 | 38 | Left Superior Temporal Gyrus | 2 | 6 < FSN < 20 |
| 6 | 352 | 16.84 | 4.49 | ?12 | ?12 | ?8 | Left Subthalamic Nucleus | 2 | 6 < FSN < 20 | |
| 7 | 352 | 14.06 | 3.96 | 44 | 0 | 48 | 6 | Right Middle Frontal Gyrus | 2 | > 20 |
| 8 | 304 | 12.68 | 3.68 | 18 | 34 | 24 | 32 | Right Cingulate Gyrus | 2 | < 6 |
| 12.67 | 3.68 | 18 | 32 | 28 | 9 | Right Medial Frontal Gyrus | ||||
| 9 | 256 | 14.66 | 4.08 | ?60 | ?28 | 26 | 40 | Left Inferior Parietal Lobule | 2 | < 6 |
| 10 | 256 | 12.40 | 3.63 | ?32 | ?60 | 44 | 39 | Left Angular Gyrus | 2 | < 6 |
| 11.68 | 3.50 | ?30 | ?62 | 48 | 19 | Left Precuneus | ||||
| Enhanced Inhibitory Control Activation in Behavioral Addiction (k = 9) | ||||||||||
| 1 | 568 | 13.47 | 4.76 | 30 | 32 | 28 | 9 | Right Middle Frontal Gyrus | 2 | > 31 |
| 2 | 336 | 9.48 | 4.00 | ?16 | ?12 | 54 | 6 | Left Middle Frontal Gyrus | 2 | 3 < FSN < 31 |
Figure 3. Inhibitory Control Activation in Substance Addiction (Top) and Behavioral Addiction (Bottom). Yellow indicates increased activation, while blue indicates decreased activation. Please refer to the electronic version for the full-color image, and the same applies to other figures.
| cluster | volume /mm3 | ALE/×10-3 | Z | X | Y | Z | BA | Label | Number of contri-buting studies | FSN |
|---|---|---|---|---|---|---|---|---|---|---|
| Enhanced Reward Processing Activation in Substance Addiction (k = 36) | ||||||||||
| 1 | 736 | 18.54 | 4.44 | ?12 | 14 | ?14 | Left Caudate nucleus, putamen nucleus | 3 | < 11 | |
| Decreased Reward Processing Activation in Substance Addiction (k = 28) | ||||||||||
| 1 | 696 | 13.87 | 3.94 | 26 | ?84 | ?6 | 18 | Right Lingual Gyrus | 3 | < 9 |
| 13.62 | 3.90 | 34 | ?84 | ?6 | 18 | Right Middle Occipital Gyrus | ||||
| Enhanced Reward Processing Activation in Behavioral Addiction (k = 43) | ||||||||||
| 1 | 1232 | 18.17 | 4.53 | ?10 | 0 | 2 | Left lentiform nucleus, thalamus, caudate nucleus | 5 | 13 < FSN < 57 | |
| 17.18 | 4.37 | ?8 | 4 | ?6 | ||||||
Table 4 Differences in Reward Processing Activation Between Substance Addiction and Behavioral Addiction
| cluster | volume /mm3 | ALE/×10-3 | Z | X | Y | Z | BA | Label | Number of contri-buting studies | FSN |
|---|---|---|---|---|---|---|---|---|---|---|
| Enhanced Reward Processing Activation in Substance Addiction (k = 36) | ||||||||||
| 1 | 736 | 18.54 | 4.44 | ?12 | 14 | ?14 | Left Caudate nucleus, putamen nucleus | 3 | < 11 | |
| Decreased Reward Processing Activation in Substance Addiction (k = 28) | ||||||||||
| 1 | 696 | 13.87 | 3.94 | 26 | ?84 | ?6 | 18 | Right Lingual Gyrus | 3 | < 9 |
| 13.62 | 3.90 | 34 | ?84 | ?6 | 18 | Right Middle Occipital Gyrus | ||||
| Enhanced Reward Processing Activation in Behavioral Addiction (k = 43) | ||||||||||
| 1 | 1232 | 18.17 | 4.53 | ?10 | 0 | 2 | Left lentiform nucleus, thalamus, caudate nucleus | 5 | 13 < FSN < 57 | |
| 17.18 | 4.37 | ?8 | 4 | ?6 | ||||||
Figure 4. Reward Processing Activation in Substance Addiction (Top) and Behavioral Addiction (Bottom). Red indicates increased activation, while blue indicates decreased activation.
| [1] | Acar, F., Seurinck, R., Eickhoff, S. B., & Moerkerke, B. (2018). Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI. PloS One, 13(11), e0208177. |
| [2] | Aziz-Safaie, T., Müller, V. I., Langner, R., Eickhoff, S. B., & Cieslik, E. C. (2024). The effect of task complexity on the neural network for response inhibition: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 158, 105544. |
| [3] |
Brand, M. (2022). Can internet use become addictive? Science, 376(6595), 798-799.
doi: 10.1126/science.abn4189 pmid: 35587961 |
| [4] | Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect- Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 104, 1-10. |
| [5] | Brand, M., Young, K. S., Laier, C., Wölfling, K., & Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neuroscience & Biobehavioral Reviews, 71, 252-266. |
| [6] | Ceceli, A. O., Bradberry, C. W., & Goldstein, R. Z. (2022). The neurobiology of drug addiction: Cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology, 47(1), 276-291. |
| [7] | Ceceli, A. O., Parvaz, M. A., King, S., Schafer, M., Malaker, P., Sharma, A., Alia-Klein, N., & Goldstein, R. Z. (2023). Altered prefrontal signaling during inhibitory control in a salient drug context in cocaine use disorder. Cerebral Cortex, 33(3), 597-611. |
| [8] | Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D’Esposito, M. (2014). Quantifying the reconfiguration of intrinsic networks during working memory. PloS One, 9(9), e106636. |
| [9] |
Czapla, M., Baeuchl, C., Simon, J. J., Richter, B., Kluge, M., Friederich, H.-C., Mann, K., Herpertz, S. C., & Loeber, S. (2017). Do alcohol-dependent patients show different neural activation during response inhibition than healthy controls in an alcohol-related fMRI go/no-go-task? Psychopharmacology, 234(6), 1001-1015.
doi: 10.1007/s00213-017-4541-9 pmid: 28161772 |
| [10] |
Dong, G. H., Shen, Y., Huang, J., & Du, X. (2013). Impaired error-monitoring function in people with Internet addiction disorder: An event-related fMRI study. European Addiction Research, 19(5), 269-275.
doi: 10.1159/000346783 pmid: 23548798 |
| [11] |
Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2017). Implementation errors in the GingerALE Software: Description and recommendations. Human Brain Mapping, 38(1), 7-11.
doi: 10.1002/hbm.23342 pmid: 27511454 |
| [12] |
Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., Bzdok, D., & Eickhoff, C. R. (2016). Behavior, Sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137, 70-85.
doi: 10.1016/j.neuroimage.2016.04.072 pmid: 27179606 |
| [13] | Fascher, M., Nowaczynski, S., & Muehlhan, M. (2024). Substance use disorders are characterised by increased voxel-wise intrinsic measures in sensorimotor cortices: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 162, 105712. |
| [14] |
Fascher, M., Nowaczynski, S., Spindler, C., Strobach, T., & Muehlhan, M. (2024). Neural underpinnings of response inhibition in substance use disorders: Weak meta-analytic evidence for a widely used construct. Psychopharmacology, 241(1), 1-17.
doi: 10.1007/s00213-023-06498-1 pmid: 37987836 |
| [15] |
Hannah, R., & Aron, A. R. (2021). Towards real-world generalizability of a circuit for action-stopping. Nature Reviews Neuroscience, 22(9), 538-552.
doi: 10.1038/s41583-021-00485-1 pmid: 34326532 |
| [16] | He, J. B., Nie, Y. F., Zhou, Z. K., & Chai, Y. (2017). Are both neural mechanisms of Internet gaming and heroin addicts the same? Research evidence based on MRI. Advances in Psychological Science, 25(8), 1327-1336. |
| [17] |
Herbet, G., & Duffau, H. (2020). Revisiting the functional anatomy of the human brain: Toward a meta-networking theory of cerebral functions. Physiological Reviews, 100(3), 1181-1228.
doi: 10.1152/physrev.00033.2019 pmid: 32078778 |
| [18] |
Hu, C. P., Di, X., Li, J. W., Sui, J., & Peng, K. P. (2015). Meta-analysis of neuroimaging studies. Advances in Psychological Science, 23(7), 1118-1129.
doi: 10.3724/SP.J.1042.2015.01118 |
| [19] |
Igelström, K. M., & Graziano, M. S. A. (2017). The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia, 105, 70-83.
doi: S0028-3932(17)30001-5 pmid: 28057458 |
| [20] |
Jan, R. K., Lin, J. C., McLaren, D. G., Kirk, I. J., Kydd, R. R., & Russell, B. R. (2014). The effects of methylphenidate on cognitive control in active methamphetamine dependence using functional magnetic resonance imaging. Frontiers in Psychiatry, 5, 20.
doi: 10.3389/fpsyt.2014.00020 pmid: 24639656 |
| [21] |
Kanayama, G., Rogowska, J., Pope, H. G., Gruber, S. A., & Yurgelun-Todd, D. A. (2004). Spatial working memory in heavy cannabis users: A functional magnetic resonance imaging study. Psychopharmacology, 176(3-4), 239-247.
pmid: 15205869 |
| [22] |
Kober, H., DeVito, E. E., DeLeone, C. M., Carroll, K. M., & Potenza, M. N. (2014). Cannabis abstinence during treatment and one-year follow-up: Relationship to neural activity in men. Neuropsychopharmacology, 39(10), 2288-2298.
doi: 10.1038/npp.2014.82 pmid: 24705568 |
| [23] |
Kober, H., Lacadie, C. M., Wexler, B. E., Malison, R. T., Sinha, R., & Potenza, M. N. (2016). Brain activity during cocaine craving and gambling urges: An fMRI study. Neuropsychopharmacology, 41(2), 628-637.
doi: 10.1038/npp.2015.193 pmid: 26119472 |
| [24] | Koob, G. F., & Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59(1), 29-53. |
| [25] | Kubit, B., & Jack, A. I. (2013). Rethinking the role of the rTPJ in attention and social cognition in light of the opposing domains hypothesis: Findings from an ALE-based meta-analysis and resting-state functional connectivity. Frontiers in Human Neuroscience, 7. https://doi.org/10.1016/j.neubiorev.2021.04.028 |
| [26] | Le, T. M., Potvin, S., Zhornitsky, S., & Li, C.-S. R. (2021). Distinct patterns of prefrontal cortical disengagement during inhibitory control in addiction: A meta-analysis based on population characteristics. Neuroscience & Biobehavioral Reviews, 127, 255-269. |
| [27] | Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. The American Journal of Psychiatry, 144(9), 1184-1188. |
| [28] |
Liu, J. C., Ran, G. M., & Zhang, Q. (2022). The neural activities of different emotion carriers and their similarities and differences: A meta-analysis of functional neuroimaging studies. Advances in Psychological Science, 30(3), 536-555.
doi: 10.3724/SP.J.1042.2022.00536 |
| [29] |
Liu, L., Yip, S. W., Zhang, J.-T., Wang, L.-J., Shen, Z.-J., Liu, B., … Fang, X.-Y. (2017). Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. Addiction Biology, 22(3), 791-801.
doi: 10.1111/adb.12338 pmid: 26732520 |
| [30] |
Luijten, M., Meerkerk, G.-J., Franken, I. H. A., van de Wetering, B. J. M., & Schoenmakers, T. M.(2015). An fMRI study of cognitive control in problem gamers. Psychiatry Research, 231(3), 262-268.
doi: 10.1016/j.pscychresns.2015.01.004 pmid: 25670645 |
| [31] | Luijten, M., Schellekens, A. F., Kühn, S., Machielse, M. W. J., & Sescousse, G. (2017). Disruption of reward processing in addiction: An image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry, 74(4), 387-398. |
| [32] |
Lundqvist, T. (2010). Imaging cognitive deficits in drug abuse. Current Topics in Behavioral Neurosciences, 3, 247-275.
doi: 10.1007/7854_2009_26 pmid: 21161756 |
| [33] | Luo, S., Ainslie, G., Giragosian, L., & Monterosso, J. R. (2011). Striatal hyposensitivity to delayed rewards among cigarette smokers. Drug and Alcohol Dependence, 116(1-3), 18-23. |
| [34] | Mei, B., Tao, Q., Dang, J., Niu, X., Sun, J., Zhang, M., … Cheng, J. (2024). Meta-analysis of structural and functional abnormalities in behavioral addictions. Addictive Behaviors, 157, 108088. |
| [35] | Menon, V., & D’Esposito, M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology, 47(1), 90-103. |
| [36] |
Noël, X., Brevers, D., & Bechara, A. (2013). A neurocognitive approach to understanding the neurobiology of addiction. Current Opinion in Neurobiology, 23(4), 632-638.
doi: 10.1016/j.conb.2013.01.018 pmid: 23395462 |
| [37] | Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. |
| [38] | Picó-Pérez, M., Costumero, V., Verdejo-Román, J., Albein-Urios, N., Martínez-González, J. M., Soriano-Mas, C., Barrós-Loscertales, A., & Verdejo-Garcia, A. (2022). Brain networks alterations in cocaine use and gambling disorders during emotion regulation. Journal of Behavioral Addictions, 11(2), 373-385. |
| [39] | Qiu, Z., & Wang, J. (2021a). A voxel-wise meta-analysis of task-based functional MRI studies on impaired gain and loss processing in adults with addiction. Journal of Psychiatry & Neuroscience: JPN, 46(1), E128-E146. |
| [40] | Qiu, Z., & Wang, J. (2021b). Altered neural activities during response inhibition in adults with addiction: A voxel-wise meta-analysis. Psychological Medicine, 51(3), 387-399. |
| [41] | Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247-291. |
| [42] | Robinson, T. E., & Berridge, K. C. (2025). The incentive-sensitization theory of addiction 30 years on. Annual Review of Psychology, 76(1), 29-58. |
| [43] |
Romanczuk-Seiferth, N., Koehler, S., Dreesen, C., Wüstenberg, T., & Heinz, A. (2015). Pathological gambling and alcohol dependence: Neural disturbances in reward and loss avoidance processing. Addiction Biology, 20(3), 557-569.
doi: 10.1111/adb.12144 pmid: 24754423 |
| [44] |
Schulte, T., Müller-Oehring, E. M., Sullivan, E. V., & Pfefferbaum, A. (2012). Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men. Biological Psychiatry, 71(3), 269-278.
doi: 10.1016/j.biopsych.2011.10.022 pmid: 22137506 |
| [45] | Shen, X., Li, Z., Sheng, J., Zhou, X., & Wang, J. (2023). Functional MRI of inhibitory control processing in problematic mobile video gamers. Psychiatry Research, 325, 115220. |
| [46] |
Starcke, K., Antons, S., Trotzke, P., & Brand, M. (2018). Cue-reactivity in behavioral addictions: A meta-analysis and methodological considerations. Journal of Behavioral Addictions, 7(2), 227-238.
doi: 10.1556/2006.7.2018.39 pmid: 29788752 |
| [47] | Sulpizio, S., Del Maschio, N., Fedeli, D., & Abutalebi, J. (2020). Bilingual language processing: A meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 108, 834-853. |
| [48] | Tolomeo, S., & Yu, R. (2022). Brain network dysfunctions in addiction: A meta-analysis of resting-state functional connectivity. Translational Psychiatry, 12(1), 41. |
| [49] | Turel, O., & Qahri-Saremi, H. (2016). Problematic use of social networking sites: Antecedents and consequence from a dual-system theory perspective. Journal of Management Information Systems, 33(4), 1087-1116. |
| [50] | Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16(3, Part A), 765-780. |
| [51] | van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2012). Response inhibition during cue reactivity in problem gamblers: An fMRI study. PLoS One, 7(3), e30909. |
| [52] | Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., … Miller, E. N. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American Journal of Psychiatry, 158(3), 377-382. |
| [53] |
von Deneen, K. M., Hussain, H., Waheed, J., Xinwen, W., Yu, D., & Yuan, K. (2022). Comparison of frontostriatal circuits in adolescent nicotine addiction and internet gaming disorder. Journal of Behavioral Addictions, 11(1), 26-39.
doi: 10.1556/2006.2021.00086 pmid: 35049521 |
| [54] |
Wang, L., Yang, G., Zheng, Y., Li, Z., Qi, Y., Li, Q., & Liu, X. (2021). Enhanced neural responses in specific phases of reward processing in individuals with Internet gaming disorder. Journal of Behavioral Addictions, 10(1), 99-111.
doi: 10.1556/2006.2021.00003 pmid: 33570505 |
| [55] | Worhunsky, P. D., Malison, R. T., Rogers, R. D., & Potenza, M. N. (2014). Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug and Alcohol Dependence, 145, 77-86. |
| [56] |
Wrase, J., Schlagenhauf, F., Kienast, T., Wüstenberg, T., Bermpohl, F., Kahnt, T., … Heinz, A. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage, 35(2), 787-794.
doi: 10.1016/j.neuroimage.2006.11.043 pmid: 17291784 |
| [57] |
Yan, H., Xiao, S., Fu, S., Gong, J., Qi, Z., Chen, G., … Wang, Y. (2023). Functional and structural brain abnormalities in substance use disorder: A multimodal meta-analysis of neuroimaging studies. Acta Psychiatrica Scandinavica, 147(4), 345-359.
doi: 10.1111/acps.13539 pmid: 36807120 |
| [58] | Yan, W.-S., Chen, R.-T., Liu, M.-M., & Zheng, D.-H. (2021). Monetary reward discounting, inhibitory control, and trait impulsivity in young adults with internet gaming disorder and nicotine dependence. Frontiers in Psychiatry, 12, 628933. |
| [59] | Yao, Y.-W., Liu, L., Ma, S.-S., Shi, X.-H., Zhou, N., Zhang, J.-T., & Potenza, M. N. (2017). Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 83, 313-324. |
| [60] |
Yuan, J., Yu, H., Yu, M., Liang, X., Huang, C., He, R., … Xiang, B. (2022). Altered spontaneous brain activity in major depressive disorder: An activation likelihood estimation meta-analysis. Journal of Affective Disorders, 314, 19-26.
doi: 10.1016/j.jad.2022.06.014 pmid: 35750093 |
| [61] |
Zeng, X., Han, X., Gao, F., Sun, Y., & Yuan, Z. (2023). Abnormal structural alterations and disrupted functional connectivity in behavioral addiction: A meta-analysis of VBM and fMRI studies. Journal of Behavioral Addictions, 12(3), 599-612.
doi: 10.1556/2006.2023.00025 pmid: 37505987 |
| [62] |
Zou, Z., Wang, H., d’Oleire Uquillas, F., Wang, X., Ding, J., & Chen, H. (2017). Definition of substance and non-substance addiction. Advances in Experimental Medicine and Biology, 1010, 21-41.
doi: 10.1007/978-981-10-5562-1_2 pmid: 29098666 |
| [1] | LIN Rongmao, YU Qiaohua, HU Tianxiang, ZHANG Jiumei, YE Yushan, LIAN Rong. The relationship between awe and prosocial behavior: Three-level meta-analysis and meta-analytic structural equation modeling [J]. Acta Psychologica Sinica, 2025, 57(4): 631-651. |
| [2] | LU Jiaqi, LI Yusi, HE Guibing. Risky decision-making in bipolar disorder: Evidence from a three-level meta-analysis [J]. Acta Psychologica Sinica, 2025, 57(1): 100-124. |
| [3] | WANG Xiangkun, XIN Ziqiang, HOU You. Cross-temporal meta-analyses of changes and macro causes in moral disengagement among Chinese middle school and college students [J]. Acta Psychologica Sinica, 2024, 56(7): 859-875. |
| [4] | HOU Juan, JIA Keke, FANG Xiaoyi. Trend analysis of marital satisfaction of mainland Chinese couples in the past 20 years [J]. Acta Psychologica Sinica, 2024, 56(7): 895-910. |
| [5] | YIN Huazhan, XIAO Chunhua, XIA Anni, YUAN Zhongjing, CUI Xiaobing, LI Dan. The influence of basic emotions on duration perception: Evidence from three-level meta-analysis and network meta-analysis [J]. Acta Psychologica Sinica, 2024, 56(12): 1676-1690. |
| [6] | MENG Xianxin, YU Delin, CHEN Yijing, ZHANG Lin, FU Xiaolan. Association between childhood maltreatment and empathy:A three-level meta-analytic review [J]. Acta Psychologica Sinica, 2023, 55(8): 1285-1300. |
| [7] | LI Chaoping, MENG Xue, XU Yan, LAN Yuanmei. Effects of family supportive supervisor behavior on employee outcomes and mediating mechanisms: A meta-analysis [J]. Acta Psychologica Sinica, 2023, 55(2): 257-271. |
| [8] | JIN Juanjuan, SHAO Lei, HUANG Xiaoxiao, ZHANG Yali, YU Guoliang. The relationship between social exclusion and saggression: A meta-analysis [J]. Acta Psychologica Sinica, 2023, 55(12): 1979-1996. |
| [9] | CHEN Bizhong, HUANG Xuan, NIU Gengfeng, SUN Xiaojun, CAI Zhihui. Developmental change and stability of social anxiety from toddlerhood to young adulthood: A three-level meta-analysis of longitudinal studies [J]. Acta Psychologica Sinica, 2023, 55(10): 1637-1652. |
| [10] | LIAO Youguo, CHEN Jianwen, ZHANG Yan, PENG Cong. The reciprocal relationship between peer victimization and internalizing problems in children and adolescents: A meta-analysis of longitudinal studies [J]. Acta Psychologica Sinica, 2022, 54(7): 828-849. |
| [11] | LAN Yuanmei, LI Chaoping, WANG Jiayan, MENG Xue. Benefits and costs of employee boundary-spanning behavior: A meta-analytic review [J]. Acta Psychologica Sinica, 2022, 54(6): 665-683. |
| [12] | XIN Sufei, LIANG Xin, SHENG Liang, ZHAO Zhirui. Changes of teachers’ subjective well-being in mainland China (2002~2019): The perspective of cross-temporal meta-analysis [J]. Acta Psychologica Sinica, 2021, 53(8): 875-889. |
| [13] | ZHANG Wenyun, LI Xiaoyun, YAO Junjie, YE Qian, PENG Weiwei. Abnormalities in pain sensitivity among individuals with autism spectrum disorder: Evidence from meta-analysis [J]. Acta Psychologica Sinica, 2021, 53(6): 613-628. |
| [14] | ZHANG Yali, LI Sen, YU Guoliang. The relationship between social media use and fear of missing out: A meta-analysis [J]. Acta Psychologica Sinica, 2021, 53(3): 273-290. |
| [15] | ZHANG Lihua, ZHU He. Relationship between narcissism and aggression: A meta-analysis [J]. Acta Psychologica Sinica, 2021, 53(11): 1228-1243. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||