Acta Psychologica Sinica ›› 2024, Vol. 56 ›› Issue (8): 1076-1090.doi: 10.3724/SP.J.1041.2024.01076
• Reports of Empirical Studies • Previous Articles Next Articles
CHEN Wei1, YAO Lin2, NI Xiaobing1, LI Junjiao3, WU Ziyou1, ZHENG Xifu1()
Published:
2024-08-25
Online:
2024-06-17
Contact:
ZHENG Xifu
E-mail:zhengxifu@m.scnu.edu.cn
CHEN Wei, YAO Lin, NI Xiaobing, LI Junjiao, WU Ziyou, ZHENG Xifu. (2024). The effect of retrieval exposure duration on the reconsolidation and extinction of fear memory. Acta Psychologica Sinica, 56(8), 1076-1090.
variables | Group | F or χ2 | p | |||
---|---|---|---|---|---|---|
E (n = 23) | R1 (n = 23) | R2 (n = 21) | R4 (n = 20) | |||
Number of male (proportion) | 6 (26.09%) | 9 (39.13%) | 5 (23.81%) | 4 (20.00%) | 2.29 | 0.515 |
Age | 20.35 ± 4.24 | 21.43 ± 3.98 | 19.95 ± 4.16 | 21.70 ± 4.85 | 0.04 | 0.990 |
STAI-T | 43.04 ± 8.98 | 42.87 ± 7.96 | 39.76 ± 8.29 | 43.00 ± 9.62 | 0.03 | 0.992 |
BDI | 4.30 ± 0.90 | 5.52 ± 1.03 | 6.81 ± 1.42 | 6.95 ± 1.55 | 1.03 | 0.382 |
Shock intensity | 54.96 ± 11.46 | 50.30 ± 9.34 | 55.38 ± 11.55 | 44.25 ± 9.89 | 0.23 | 0.877 |
Table 1 Group information and questionnaire data of the participants
variables | Group | F or χ2 | p | |||
---|---|---|---|---|---|---|
E (n = 23) | R1 (n = 23) | R2 (n = 21) | R4 (n = 20) | |||
Number of male (proportion) | 6 (26.09%) | 9 (39.13%) | 5 (23.81%) | 4 (20.00%) | 2.29 | 0.515 |
Age | 20.35 ± 4.24 | 21.43 ± 3.98 | 19.95 ± 4.16 | 21.70 ± 4.85 | 0.04 | 0.990 |
STAI-T | 43.04 ± 8.98 | 42.87 ± 7.96 | 39.76 ± 8.29 | 43.00 ± 9.62 | 0.03 | 0.992 |
BDI | 4.30 ± 0.90 | 5.52 ± 1.03 | 6.81 ± 1.42 | 6.95 ± 1.55 | 1.03 | 0.382 |
Shock intensity | 54.96 ± 11.46 | 50.30 ± 9.34 | 55.38 ± 11.55 | 44.25 ± 9.89 | 0.23 | 0.877 |
Figure 4. Four groups of participants in the fear memory acquisition, reactivation, extinction, spontaneous and reinstatement phase of the skin conductance response. Note. E: The x axis represents the trials; Error bar stands for standard error.
Figure 5. Comparison of extinction after retrieval in each group Note. E: Traditional extinction group, R1: Single-retrieval extinction group, R2: Double-retrieval extinction group, R4: Quadruple-retrieval extinction group. *p < 0.05.
Figure 6. Comparison of spontaneous recovery of fear memory in each group. Note. E: Traditional extinction group, R1: Single-retrieval extinction group, R2: Double-retrieval extinction group, R4: Quadruple-retrieval extinction group. Spontaneous recovery index = spontaneous recovery of the first trial of SCR value - extinction of the last trial of SCR value (Schiller et al., 2010). *p < 0.05, **p < 0.01
Figure 7. Comparison of reinstatement test of fear memory in each group. Note. E: Traditional extinction group, R1: Single-retrieval extinction group, R2: Double-retrieval extinction group, R4: Quadruple-retrieval extinction group. Fear reinstatement index = reinstatement of the first trial of SCR value - spontaneous recovery of the first trial of SCR value (Schiller et al., 2010). *p < 0.05, ***p < 0.001
Figure 8. The subjective expected value and the fitting expected value of the acquisition and retrieval-extinction phase in each group. Note. The red dotted line is the expected value of the subject's subjective assessment, and the black solid line is the expected value of the reinforcement learning model fit. The color map is available in electronic version
Group | α | model error | average PE |
---|---|---|---|
E | 0.18 | 0.14 | 0.19 |
R1 | 0.27 | 0.12 | 0.12 |
R2 | 0.18 | 0.09 | 0.15 |
R4 | 0.24 | 0.14 | 0.14 |
Table 2. The model fits the main parameters
Group | α | model error | average PE |
---|---|---|---|
E | 0.18 | 0.14 | 0.19 |
R1 | 0.27 | 0.12 | 0.12 |
R2 | 0.18 | 0.09 | 0.15 |
R4 | 0.24 | 0.14 | 0.14 |
Figure 9. The prediction error value generated by 12 trials on the second day of the four groups of participants. Note. E: Traditional extinction group, R1: Single-retrieval extinction group, R2: Double-retrieval extinction group, R4: Quadruple-retrieval extinction group.
[1] | Alfei J. M., Ferrer Monti R. I., Molina V. A., Bueno A. M., & Urcelay G. P. (2015). Prediction error and trace dominance determine the fate of fear memories after post-training manipulations. Learning & Memory, 22(8), 385-400. https://doi.org/10.1101/lm.038513.115 |
[2] | Bouton M. E. (2004). Context and behavioral processes in extinction. Learning & Memory, 11(5), 485-494. https://doi.org/10.1101/lm.78804 |
[3] |
Bustos S. G., Maldonado H., & Molina V. A. (2009). Disruptive effect of midazolam on fear memory reconsolidation: Decisive influence of reactivation time span and memory age. Neuropsychopharmacology, 34(2), 446-457. https://doi.org/10.1038/npp.2008.75
doi: 10.1038/npp.2008.75 URL pmid: 18509330 |
[4] | Cahill E. N., & Milton A. L. (2019). Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl), 236(1), 111-132. https://doi.org/10.1007/s00213-018-5121-3 |
[5] |
Chalkia A., Schroyens N., Leng L., Vanhasbroeck N., Zenses A. K., Van Oudenhove L., & Beckers T. (2020). No persistent attenuation of fear memories in humans: A registered replication of the reactivation-extinction effect. Cortex, 129, 496-509. https://doi.org/10.1016/j.cortex.2020.04.017
doi: S0010-9452(20)30170-2 URL pmid: 32580869 |
[6] |
Chen W., Li J., Caoyang J., Yang Y., Hu Y., & Zheng X. (2018). Effects of prediction error on post-retrieval extinction of fear to compound stimuli. Acta Psychologica Sinica, 50(7), 739-749. https://doi.org/10.3724/sp.J.1041.2018.00739
doi: 10.3724/SP.J.1041.2018.00739 URL |
[7] | Chen W., Li J., Xu L., Zhao S., Fan M., & Zheng X. (2020). Destabilizing different strengths of fear memories requires different degrees of prediction error during retrieval. Frontiers in Behavioral Neuroscience, 14, 598924. https://doi.org/10.3389/fnbeh.2020.598924 |
[8] | Chen W., Li J., Zhang X., Dong Y., Shi P., Luo P., & Zheng X. (2021). Retrieval-extinction as a reconsolidation-based treatment for emotional disorders:Evidence from an extinction retention test shortly after intervention. Behaviour Research and Therapy, 139, 103831. https://doi.org/10.1016/j.brat.2021.103831 |
[9] |
Clem R. L., & Huganir R. L. (2010). Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science, 330(6007), 1108-1112. https://doi.org/10.1126/science.1195298
doi: 10.1126/science.1195298 URL pmid: 21030604 |
[10] | Davis M., Walker D. L., & Myers K. M. (2003). Role of the amygdala in fear extinction measured with potentiated startle. Annals of the New York Academy of Sciences, 985, 218-232. https://doi.org/10.1111/j.1749-6632.2003.tb07084.x |
[11] |
de Oliveira Alvares L., & Do-Monte F. H. (2021). Understanding the dynamic and destiny of memories. Neuroscience and Biobehavioral Reviews, 125, 592-607. https://doi.org/10.1016/j.neubiorev.2021.03.009
doi: 10.1016/j.neubiorev.2021.03.009 URL pmid: 33722616 |
[12] | Diaz-Mataix L., Ruiz Martinez R. C., Schafe G. E., LeDoux J. E., & Doyere V. (2013). Detection of a temporal error triggers reconsolidation of amygdala-dependent memories. Current Biology, 23(6), 467-472. https://doi.org/10.1016/j.cub.2013.01.053 |
[13] |
Exton-McGuinness M. T., Lee J. L., & Reichelt A. C. (2015). Updating memories—The role of prediction errors in memory reconsolidation. Behavioural Brain Research, 278, 375-384. https://doi.org/10.1016/j.bbr.2014.10.011
doi: 10.1016/j.bbr.2014.10.011 URL pmid: 25453746 |
[14] | Ferrara N. C., Kwapis J. L., & Trask S. (2023). Memory retrieval, reconsolidation, and extinction: Exploring the boundary conditions of post-conditioning cue exposure. Frontiers in Synaptic Neuroscience, 15, 1146665. https://doi.org/10.3389/fnsyn.2023.1146665 |
[15] | Ferrara N. C., Trask S., Pullins S. E., & Helmstetter F. J. (2021). Regulation of learned fear expression through the MgN-amygdala pathway. Neurobiology of Learning and Memory, 185, 107526. https://doi.org/10.1016/j.nlm.2021.107526 |
[16] | Fukushima H., Zhang Y., & Kida S. (2021). Active transition of fear memory phase from reconsolidation to extinction through ERK-mediated prevention of reconsolidation. The Journal of Neuroscience, 41(6), 1288-1300. https://doi.org/10.1523/JNEUROSCI.1854-20.2020 |
[17] | Gershman S. J., Monfils M. H., Norman K. A., & Niv Y. (2017). The computational nature of memory modification. Elife, 6. https://doi.org/10.7554/eLife.23763 |
[18] |
Golkar A., Selbing I., Flygare O., Ohman A., & Olsson A. (2013). Other people as means to a safe end: Vicarious extinction blocks the return of learned fear. Psychological Science, 24(11), 2182-2190. https://doi.org/10.1177/0956797613489890
doi: 10.1177/0956797613489890 URL pmid: 24022651 |
[19] | Haaker J., Golkar A., Hermans D., & Lonsdorf T. B. (2014). A review on human reinstatement studies: An overview and methodological challenges. Learning & Memory, 21(9), 424-440. https://doi.org/10.1101/lm.036053.114 |
[20] |
Hu J., Wang W., Homan P., Wang P., Zheng X., & Schiller D. (2018). Reminder duration determines threat memory modification in humans. Scientific Reports, 8(1), 8848. https://doi.org/10.1038/s41598-018-27252-0
doi: 10.1038/s41598-018-27252-0 URL pmid: 29891856 |
[21] |
Junjiao L., Wei C., Jingwen C., Yanjian H., Yong Y., Liang X.,... Xifu Z. (2019). Role of prediction error in destabilizing fear memories in retrieval extinction and its neural mechanisms. Cortex, 121, 292-307. https://doi.org/10.1016/j.cortex.2019.09.003
doi: S0010-9452(19)30321-1 URL pmid: 31669978 |
[22] |
Khalaf O., & Graff J. (2019). Reactivation of recall-induced neurons in the infralimbic cortex and the basolateral amygdala after remote fear memory attenuation. Frontiers in Molecular Neuroscience, 12, 70. https://doi.org/10.3389/fnmol.2019.00070
doi: 10.3389/fnmol.2019.00070 URL pmid: 31057365 |
[23] |
Khalaf O., Resch S., Dixsaut L., Gorden V., Glauser L., & Graff J. (2018). Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science, 360(6394), 1239-1242. https://doi.org/10.1126/science.aas9875
doi: 10.1126/science.aas9875 URL pmid: 29903974 |
[24] |
Kida S. (2023). Interaction between reconsolidation and extinction of fear memory. Brain Research Bulletin, 195, 141-144. https://doi.org/10.1016/j.brainresbull.2023.02.009
doi: 10.1016/j.brainresbull.2023.02.009 URL pmid: 36801360 |
[25] |
Kim J. H., & Richardson R. (2010). New findings on extinction of conditioned fear early in development: Theoretical and clinical implications. Biological Psychiatry, 67(4), 297-303. https://doi.org/10.1016/j.biopsych.2009.09.003
doi: 10.1016/j.biopsych.2009.09.003 URL pmid: 19846065 |
[26] |
Kredlow M. A., Unger L. D., & Otto M. W. (2016). Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychological Bulletin, 142(3), 314-336. https://doi.org/10.1037/bul0000034
doi: 10.1037/bul0000034 URL pmid: 26689086 |
[27] |
Lee H. J., Haberman R. P., Roquet R. F., & Monfils M. H. (2015). Extinction and retrieval + extinction of conditioned fear differentially activate medial prefrontal cortex and amygdala in rats. Frontiers in Behavioral Neuroscience, 9, 369. https://doi.org/10.3389/fnbeh.2015.00369
doi: 10.3389/fnbeh.2015.00369 URL pmid: 26834596 |
[28] |
Lee J. L. C., Nader K., & Schiller D. (2017). An update on memory reconsolidation updating. Trends in Cognitive Sciences, 21(7), 531-545. https://doi.org/10.1016/j.tics.2017.04.006
doi: S1364-6613(17)30078-5 URL pmid: 28495311 |
[29] | Leung H. T., Reeks L. M., & Westbrook R. F. (2012). Two ways to deepen extinction and the difference between them. Journal of Experimental Psychology: Animal Behavior Processes, 38(4), 394-406. https://doi.org/10.1037/a0030201 |
[30] |
Lonsdorf T. B., Menz M. M., Andreatta M., Fullana M. A., Golkar A., Haaker J.,... Merz C. J. (2017). Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neuroscience and Biobehavioral Reviews, 77, 247-285. https://doi.org/10.1016/j.neubiorev.2017.02.026
doi: S0149-7634(16)30846-6 URL pmid: 28263758 |
[31] | Merlo E., Milton A. L., & Everitt B. J. (2018). A novel retrieval-dependent memory process revealed by the arrest of ERK1/2 activation in the basolateral amygdala. The Journal of Neuroscience, 38(13), 3199-3207. https://doi.org/10.1523/JNEUROSCI.3273-17.2018 |
[32] | Monfils M. H., Cowansage K. K., Klann E., & LeDoux J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324(5929), 951-955. https://doi.org/10.1126/science.1167975 |
[33] |
Monfils M. H., & Holmes E. A. (2018). Memory boundaries: Opening a window inspired by reconsolidation to treat anxiety, trauma- related, and addiction disorders. Lancet Psychiatry, 5(12), 1032-1042. https://doi.org/10.1016/S2215-0366(18)30270-0
doi: S2215-0366(18)30270-0 URL pmid: 30385214 |
[34] |
Myers K. M., & Davis M. (2007). Mechanisms of fear extinction. Molecular Psychiatry, 12(2), 120-150. https://doi.org/10.1038/sj.mp.4001939
doi: 10.1038/sj.mp.4001939 URL pmid: 17160066 |
[35] | Nader K., Schafe G. E., & Le Doux J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722-726. https://doi.org/10.1038/35021052 |
[36] | Pedreira M. E., Perez-Cuesta L. M., & Maldonado H. (2004). Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learning & Memory, 11(5), 579-585. https://doi.org/10.1101/lm.76904 |
[37] | Phelps E. A., & Hofmann S. G. (2019). Memory editing from science fiction to clinical practice. Nature, 572(7767), 43-50. https://doi. org/10.1038/s41586-019-1433-7 |
[38] |
Ponnusamy R., Zhuravka I., Poulos A. M., Shobe J., Merjanian M., Huang J.,... Fanselow M. S. (2016). Retrieval and reconsolidation accounts of fear extinction. Frontiers in Behavioral Neuroscience, 10, 89. https://doi.org/10.3389/fnbeh.2016.00089
doi: 10.3389/fnbeh.2016.00089 URL pmid: 27242459 |
[39] | Raskin M., & Monfils M. H. (2023). Reconsolidation and fear extinction: An update. Current Topics in Behavioral Neurosciences. https://doi.org/10.1007/7854_2023_438 |
[40] |
Sartor G. C., & Aston-Jones G. (2014). Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology, 39(5), 1059-1065. https://doi.org/10.1038/npp.2013.323
doi: 10.1038/npp.2013.323 URL pmid: 24257156 |
[41] |
Schiller D., Kanen J. W., LeDoux J. E., Monfils M. H., & Phelps E. A. (2013). Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20040-20045. https://doi.org/10.1073/pnas.1320322110
doi: 10.1073/pnas.1320322110 URL pmid: 24277809 |
[42] | Schiller D., Monfils M. H., Raio C. M., Johnson D. C., Ledoux J. E., & Phelps E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463(7277), 49-53. https://doi.org/10.1038/nature08637 |
[43] |
Sevenster D., Beckers T., & Kindt M. (2013). Prediction error governs pharmacologically induced amnesia for learned fear. Science, 339(6121), 830-833. https://doi.org/10.1126/science.1231357
doi: 10.1126/science.1231357 URL pmid: 23413355 |
[44] | Sevenster D., Beckers T., & Kindt M. (2014). Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning. Learning & Memory, 21(11), 580-584. https://doi.org/10.1101/lm.035493.114 |
[45] |
Shiban Y., Wittmann J., Weissinger M., & Muhlberger A. (2015). Gradual extinction reduces reinstatement. Frontiers in Behavioral Neuroscience, 9, 254. https://doi.org/10.3389/fnbeh.2015.00254
doi: 10.3389/fnbeh.2015.00254 URL pmid: 26441581 |
[46] |
Shumake J., & Monfils M. H. (2015). Assessing fear following retrieval + extinction through suppression of baseline reward seeking vs. freezing. Frontiers in Behavioral Neuroscience, 9, 355. https://doi.org/10.3389/fnbeh.2015.00355
doi: 10.3389/fnbeh.2015.00355 URL pmid: 26778985 |
[47] | Suzuki A., Josselyn S. A., Frankland P. W., Masushige S., Silva A. J., & Kida S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. The Journal of Neuroscience, 24(20), 4787-4795. https://doi.org/10.1523/JNEUROSCI.5491-03.2004 |
[48] |
Tedesco V., Roquet R. F., DeMis J., Chiamulera C., & Monfils M. H. (2014). Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. Neurobiology of Learning and Memory, 115, 78-85. https://doi.org/10.1016/j.nlm.2014.08.015
doi: 10.1016/j.nlm.2014.08.015 URL pmid: 25196703 |
[49] | Thiele M., Yuen K. S. L., Gerlicher A. V. M., & Kalisch R. (2021). A ventral striatal prediction error signal in human fear extinction learning. Neuroimage, 229, 117709. https://doi.org/10.1016/j.neuroimage.2020.117709 |
[50] | Vaverkova Z., Milton A. L., & Merlo E. (2020). Retrieval-dependent mechanisms affecting emotional memory persistence: Reconsolidation, extinction, and the space in between. Frontiers in Behavioral Neuroscience, 14, 574358. https://doi.org/10.3389/fnbeh.2020.574358 |
[51] | Zimmermann J., & Bach D. R. (2020). Impact of a reminder/extinction procedure on threat-conditioned pupil size and skin conductance responses. Learning & Memory, 27(4), 164-172. https://doi.org/10.1101/lm.050211.119 |
[52] |
Zuccolo P. F., & Hunziker M. H. L. (2019). A review of boundary conditions and variables involved in the prevention of return of fear after post-retrieval extinction. Behavioural Processes, 162, 39-54. https://doi.org/10.1016/j.beproc.2019.01.011
doi: S0376-6357(18)30403-0 URL pmid: 30708059 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||