Acta Psychologica Sinica ›› 2022, Vol. 54 ›› Issue (5): 497-515.doi: 10.3724/SP.J.1041.2022.00497
• Reports of Empirical Studies • Previous Articles Next Articles
HUANG Liqin, SUN Yin, LUO Siyang()
Received:
2021-05-14
Published:
2022-05-25
Online:
2022-03-23
Supported by:
HUANG Liqin, SUN Yin, LUO Siyang. (2022). The impact of individualism on the efficiency of epidemic control and the underlying computational and psychological mechanisms. Acta Psychologica Sinica, 54(5), 497-515.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2022.00497
Figure 6. Similarity matrix between self-construction and COVID-19 control speed (n = 29). From left to right/from top to bottom, each matrix is 1 = Hebei, 2 = Shandong, 3 = Hunan, 4 = Sichuan, 5 = Liaoning, 6 = Shaanxi, 7 = Jiangxi, 8 = Henan, 9 = Guangdong, 10 = Shanxi, 11 = Hubei, 12 = Guangxi, 13 = Hainan, 14 = Jiangsu, 15 = Guizhou, 16 = Chongqing, 17 = Anhui, 18 = Shanghai, 19 = Tianjin, 20 = Fujian, 21 = Beijing, 22 = Heilongjiang, 23 = Inner Mongolia, 24 = Yunnan, 25 = Jilin, 26 = Xinjiang, 7 = Gansu, 28 = Ningxia, 29 = Zhejiang
Figure 8. Simulation diagram of epidemic spread and evolution process. The first picture shows the initial state of epidemic spread. Among the existing 10,000 subjects, there are 10 red infected subjects (Class I) and 8 yellow exposed subjects (Class E). The second picture shows that after the epidemic spreads for some time, we can see a large number of blue susceptible subjects (Class S) and red infected subjects (Class I), as well as some yellow exposed subjects (Class E), and gray subjects that have recovered immunity (Class R). The third picture shows the end of the epidemic. At this time, there are only blue susceptible individuals (Class S) and gray subjects (Class R) immunized after recovery in the whole model. The dead subjects have been removed from the model. At this time, there are less than 10,000 subjects in the model.
Figure 11. Distribution of independent/interdependent self-construction/illegal mobility tendency in different countries. A) The values of independent and interdependent self-construction in different countries; B) The world map of illegal mobility scores in different countries; C) Distribution chart of illegal mobility scores in different countries (error lines represent standard errors); D, E) The world map of scores of independent and interdependent types in different countries.
Individualism | Government norm | Variable | Mean | Standard deviation | Lower bound of the 95% confidence interval | Upper bound of the 95% confidence interval |
---|---|---|---|---|---|---|
Low (30) | 0.2 | Overall control speed | 0.0180 | 0.0008 | 0.0179 | 0.0182 |
Early control speed | 0.0148 | 0.0015 | 0.0145 | 0.0151 | ||
Late control speed | 0.0236 | 0.0013 | 0.0234 | 0.0239 | ||
0.8 | Overall control speed | 0.0187 | 0.0011 | 0.0185 | 0.0189 | |
Early control speed | 0.0149 | 0.0017 | 0.0146 | 0.0153 | ||
Late control speed | 0.0282 | 0.0033 | 0.0275 | 0.0288 | ||
High (70) | 0.2 | Overall control speed | 0.0159 | 0.0010 | 0.0157 | 0.0161 |
Early control speed | 0.0146 | 0.0015 | 0.0143 | 0.0149 | ||
Late control speed | 0.0167 | 0.0018 | 0.0163 | 0.0170 | ||
0.8 | Overall control speed | 0.0192 | 0.0010 | 0.0190 | 0.0194 | |
Early control speed | 0.0153 | 0.0013 | 0.0150 | 0.0155 | ||
Late control speed | 0.0277 | 0.0022 | 0.0273 | 0.0282 |
Table S1 Mean value, Standard Deviation, and 95% Confidence Interval of Control Speed in Each Stage under High and Low Government norm
Individualism | Government norm | Variable | Mean | Standard deviation | Lower bound of the 95% confidence interval | Upper bound of the 95% confidence interval |
---|---|---|---|---|---|---|
Low (30) | 0.2 | Overall control speed | 0.0180 | 0.0008 | 0.0179 | 0.0182 |
Early control speed | 0.0148 | 0.0015 | 0.0145 | 0.0151 | ||
Late control speed | 0.0236 | 0.0013 | 0.0234 | 0.0239 | ||
0.8 | Overall control speed | 0.0187 | 0.0011 | 0.0185 | 0.0189 | |
Early control speed | 0.0149 | 0.0017 | 0.0146 | 0.0153 | ||
Late control speed | 0.0282 | 0.0033 | 0.0275 | 0.0288 | ||
High (70) | 0.2 | Overall control speed | 0.0159 | 0.0010 | 0.0157 | 0.0161 |
Early control speed | 0.0146 | 0.0015 | 0.0143 | 0.0149 | ||
Late control speed | 0.0167 | 0.0018 | 0.0163 | 0.0170 | ||
0.8 | Overall control speed | 0.0192 | 0.0010 | 0.0190 | 0.0194 | |
Early control speed | 0.0153 | 0.0013 | 0.0150 | 0.0155 | ||
Late control speed | 0.0277 | 0.0022 | 0.0273 | 0.0282 |
Interdependent Self-construction: Intermediary Roadmap of Impacting Illegal Mobile Tendency (Note. * means p < 0.05, ** means p < 0.01, *** means p < 0.001)
Figure S6. Difference diagram of the control speed of high and low individualism in total, early and late stages under different government norm levels.
Figure S7a. Influence of coefficient b attenuation on the epidemic growth rate under the condition of low individualism culture (one of the simulations).
Figure S7b. Influence of coefficient b attenuation on the epidemic growth rate under the condition of high individualism culture (one of the simulations).
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Individualism | -0.35** | -0.1 | 0.58*** | 0.56*** | 0.58*** | -0.66*** | |
Governmental norm | -0.07 | -0.41*** | -0.39*** | -0.36** | 0.34** | ||
Population density | -0.05 | 0.04 | -0.1 | 0.03 | |||
HAQ | 0.73*** | 0.73*** | -0.68*** | ||||
Ratio of older persons | 0.42*** | -0.54*** | |||||
Per capita GDP | -0.60*** | ||||||
Historical prevalence of pathogens |
Table S2 The correlation matrix of individualistic culture and other controlling variables in 72 countries (Venezuela's per capita GNP data is missing)
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Individualism | -0.35** | -0.1 | 0.58*** | 0.56*** | 0.58*** | -0.66*** | |
Governmental norm | -0.07 | -0.41*** | -0.39*** | -0.36** | 0.34** | ||
Population density | -0.05 | 0.04 | -0.1 | 0.03 | |||
HAQ | 0.73*** | 0.73*** | -0.68*** | ||||
Ratio of older persons | 0.42*** | -0.54*** | |||||
Per capita GDP | -0.60*** | ||||||
Historical prevalence of pathogens |
Sample size | Statistical analysis | Statistic values | Total number of deaths | Millions of deaths | Mortality rate | Adjusted case fatality rate |
---|---|---|---|---|---|---|
N = 73 | Partial correlation | r | 0.344* | 0.455*** | 0.421*** | 0.561*** |
p | 0.003 | < 0.001 | < 0.001 | < 0.001 | ||
Similarity | r | 0.217*** | 0.258 *** | 0.222*** | 0.298*** | |
p | 2.06E-29 | 2.53E-41 | 9.26E-31 | 3.07E-49 | ||
N = 72 | Partial correlation | r | 0.261* | 0.437*** | 0.403*** | - |
p | 0.028 | < 0.001 | < 0.001 | - | ||
(Extreme value discarded) | Similarity | r | 0.106*** | 0.261 *** | 0.227*** | - |
p | 6.93E-08 | 3.75E-41 | 3.45E-31 | - |
Table S3 Study 1: Partial correlation/similarity between individualism and COVID-19 death indicators
Sample size | Statistical analysis | Statistic values | Total number of deaths | Millions of deaths | Mortality rate | Adjusted case fatality rate |
---|---|---|---|---|---|---|
N = 73 | Partial correlation | r | 0.344* | 0.455*** | 0.421*** | 0.561*** |
p | 0.003 | < 0.001 | < 0.001 | < 0.001 | ||
Similarity | r | 0.217*** | 0.258 *** | 0.222*** | 0.298*** | |
p | 2.06E-29 | 2.53E-41 | 9.26E-31 | 3.07E-49 | ||
N = 72 | Partial correlation | r | 0.261* | 0.437*** | 0.403*** | - |
p | 0.028 | < 0.001 | < 0.001 | - | ||
(Extreme value discarded) | Similarity | r | 0.106*** | 0.261 *** | 0.227*** | - |
p | 6.93E-08 | 3.75E-41 | 3.45E-31 | - |
Provinces | Number of fitting points | Overall control speed | Early control speed | Late control speed | Adjust R2 |
---|---|---|---|---|---|
Hubei | 63 | 0.235 | 0.339 | 0.335 | 0.995 |
Guangdong | 55 | 0.281 | 0.362 | 0.235 | 0.999 |
Henan | 42 | 0.284 | 0.383 | 0.254 | 0.999 |
Zhejiang | 37 | 0.329 | 0.549 | 0.273 | 0.996 |
Hunan | 43 | 0.286 | 0.451 | 0.264 | 0.998 |
Anhui | 35 | 0.279 | 0.363 | 0.281 | 0.999 |
Jiangxi | 34 | 0.293 | 0.392 | 0.256 | 0.998 |
Shandong | 31 | 0.246 | 0.442 | 0.292 | 0.996 |
Jiangsu | 33 | 0.251 | 0.401 | 0.232 | 0.997 |
Chongqing | 39 | 0.252 | 0.362 | 0.183 | 0.994 |
Sichuan | 42 | 0.212 | 0.407 | 0.171 | 0.994 |
Heilongjiang | 36 | 0.272 | 0.276 | 0.219 | 0.998 |
Beijing | 50 | 0.232 | 0.283 | 0.184 | 0.986 |
Shanghai | 42 | 0.282 | 0.362 | 0.244 | 0.998 |
Hebei | 42 | 0.227 | 0.429 | 0.250 | 0.996 |
Fujian | 33 | 0.266 | 0.458 | 0.214 | 0.994 |
Guangxi | 39 | 0.224 | 0.325 | 0.206 | 0.997 |
Shaanxi | 33 | 0.274 | 0.396 | 0.250 | 0.998 |
Yunnan | 34 | 0.288 | 0.595 | 0.157 | 0.985 |
Hainan | 33 | 0.223 | 0.337 | 0.269 | 0.995 |
Guizhou | 31 | 0.285 | 0.387 | 0.343 | 0.996 |
Tianjin | 37 | 0.208 | 0.248 | 0.198 | 0.997 |
Gansu | 30 | 0.287 | 0.333 | 0.238 | 0.992 |
Shanxi | 38 | 0.309 | 0.351 | 0.299 | 0.996 |
Liaoning | 30 | 0.268 | 0.401 | 0.226 | 0.995 |
Jilin | 37 | 0.350 | 0.253 | 0.303 | 0.997 |
Xinjiang | 31 | 0.202 | 0.263 | 0.241 | 0.996 |
Inner Mongolia | 31 | 0.207 | 0.235 | 0.145 | 0.993 |
Ningxia | 33 | 0.207 | 0.450 | 0.223 | 0.988 |
Table S4 Study 2: Model fitting of cumulative number of confirmed cases in 29 provinces with time
Provinces | Number of fitting points | Overall control speed | Early control speed | Late control speed | Adjust R2 |
---|---|---|---|---|---|
Hubei | 63 | 0.235 | 0.339 | 0.335 | 0.995 |
Guangdong | 55 | 0.281 | 0.362 | 0.235 | 0.999 |
Henan | 42 | 0.284 | 0.383 | 0.254 | 0.999 |
Zhejiang | 37 | 0.329 | 0.549 | 0.273 | 0.996 |
Hunan | 43 | 0.286 | 0.451 | 0.264 | 0.998 |
Anhui | 35 | 0.279 | 0.363 | 0.281 | 0.999 |
Jiangxi | 34 | 0.293 | 0.392 | 0.256 | 0.998 |
Shandong | 31 | 0.246 | 0.442 | 0.292 | 0.996 |
Jiangsu | 33 | 0.251 | 0.401 | 0.232 | 0.997 |
Chongqing | 39 | 0.252 | 0.362 | 0.183 | 0.994 |
Sichuan | 42 | 0.212 | 0.407 | 0.171 | 0.994 |
Heilongjiang | 36 | 0.272 | 0.276 | 0.219 | 0.998 |
Beijing | 50 | 0.232 | 0.283 | 0.184 | 0.986 |
Shanghai | 42 | 0.282 | 0.362 | 0.244 | 0.998 |
Hebei | 42 | 0.227 | 0.429 | 0.250 | 0.996 |
Fujian | 33 | 0.266 | 0.458 | 0.214 | 0.994 |
Guangxi | 39 | 0.224 | 0.325 | 0.206 | 0.997 |
Shaanxi | 33 | 0.274 | 0.396 | 0.250 | 0.998 |
Yunnan | 34 | 0.288 | 0.595 | 0.157 | 0.985 |
Hainan | 33 | 0.223 | 0.337 | 0.269 | 0.995 |
Guizhou | 31 | 0.285 | 0.387 | 0.343 | 0.996 |
Tianjin | 37 | 0.208 | 0.248 | 0.198 | 0.997 |
Gansu | 30 | 0.287 | 0.333 | 0.238 | 0.992 |
Shanxi | 38 | 0.309 | 0.351 | 0.299 | 0.996 |
Liaoning | 30 | 0.268 | 0.401 | 0.226 | 0.995 |
Jilin | 37 | 0.350 | 0.253 | 0.303 | 0.997 |
Xinjiang | 31 | 0.202 | 0.263 | 0.241 | 0.996 |
Inner Mongolia | 31 | 0.207 | 0.235 | 0.145 | 0.993 |
Ningxia | 33 | 0.207 | 0.450 | 0.223 | 0.988 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Self-construction-independence | 0.62*** | -0.45* | 0 | -0.26 | -0.60*** | |
Self-construction-interdependence | -0.70*** | 0.26 | -0.61*** | -0.81*** | ||
Population density | -0.24 | 0.37 | 0.73*** | |||
Number of medical and health institutions ( | -0.26 | -0.27 | ||||
Health technicians per thousand population ( | 0.68*** | |||||
Per capita GDP ( |
Table S5 Study 2: Correlation Matrix of the Self-constructed Scores (Independent\Interdependent) and Other Control Variables in 29 Provinces
Variables | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Self-construction-independence | 0.62*** | -0.45* | 0 | -0.26 | -0.60*** | |
Self-construction-interdependence | -0.70*** | 0.26 | -0.61*** | -0.81*** | ||
Population density | -0.24 | 0.37 | 0.73*** | |||
Number of medical and health institutions ( | -0.26 | -0.27 | ||||
Health technicians per thousand population ( | 0.68*** | |||||
Per capita GDP ( |
Variable | Statistical analysis | Statistics | Overall control speed | Early control speed | Late control speed |
---|---|---|---|---|---|
Partial correlation | r | -0.106 | -0.381* | 0.126 | |
Independent self | p | 0.591 | 0.046 | 0.524 | |
Similarity | r | 0.299*** | 0.179*** | -0.087 | |
p | 7.98E-10 | 0.0003 | 0.0809 | ||
Partial correlation | r | 0.050 | 0.047 | 0.256 | |
Interdependent self | p | 0.802 | 0.812 | 0.188 | |
Similarity | r | -0.035 | -0.032 | -0.096 | |
p | 0.479 | 0.525 | 0.053 |
Table S6 Study 2: Partial correlation/similarity between self-construction and the epidemic control speed (n = 29)
Variable | Statistical analysis | Statistics | Overall control speed | Early control speed | Late control speed |
---|---|---|---|---|---|
Partial correlation | r | -0.106 | -0.381* | 0.126 | |
Independent self | p | 0.591 | 0.046 | 0.524 | |
Similarity | r | 0.299*** | 0.179*** | -0.087 | |
p | 7.98E-10 | 0.0003 | 0.0809 | ||
Partial correlation | r | 0.050 | 0.047 | 0.256 | |
Interdependent self | p | 0.802 | 0.812 | 0.188 | |
Similarity | r | -0.035 | -0.032 | -0.096 | |
p | 0.479 | 0.525 | 0.053 |
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Upper bound of 95% confidence interval | Lower bound of 95% confidence interval |
---|---|---|---|---|---|---|---|---|
0.1 | Overall control speed | 0.990 | 0.9997 | 0.998 | 0.0012 | 0.996 | 1.001 | |
Early control speed | 0.995 | 0.9998 | 0.999 | 0.0008 | 0.997 | 1.000 | ||
Late control speed | 0.982 | 0.9997 | 0.996 | 0.0034 | 0.989 | 1.002 | ||
0.2 | Overall control speed | 0.997 | 0.9995 | 0.999 | 0.0005 | 0.998 | 1.000 | |
Early control speed | 0.992 | 0.9997 | 0.998 | 0.0012 | 0.996 | 1.001 | ||
Late control speed | 0.983 | 0.9987 | 0.992 | 0.0034 | 0.986 | 0.999 | ||
0.3 | Overall control speed | 0.996 | 0.9995 | 0.999 | 0.0005 | 0.997 | 1.000 | |
Early control speed | 0.994 | 0.9998 | 0.998 | 0.0010 | 0.996 | 1.000 | ||
Late control speed | 0.981 | 0.9982 | 0.992 | 0.0036 | 0.985 | 0.999 | ||
0.4 | Overall control speed | 0.996 | 0.9996 | 0.999 | 0.0006 | 0.998 | 1.000 | |
Early control speed | 0.991 | 0.9997 | 0.998 | 0.0013 | 0.996 | 1.001 | ||
Late control speed | 0.980 | 0.9982 | 0.992 | 0.0036 | 0.985 | 0.999 | ||
Low (30) | 0.5 | Overall control speed | 0.995 | 0.9994 | 0.998 | 0.0007 | 0.997 | 1.000 |
Early control speed | 0.993 | 0.9996 | 0.998 | 0.0011 | 0.996 | 1.001 | ||
Late control speed | 0.980 | 0.9976 | 0.992 | 0.0036 | 0.985 | 0.999 | ||
0.6 | Overall control speed | 0.994 | 0.9991 | 0.997 | 0.0010 | 0.995 | 0.999 | |
Early control speed | 0.987 | 0.9998 | 0.998 | 0.0016 | 0.995 | 1.001 | ||
Late control speed | 0.982 | 0.9975 | 0.993 | 0.0028 | 0.988 | 0.999 | ||
0.7 | Overall control speed | 0.988 | 0.9960 | 0.994 | 0.0017 | 0.990 | 0.997 | |
Early control speed | 0.992 | 0.9996 | 0.998 | 0.0013 | 0.996 | 1.001 | ||
Late control speed | 0.974 | 0.9950 | 0.988 | 0.0031 | 0.982 | 0.995 | ||
0.8 | Overall control speed | 0.987 | 0.9955 | 0.992 | 0.0017 | 0.989 | 0.996 | |
Early control speed | 0.990 | 0.9996 | 0.998 | 0.0014 | 0.995 | 1.001 | ||
Late control speed | 0.975 | 0.9903 | 0.983 | 0.0030 | 0.977 | 0.989 | ||
0.9 | Overall control speed | 0.980 | 0.9944 | 0.991 | 0.0024 | 0.986 | 0.995 | |
Early control speed | 0.993 | 0.9997 | 0.998 | 0.0014 | 0.995 | 1.001 | ||
Late control speed | 0.966 | 0.9843 | 0.976 | 0.0038 | 0.969 | 0.984 | ||
0.1 | Overall control speed | 0.999 | 0.9999 | 0.999 | 0.0002 | 0.999 | 1.000 | |
Early control speed | 0.997 | 0.9999 | 1.000 | 0.0004 | 0.999 | 1.000 | ||
Late control speed | 0.997 | 0.9999 | 0.999 | 0.0005 | 0.999 | 1.000 | ||
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Upper bound of 95% confidence interval | Lower bound of 95% confidence interval |
0.2 | Overall control speed | 0.998 | 0.9997 | 0.999 | 0.0003 | 0.998 | 1.000 | |
Early control speed | 0.998 | 0.9999 | 0.999 | 0.0004 | 0.999 | 1.000 | ||
Late control speed | 0.998 | 0.9999 | 0.999 | 0.0004 | 0.999 | 1.000 | ||
0.3 | Overall control speed | 0.998 | 0.9997 | 0.999 | 0.0004 | 0.998 | 0.999 | |
Early control speed | 0.996 | 0.9999 | 0.999 | 0.0005 | 0.999 | 1.000 | ||
Late control speed | 0.995 | 0.9998 | 0.999 | 0.0008 | 0.997 | 1.000 | ||
0.4 | Overall control speed | 0.998 | 0.9995 | 0.999 | 0.0004 | 0.998 | 1.000 | |
Early control speed | 0.996 | 0.9999 | 0.999 | 0.0005 | 0.998 | 1.000 | ||
Late control speed | 0.997 | 0.9998 | 0.999 | 0.0006 | 0.998 | 1.000 | ||
High (70) | 0.5 | Overall control speed | 0.997 | 0.9994 | 0.998 | 0.0004 | 0.998 | 0.999 |
Early control speed | 0.997 | 0.9999 | 0.999 | 0.0005 | 0.998 | 1.000 | ||
Late control speed | 0.997 | 0.9997 | 0.999 | 0.0007 | 0.998 | 1.000 | ||
0.6 | Overall control speed | 0.995 | 0.9989 | 0.998 | 0.0005 | 0.997 | 0.999 | |
Early control speed | 0.994 | 0.9999 | 0.999 | 0.0006 | 0.998 | 1.001 | ||
Late control speed | 0.995 | 0.9995 | 0.998 | 0.0009 | 0.996 | 1.000 | ||
0.7 | Overall control speed | 0.993 | 0.9977 | 0.996 | 0.0010 | 0.994 | 0.998 | |
Early control speed | 0.997 | 0.9999 | 0.999 | 0.0005 | 0.998 | 1.000 | ||
Late control speed | 0.986 | 0.9955 | 0.992 | 0.0016 | 0.989 | 0.995 | ||
0.8 | Overall control speed | 0.990 | 0.9973 | 0.995 | 0.0011 | 0.993 | 0.997 | |
Early control speed | 0.996 | 0.9998 | 0.999 | 0.0006 | 0.998 | 1.000 | ||
Late control speed | 0.984 | 0.9938 | 0.988 | 0.0019 | 0.984 | 0.991 | ||
0.9 | Overall control speed | 0.990 | 0.9964 | 0.994 | 0.0014 | 0.991 | 0.997 | |
Early control speed | 0.998 | 0.9998 | 0.999 | 0.0004 | 0.998 | 1.000 | ||
Late control speed | 0.978 | 0.9877 | 0.982 | 0.0019 | 0.978 | 0.986 |
Table S7 Study 3: Goodness of Fit of Cumulative Diagnosis Number in the Model over Time
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Upper bound of 95% confidence interval | Lower bound of 95% confidence interval |
---|---|---|---|---|---|---|---|---|
0.1 | Overall control speed | 0.990 | 0.9997 | 0.998 | 0.0012 | 0.996 | 1.001 | |
Early control speed | 0.995 | 0.9998 | 0.999 | 0.0008 | 0.997 | 1.000 | ||
Late control speed | 0.982 | 0.9997 | 0.996 | 0.0034 | 0.989 | 1.002 | ||
0.2 | Overall control speed | 0.997 | 0.9995 | 0.999 | 0.0005 | 0.998 | 1.000 | |
Early control speed | 0.992 | 0.9997 | 0.998 | 0.0012 | 0.996 | 1.001 | ||
Late control speed | 0.983 | 0.9987 | 0.992 | 0.0034 | 0.986 | 0.999 | ||
0.3 | Overall control speed | 0.996 | 0.9995 | 0.999 | 0.0005 | 0.997 | 1.000 | |
Early control speed | 0.994 | 0.9998 | 0.998 | 0.0010 | 0.996 | 1.000 | ||
Late control speed | 0.981 | 0.9982 | 0.992 | 0.0036 | 0.985 | 0.999 | ||
0.4 | Overall control speed | 0.996 | 0.9996 | 0.999 | 0.0006 | 0.998 | 1.000 | |
Early control speed | 0.991 | 0.9997 | 0.998 | 0.0013 | 0.996 | 1.001 | ||
Late control speed | 0.980 | 0.9982 | 0.992 | 0.0036 | 0.985 | 0.999 | ||
Low (30) | 0.5 | Overall control speed | 0.995 | 0.9994 | 0.998 | 0.0007 | 0.997 | 1.000 |
Early control speed | 0.993 | 0.9996 | 0.998 | 0.0011 | 0.996 | 1.001 | ||
Late control speed | 0.980 | 0.9976 | 0.992 | 0.0036 | 0.985 | 0.999 | ||
0.6 | Overall control speed | 0.994 | 0.9991 | 0.997 | 0.0010 | 0.995 | 0.999 | |
Early control speed | 0.987 | 0.9998 | 0.998 | 0.0016 | 0.995 | 1.001 | ||
Late control speed | 0.982 | 0.9975 | 0.993 | 0.0028 | 0.988 | 0.999 | ||
0.7 | Overall control speed | 0.988 | 0.9960 | 0.994 | 0.0017 | 0.990 | 0.997 | |
Early control speed | 0.992 | 0.9996 | 0.998 | 0.0013 | 0.996 | 1.001 | ||
Late control speed | 0.974 | 0.9950 | 0.988 | 0.0031 | 0.982 | 0.995 | ||
0.8 | Overall control speed | 0.987 | 0.9955 | 0.992 | 0.0017 | 0.989 | 0.996 | |
Early control speed | 0.990 | 0.9996 | 0.998 | 0.0014 | 0.995 | 1.001 | ||
Late control speed | 0.975 | 0.9903 | 0.983 | 0.0030 | 0.977 | 0.989 | ||
0.9 | Overall control speed | 0.980 | 0.9944 | 0.991 | 0.0024 | 0.986 | 0.995 | |
Early control speed | 0.993 | 0.9997 | 0.998 | 0.0014 | 0.995 | 1.001 | ||
Late control speed | 0.966 | 0.9843 | 0.976 | 0.0038 | 0.969 | 0.984 | ||
0.1 | Overall control speed | 0.999 | 0.9999 | 0.999 | 0.0002 | 0.999 | 1.000 | |
Early control speed | 0.997 | 0.9999 | 1.000 | 0.0004 | 0.999 | 1.000 | ||
Late control speed | 0.997 | 0.9999 | 0.999 | 0.0005 | 0.999 | 1.000 | ||
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Upper bound of 95% confidence interval | Lower bound of 95% confidence interval |
0.2 | Overall control speed | 0.998 | 0.9997 | 0.999 | 0.0003 | 0.998 | 1.000 | |
Early control speed | 0.998 | 0.9999 | 0.999 | 0.0004 | 0.999 | 1.000 | ||
Late control speed | 0.998 | 0.9999 | 0.999 | 0.0004 | 0.999 | 1.000 | ||
0.3 | Overall control speed | 0.998 | 0.9997 | 0.999 | 0.0004 | 0.998 | 0.999 | |
Early control speed | 0.996 | 0.9999 | 0.999 | 0.0005 | 0.999 | 1.000 | ||
Late control speed | 0.995 | 0.9998 | 0.999 | 0.0008 | 0.997 | 1.000 | ||
0.4 | Overall control speed | 0.998 | 0.9995 | 0.999 | 0.0004 | 0.998 | 1.000 | |
Early control speed | 0.996 | 0.9999 | 0.999 | 0.0005 | 0.998 | 1.000 | ||
Late control speed | 0.997 | 0.9998 | 0.999 | 0.0006 | 0.998 | 1.000 | ||
High (70) | 0.5 | Overall control speed | 0.997 | 0.9994 | 0.998 | 0.0004 | 0.998 | 0.999 |
Early control speed | 0.997 | 0.9999 | 0.999 | 0.0005 | 0.998 | 1.000 | ||
Late control speed | 0.997 | 0.9997 | 0.999 | 0.0007 | 0.998 | 1.000 | ||
0.6 | Overall control speed | 0.995 | 0.9989 | 0.998 | 0.0005 | 0.997 | 0.999 | |
Early control speed | 0.994 | 0.9999 | 0.999 | 0.0006 | 0.998 | 1.001 | ||
Late control speed | 0.995 | 0.9995 | 0.998 | 0.0009 | 0.996 | 1.000 | ||
0.7 | Overall control speed | 0.993 | 0.9977 | 0.996 | 0.0010 | 0.994 | 0.998 | |
Early control speed | 0.997 | 0.9999 | 0.999 | 0.0005 | 0.998 | 1.000 | ||
Late control speed | 0.986 | 0.9955 | 0.992 | 0.0016 | 0.989 | 0.995 | ||
0.8 | Overall control speed | 0.990 | 0.9973 | 0.995 | 0.0011 | 0.993 | 0.997 | |
Early control speed | 0.996 | 0.9998 | 0.999 | 0.0006 | 0.998 | 1.000 | ||
Late control speed | 0.984 | 0.9938 | 0.988 | 0.0019 | 0.984 | 0.991 | ||
0.9 | Overall control speed | 0.990 | 0.9964 | 0.994 | 0.0014 | 0.991 | 0.997 | |
Early control speed | 0.998 | 0.9998 | 0.999 | 0.0004 | 0.998 | 1.000 | ||
Late control speed | 0.978 | 0.9877 | 0.982 | 0.0019 | 0.978 | 0.986 |
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Lower bound of 95% confidence interval | Upper bound of 95% confidence interval |
---|---|---|---|---|---|---|---|---|
Number of confirmed cases | 695 | 2583 | 1614 | 447 | 1526.388 | 1701.612 | ||
Number of deaths | 25 | 103 | 64 | 19 | 60.276 | 67.724 | ||
0.1 | Overall control speed | 0.012 | 0.022 | 0.018 | 0.002 | 0.018 | 0.018 | |
Early control speed | 0.012 | 0.022 | 0.017 | 0.002 | 0.017 | 0.017 | ||
Late control speed | 0.006 | 0.021 | 0.014 | 0.003 | 0.013 | 0.015 | ||
Number of confirmed cases | 348 | 2486 | 1414 | 406 | 1334.424 | 1493.576 | ||
Number of deaths | 15 | 118 | 57 | 19 | 53.276 | 60.724 | ||
0.2 | Overall control speed | 0.012 | 0.024 | 0.020 | 0.002 | 0.020 | 0.020 | |
Early control speed | 0.009 | 0.021 | 0.017 | 0.002 | 0.017 | 0.017 | ||
Late control speed | 0.009 | 0.027 | 0.019 | 0.003 | 0.018 | 0.020 | ||
Number of confirmed cases | 582 | 2307 | 1346 | 369 | 1273.676 | 1418.324 | ||
Number of deaths | 21 | 109 | 54 | 17 | 50.668 | 57.332 | ||
0.3 | Overall control speed | 0.018 | 0.026 | 0.022 | 0.002 | 0.022 | 0.022 | |
Early control speed | 0.013 | 0.024 | 0.018 | 0.002 | 0.018 | 0.018 | ||
Late control speed | 0.014 | 0.034 | 0.024 | 0.003 | 0.023 | 0.025 | ||
Number of confirmed cases | 350 | 2049 | 1253 | 346 | 1185.184 | 1320.816 | ||
Number of deaths | 12 | 91 | 51 | 16 | 47.864 | 54.136 | ||
0.4 | Overall control speed | 0.018 | 0.028 | 0.023 | 0.002 | 0.023 | 0.023 | |
Early control speed | 0.010 | 0.022 | 0.018 | 0.002 | 0.018 | 0.018 | ||
Late control speed | 0.022 | 0.036 | 0.030 | 0.003 | 0.029 | 0.031 | ||
Number of confirmed cases | 464 | 1881 | 1188 | 345 | 1120.380 | 1255.620 | ||
Number of deaths | 13 | 84 | 48 | 16 | 44.864 | 51.136 | ||
Low (30) | 0.5 | Overall control speed | 0.019 | 0.028 | 0.024 | 0.002 | 0.024 | 0.024 |
Early control speed | 0.014 | 0.022 | 0.018 | 0.002 | 0.018 | 0.018 | ||
Late control speed | 0.028 | 0.043 | 0.034 | 0.003 | 0.033 | 0.035 | ||
Number of confirmed cases | 337 | 2015 | 1154 | 342 | 1086.968 | 1221.032 | ||
Number of deaths | 13 | 87 | 46 | 15 | 43.060 | 48.940 | ||
0.6 | Overall control speed | 0.019 | 0.030 | 0.025 | 0.002 | 0.025 | 0.025 | |
Early control speed | 0.012 | 0.023 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.029 | 0.043 | 0.037 | 0.003 | 0.036 | 0.038 | ||
Number of confirmed cases | 292 | 2117 | 1049 | 323 | 985.692 | 1112.308 | ||
Number of deaths | 10 | 103 | 43 | 16 | 39.864 | 46.136 | ||
0.7 | Overall control speed | 0.017 | 0.030 | 0.025 | 0.002 | 0.025 | 0.025 | |
Early control speed | 0.013 | 0.024 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.029 | 0.047 | 0.040 | 0.003 | 0.039 | 0.041 | ||
Number of confirmed cases | 408 | 2144 | 1076 | 320 | 1013.280 | 1138.720 | ||
Number of deaths | 10 | 87 | 42 | 15 | 39.060 | 44.940 | ||
0.8 | Overall control speed | 0.021 | 0.031 | 0.026 | 0.002 | 0.026 | 0.026 | |
Early control speed | 0.013 | 0.023 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.033 | 0.049 | 0.042 | 0.003 | 0.041 | 0.043 | ||
Number of confirmed cases | 385 | 1756 | 988 | 329 | 923.516 | 1052.484 | ||
Number of deaths | 10 | 76 | 39 | 15 | 36.060 | 41.940 | ||
0.9 | Overall control speed | 0.018 | 0.031 | 0.025 | 0.002 | 0.025 | 0.025 | |
Early control speed | 0.013 | 0.023 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.033 | 0.050 | 0.043 | 0.003 | 0.042 | 0.044 | ||
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Lower bound of 95% confidence interval | Upper bound of 95% confidence interval |
Number of confirmed cases | 1573 | 4806 | 3846 | 559 | 3736.436 | 3955.564 | ||
Number of deaths | 62 | 193 | 153 | 25 | 148.100 | 157.900 | ||
0.1 | Overall control speed | 0.014 | 0.020 | 0.018 | 0.001 | 0.018 | 0.018 | |
Early control speed | 0.009 | 0.018 | 0.015 | 0.001 | 0.015 | 0.015 | ||
Late control speed | 0.015 | 0.023 | 0.021 | 0.002 | 0.021 | 0.021 | ||
Number of confirmed cases | 1811 | 4775 | 3694 | 576 | 3581.104 | 3806.896 | ||
Number of deaths | 73 | 204 | 146 | 25 | 141.100 | 150.900 | ||
0.2 | Overall control speed | 0.015 | 0.020 | 0.019 | 0.001 | 0.019 | 0.019 | |
Early control speed | 0.011 | 0.019 | 0.015 | 0.002 | 0.015 | 0.015 | ||
Late control speed | 0.018 | 0.025 | 0.022 | 0.001 | 0.022 | 0.022 | ||
Number of confirmed cases | 1951 | 4880 | 3430 | 635 | 3305.540 | 3554.460 | ||
Number of deaths | 74 | 187 | 136 | 25 | 131.100 | 140.900 | ||
0.3 | Overall control speed | 0.015 | 0.021 | 0.019 | 0.001 | 0.019 | 0.019 | |
Early control speed | 0.011 | 0.020 | 0.015 | 0.002 | 0.015 | 0.015 | ||
Late control speed | 0.017 | 0.026 | 0.024 | 0.002 | 0.024 | 0.024 | ||
Number of confirmed cases | 1497 | 4483 | 3312 | 638 | 3186.952 | 3437.048 | ||
Number of deaths | 61 | 188 | 132 | 28 | 126.512 | 137.488 | ||
0.4 | Overall control speed | 0.017 | 0.022 | 0.020 | 0.001 | 0.020 | 0.020 | |
Early control speed | 0.012 | 0.020 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.021 | 0.028 | 0.026 | 0.001 | 0.026 | 0.026 | ||
Number of confirmed cases | 265 | 4398 | 3109 | 683 | 2975.132 | 3242.868 | ||
Number of deaths | 7 | 199 | 126 | 32 | 119.728 | 132.272 | ||
High (70) | 0.5 | Overall control speed | 0.010 | 0.022 | 0.020 | 0.001 | 0.020 | 0.020 |
Early control speed | 0.008 | 0.019 | 0.015 | 0.002 | 0.015 | 0.015 | ||
Late control speed | 0.016 | 0.031 | 0.027 | 0.002 | 0.027 | 0.027 | ||
Number of confirmed cases | 932 | 4212 | 2995 | 621 | 2873.284 | 3116.716 | ||
Number of deaths | 36 | 184 | 120 | 30 | 114.120 | 125.880 | ||
0.6 | Overall control speed | 0.018 | 0.023 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.010 | 0.019 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.026 | 0.033 | 0.029 | 0.002 | 0.029 | 0.029 | ||
Number of confirmed cases | 1519 | 4045 | 2926 | 593 | 2809.772 | 3042.228 | ||
Number of deaths | 59 | 176 | 118 | 26 | 112.904 | 123.096 | ||
0.7 | Overall control speed | 0.019 | 0.024 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.011 | 0.020 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.027 | 0.035 | 0.031 | 0.002 | 0.031 | 0.031 | ||
Number of confirmed cases | 1175 | 4093 | 2815 | 576 | 2702.104 | 2927.896 | ||
Number of deaths | 39 | 185 | 111 | 25 | 106.100 | 115.900 | ||
0.8 | Overall control speed | 0.018 | 0.024 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.011 | 0.019 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.028 | 0.037 | 0.033 | 0.002 | 0.033 | 0.033 | ||
Number of confirmed cases | 1300 | 4137 | 2764 | 583 | 2649.732 | 2878.268 | ||
Number of deaths | 47 | 174 | 111 | 26 | 105.904 | 116.096 | ||
0.9 | Overall control speed | 0.019 | 0.025 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.011 | 0.019 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.028 | 0.042 | 0.034 | 0.003 | 0.033 | 0.035 |
Table S8 Study 3: Result of descriptive statistical analysis of variables under all government norm conditions
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Lower bound of 95% confidence interval | Upper bound of 95% confidence interval |
---|---|---|---|---|---|---|---|---|
Number of confirmed cases | 695 | 2583 | 1614 | 447 | 1526.388 | 1701.612 | ||
Number of deaths | 25 | 103 | 64 | 19 | 60.276 | 67.724 | ||
0.1 | Overall control speed | 0.012 | 0.022 | 0.018 | 0.002 | 0.018 | 0.018 | |
Early control speed | 0.012 | 0.022 | 0.017 | 0.002 | 0.017 | 0.017 | ||
Late control speed | 0.006 | 0.021 | 0.014 | 0.003 | 0.013 | 0.015 | ||
Number of confirmed cases | 348 | 2486 | 1414 | 406 | 1334.424 | 1493.576 | ||
Number of deaths | 15 | 118 | 57 | 19 | 53.276 | 60.724 | ||
0.2 | Overall control speed | 0.012 | 0.024 | 0.020 | 0.002 | 0.020 | 0.020 | |
Early control speed | 0.009 | 0.021 | 0.017 | 0.002 | 0.017 | 0.017 | ||
Late control speed | 0.009 | 0.027 | 0.019 | 0.003 | 0.018 | 0.020 | ||
Number of confirmed cases | 582 | 2307 | 1346 | 369 | 1273.676 | 1418.324 | ||
Number of deaths | 21 | 109 | 54 | 17 | 50.668 | 57.332 | ||
0.3 | Overall control speed | 0.018 | 0.026 | 0.022 | 0.002 | 0.022 | 0.022 | |
Early control speed | 0.013 | 0.024 | 0.018 | 0.002 | 0.018 | 0.018 | ||
Late control speed | 0.014 | 0.034 | 0.024 | 0.003 | 0.023 | 0.025 | ||
Number of confirmed cases | 350 | 2049 | 1253 | 346 | 1185.184 | 1320.816 | ||
Number of deaths | 12 | 91 | 51 | 16 | 47.864 | 54.136 | ||
0.4 | Overall control speed | 0.018 | 0.028 | 0.023 | 0.002 | 0.023 | 0.023 | |
Early control speed | 0.010 | 0.022 | 0.018 | 0.002 | 0.018 | 0.018 | ||
Late control speed | 0.022 | 0.036 | 0.030 | 0.003 | 0.029 | 0.031 | ||
Number of confirmed cases | 464 | 1881 | 1188 | 345 | 1120.380 | 1255.620 | ||
Number of deaths | 13 | 84 | 48 | 16 | 44.864 | 51.136 | ||
Low (30) | 0.5 | Overall control speed | 0.019 | 0.028 | 0.024 | 0.002 | 0.024 | 0.024 |
Early control speed | 0.014 | 0.022 | 0.018 | 0.002 | 0.018 | 0.018 | ||
Late control speed | 0.028 | 0.043 | 0.034 | 0.003 | 0.033 | 0.035 | ||
Number of confirmed cases | 337 | 2015 | 1154 | 342 | 1086.968 | 1221.032 | ||
Number of deaths | 13 | 87 | 46 | 15 | 43.060 | 48.940 | ||
0.6 | Overall control speed | 0.019 | 0.030 | 0.025 | 0.002 | 0.025 | 0.025 | |
Early control speed | 0.012 | 0.023 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.029 | 0.043 | 0.037 | 0.003 | 0.036 | 0.038 | ||
Number of confirmed cases | 292 | 2117 | 1049 | 323 | 985.692 | 1112.308 | ||
Number of deaths | 10 | 103 | 43 | 16 | 39.864 | 46.136 | ||
0.7 | Overall control speed | 0.017 | 0.030 | 0.025 | 0.002 | 0.025 | 0.025 | |
Early control speed | 0.013 | 0.024 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.029 | 0.047 | 0.040 | 0.003 | 0.039 | 0.041 | ||
Number of confirmed cases | 408 | 2144 | 1076 | 320 | 1013.280 | 1138.720 | ||
Number of deaths | 10 | 87 | 42 | 15 | 39.060 | 44.940 | ||
0.8 | Overall control speed | 0.021 | 0.031 | 0.026 | 0.002 | 0.026 | 0.026 | |
Early control speed | 0.013 | 0.023 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.033 | 0.049 | 0.042 | 0.003 | 0.041 | 0.043 | ||
Number of confirmed cases | 385 | 1756 | 988 | 329 | 923.516 | 1052.484 | ||
Number of deaths | 10 | 76 | 39 | 15 | 36.060 | 41.940 | ||
0.9 | Overall control speed | 0.018 | 0.031 | 0.025 | 0.002 | 0.025 | 0.025 | |
Early control speed | 0.013 | 0.023 | 0.019 | 0.002 | 0.019 | 0.019 | ||
Late control speed | 0.033 | 0.050 | 0.043 | 0.003 | 0.042 | 0.044 | ||
Individualism | Governmental norm | Variable | Minimum | Maximum | Mean | Standard deviation | Lower bound of 95% confidence interval | Upper bound of 95% confidence interval |
Number of confirmed cases | 1573 | 4806 | 3846 | 559 | 3736.436 | 3955.564 | ||
Number of deaths | 62 | 193 | 153 | 25 | 148.100 | 157.900 | ||
0.1 | Overall control speed | 0.014 | 0.020 | 0.018 | 0.001 | 0.018 | 0.018 | |
Early control speed | 0.009 | 0.018 | 0.015 | 0.001 | 0.015 | 0.015 | ||
Late control speed | 0.015 | 0.023 | 0.021 | 0.002 | 0.021 | 0.021 | ||
Number of confirmed cases | 1811 | 4775 | 3694 | 576 | 3581.104 | 3806.896 | ||
Number of deaths | 73 | 204 | 146 | 25 | 141.100 | 150.900 | ||
0.2 | Overall control speed | 0.015 | 0.020 | 0.019 | 0.001 | 0.019 | 0.019 | |
Early control speed | 0.011 | 0.019 | 0.015 | 0.002 | 0.015 | 0.015 | ||
Late control speed | 0.018 | 0.025 | 0.022 | 0.001 | 0.022 | 0.022 | ||
Number of confirmed cases | 1951 | 4880 | 3430 | 635 | 3305.540 | 3554.460 | ||
Number of deaths | 74 | 187 | 136 | 25 | 131.100 | 140.900 | ||
0.3 | Overall control speed | 0.015 | 0.021 | 0.019 | 0.001 | 0.019 | 0.019 | |
Early control speed | 0.011 | 0.020 | 0.015 | 0.002 | 0.015 | 0.015 | ||
Late control speed | 0.017 | 0.026 | 0.024 | 0.002 | 0.024 | 0.024 | ||
Number of confirmed cases | 1497 | 4483 | 3312 | 638 | 3186.952 | 3437.048 | ||
Number of deaths | 61 | 188 | 132 | 28 | 126.512 | 137.488 | ||
0.4 | Overall control speed | 0.017 | 0.022 | 0.020 | 0.001 | 0.020 | 0.020 | |
Early control speed | 0.012 | 0.020 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.021 | 0.028 | 0.026 | 0.001 | 0.026 | 0.026 | ||
Number of confirmed cases | 265 | 4398 | 3109 | 683 | 2975.132 | 3242.868 | ||
Number of deaths | 7 | 199 | 126 | 32 | 119.728 | 132.272 | ||
High (70) | 0.5 | Overall control speed | 0.010 | 0.022 | 0.020 | 0.001 | 0.020 | 0.020 |
Early control speed | 0.008 | 0.019 | 0.015 | 0.002 | 0.015 | 0.015 | ||
Late control speed | 0.016 | 0.031 | 0.027 | 0.002 | 0.027 | 0.027 | ||
Number of confirmed cases | 932 | 4212 | 2995 | 621 | 2873.284 | 3116.716 | ||
Number of deaths | 36 | 184 | 120 | 30 | 114.120 | 125.880 | ||
0.6 | Overall control speed | 0.018 | 0.023 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.010 | 0.019 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.026 | 0.033 | 0.029 | 0.002 | 0.029 | 0.029 | ||
Number of confirmed cases | 1519 | 4045 | 2926 | 593 | 2809.772 | 3042.228 | ||
Number of deaths | 59 | 176 | 118 | 26 | 112.904 | 123.096 | ||
0.7 | Overall control speed | 0.019 | 0.024 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.011 | 0.020 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.027 | 0.035 | 0.031 | 0.002 | 0.031 | 0.031 | ||
Number of confirmed cases | 1175 | 4093 | 2815 | 576 | 2702.104 | 2927.896 | ||
Number of deaths | 39 | 185 | 111 | 25 | 106.100 | 115.900 | ||
0.8 | Overall control speed | 0.018 | 0.024 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.011 | 0.019 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.028 | 0.037 | 0.033 | 0.002 | 0.033 | 0.033 | ||
Number of confirmed cases | 1300 | 4137 | 2764 | 583 | 2649.732 | 2878.268 | ||
Number of deaths | 47 | 174 | 111 | 26 | 105.904 | 116.096 | ||
0.9 | Overall control speed | 0.019 | 0.025 | 0.021 | 0.001 | 0.021 | 0.021 | |
Early control speed | 0.011 | 0.019 | 0.016 | 0.002 | 0.016 | 0.016 | ||
Late control speed | 0.028 | 0.042 | 0.034 | 0.003 | 0.033 | 0.035 |
Variable | Sample size | Mean | Standard deviation | Maximum | Minimum |
---|---|---|---|---|---|
Independent self-construction | 1765 | 61.52 | 9.997 | 84 | 19 |
Interdependent self-construction | 1765 | 58.92 | 11.013 | 84 | 12 |
Illegal mobile tendency | 1765 | 4.7785 | 1.867 | 7 | 1 |
Fear of death | 1761 | 3.9284 | 1.176 | 6 | 1 |
Table S9 Study 4: Descriptive Statistical Analysis Results of Variables
Variable | Sample size | Mean | Standard deviation | Maximum | Minimum |
---|---|---|---|---|---|
Independent self-construction | 1765 | 61.52 | 9.997 | 84 | 19 |
Interdependent self-construction | 1765 | 58.92 | 11.013 | 84 | 12 |
Illegal mobile tendency | 1765 | 4.7785 | 1.867 | 7 | 1 |
Fear of death | 1761 | 3.9284 | 1.176 | 6 | 1 |
Nation | Sample size | Independence | Interdependence | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard deviation | Maximum | Minimum | Mean | Standard deviation | Maximum | Minimum | ||
Argentina | 6 | 66.50 | 9.31 | 82 | 57 | 57.00 | 4.73 | 63 | 51 |
Australia | 61 | 56.07 | 10.89 | 84 | 33 | 54.21 | 10.53 | 82 | 34 |
Bangladesh | 94 | 57.14 | 6.30 | 72 | 43 | 54.69 | 11.29 | 73 | 24 |
Canada | 98 | 58.61 | 8.47 | 77 | 32 | 57.91 | 9.96 | 81 | 31 |
China | 88 | 57.44 | 7.75 | 73 | 41 | 59.69 | 8.23 | 76 | 39 |
Colombia | 68 | 68.09 | 11.04 | 84 | 29 | 56.13 | 11.15 | 76 | 26 |
France | 48 | 57.25 | 10.43 | 84 | 30 | 54.94 | 9.57 | 84 | 21 |
Germany | 80 | 59.06 | 8.98 | 77 | 31 | 55.31 | 9.31 | 77 | 31 |
India | 175 | 64.73 | 9.04 | 79 | 19 | 67.01 | 9.87 | 82 | 23 |
Ireland | 32 | 62.53 | 8.30 | 82 | 46 | 55.78 | 10.23 | 72 | 32 |
Italy | 96 | 59.44 | 9.55 | 80 | 39 | 59.04 | 9.06 | 81 | 31 |
Japan | 78 | 55.41 | 8.13 | 75 | 37 | 52.74 | 10.00 | 80 | 29 |
Korea | 124 | 58.03 | 9.79 | 82 | 36 | 57.69 | 8.81 | 78 | 36 |
Mexico | 60 | 63.93 | 11.78 | 81 | 28 | 58.23 | 10.28 | 74 | 24 |
Netherlands | 75 | 67.52 | 10.34 | 82 | 45 | 52.04 | 11.66 | 73 | 27 |
Nigeria | 78 | 64.42 | 8.20 | 78 | 41 | 65.18 | 8.29 | 79 | 41 |
Pakistan | 58 | 60.16 | 9.67 | 76 | 19 | 63.59 | 10.52 | 79 | 12 |
Philippines | 56 | 62.02 | 7.54 | 77 | 35 | 59.02 | 9.41 | 79 | 39 |
Spain | 80 | 60.06 | 10.42 | 84 | 35 | 57.98 | 10.80 | 79 | 24 |
Turkey | 61 | 65.52 | 9.06 | 81 | 44 | 61.43 | 11.10 | 82 | 39 |
United Kingdom | 93 | 61.92 | 8.35 | 82 | 42 | 56.26 | 9.90 | 83 | 19 |
United States | 99 | 66.04 | 8.70 | 84 | 40 | 62.54 | 10.25 | 84 | 36 |
Venezuela | 57 | 69.39 | 10.98 | 84 | 37 | 64.18 | 15.90 | 84 | 22 |
Table S10 Study 4: Descriptive Statistics of Independent Self-construction and Interdependent Self-construction in Different Countries
Nation | Sample size | Independence | Interdependence | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard deviation | Maximum | Minimum | Mean | Standard deviation | Maximum | Minimum | ||
Argentina | 6 | 66.50 | 9.31 | 82 | 57 | 57.00 | 4.73 | 63 | 51 |
Australia | 61 | 56.07 | 10.89 | 84 | 33 | 54.21 | 10.53 | 82 | 34 |
Bangladesh | 94 | 57.14 | 6.30 | 72 | 43 | 54.69 | 11.29 | 73 | 24 |
Canada | 98 | 58.61 | 8.47 | 77 | 32 | 57.91 | 9.96 | 81 | 31 |
China | 88 | 57.44 | 7.75 | 73 | 41 | 59.69 | 8.23 | 76 | 39 |
Colombia | 68 | 68.09 | 11.04 | 84 | 29 | 56.13 | 11.15 | 76 | 26 |
France | 48 | 57.25 | 10.43 | 84 | 30 | 54.94 | 9.57 | 84 | 21 |
Germany | 80 | 59.06 | 8.98 | 77 | 31 | 55.31 | 9.31 | 77 | 31 |
India | 175 | 64.73 | 9.04 | 79 | 19 | 67.01 | 9.87 | 82 | 23 |
Ireland | 32 | 62.53 | 8.30 | 82 | 46 | 55.78 | 10.23 | 72 | 32 |
Italy | 96 | 59.44 | 9.55 | 80 | 39 | 59.04 | 9.06 | 81 | 31 |
Japan | 78 | 55.41 | 8.13 | 75 | 37 | 52.74 | 10.00 | 80 | 29 |
Korea | 124 | 58.03 | 9.79 | 82 | 36 | 57.69 | 8.81 | 78 | 36 |
Mexico | 60 | 63.93 | 11.78 | 81 | 28 | 58.23 | 10.28 | 74 | 24 |
Netherlands | 75 | 67.52 | 10.34 | 82 | 45 | 52.04 | 11.66 | 73 | 27 |
Nigeria | 78 | 64.42 | 8.20 | 78 | 41 | 65.18 | 8.29 | 79 | 41 |
Pakistan | 58 | 60.16 | 9.67 | 76 | 19 | 63.59 | 10.52 | 79 | 12 |
Philippines | 56 | 62.02 | 7.54 | 77 | 35 | 59.02 | 9.41 | 79 | 39 |
Spain | 80 | 60.06 | 10.42 | 84 | 35 | 57.98 | 10.80 | 79 | 24 |
Turkey | 61 | 65.52 | 9.06 | 81 | 44 | 61.43 | 11.10 | 82 | 39 |
United Kingdom | 93 | 61.92 | 8.35 | 82 | 42 | 56.26 | 9.90 | 83 | 19 |
United States | 99 | 66.04 | 8.70 | 84 | 40 | 62.54 | 10.25 | 84 | 36 |
Venezuela | 57 | 69.39 | 10.98 | 84 | 37 | 64.18 | 15.90 | 84 | 22 |
Nation | Sample size | Fear of death | Illegal mobile tendency | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard deviation | Maximum | Minimum | Mean | Standard deviation | Maximum | Minimum | ||
Argentina | 6 | 4.833 | 1.602 | 7 | 3 | 3.417 | 1.068 | 5 | 2 |
Australia | 61 | 4.689 | 1.876 | 7 | 1 | 3.795 | 1.205 | 6 | 1 |
Bangladesh | 94 | 4.351 | 1.905 | 7 | 1 | 3.543 | 1.226 | 6 | 1.5 |
Canada | 98 | 4.490 | 2.042 | 7 | 1 | 3.699 | 1.157 | 6 | 1 |
China | 88 | 4.761 | 1.781 | 7 | 1 | 3.818 | 0.995 | 6 | 1 |
哥伦比亚 Colombia | 68 | 4.838 | 1.897 | 7 | 1 | 4.125 | 1.124 | 6 | 1 |
France | 48 | 4.104 | 1.825 | 7 | 1 | 3.344 | 1.195 | 6 | 1 |
Germany | 80 | 4.963 | 1.746 | 7 | 1 | 3.744 | 1.067 | 6 | 1.5 |
India | 175 | 5.251 | 1.628 | 7 | 1 | 4.240 | 1.049 | 6 | 1 |
Ireland | 32 | 4.250 | 2.064 | 7 | 1 | 3.469 | 1.332 | 6 | 1 |
Italy | 96 | 4.083 | 1.739 | 7 | 1 | 3.662 | 0.950 | 5.5 | 1.5 |
Japan | 78 | 4.846 | 1.810 | 7 | 1 | 4.250 | 1.271 | 6 | 1.5 |
Korea | 124 | 4.766 | 1.892 | 7 | 1 | 3.951 | 1.230 | 6 | 1 |
Mexico | 60 | 5.150 | 1.764 | 7 | 1 | 3.975 | 1.170 | 6 | 1 |
Netherlands | 75 | 4.893 | 1.632 | 7 | 1 | 4.033 | 0.991 | 6 | 1.5 |
Nigeria | 78 | 5.103 | 1.951 | 7 | 1 | 4.224 | 1.404 | 6 | 1 |
Pakistan | 58 | 5.069 | 1.872 | 7 | 1 | 4.181 | 1.075 | 6 | 2 |
Philippines | 56 | 4.821 | 1.478 | 7 | 1 | 4.054 | 0.923 | 6 | 1.5 |
Spain | 80 | 4.588 | 1.998 | 7 | 1 | 3.644 | 1.228 | 6 | 1 |
Turkey | 61 | 5.639 | 1.693 | 7 | 1 | 4.475 | 1.340 | 6 | 1 |
United Kingdom | 93 | 4.441 | 2.029 | 7 | 1 | 3.559 | 1.216 | 6 | 1 |
United States | 99 | 5.091 | 1.585 | 7 | 1 | 4.189 | 1.090 | 6 | 1 |
Venezuela | 57 | 4.316 | 2.458 | 7 | 1 | 4.114 | 1.090 | 6 | 2 |
Table S11 Study 4: Descriptive statistics of fear of death and illegal movement in different countries
Nation | Sample size | Fear of death | Illegal mobile tendency | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard deviation | Maximum | Minimum | Mean | Standard deviation | Maximum | Minimum | ||
Argentina | 6 | 4.833 | 1.602 | 7 | 3 | 3.417 | 1.068 | 5 | 2 |
Australia | 61 | 4.689 | 1.876 | 7 | 1 | 3.795 | 1.205 | 6 | 1 |
Bangladesh | 94 | 4.351 | 1.905 | 7 | 1 | 3.543 | 1.226 | 6 | 1.5 |
Canada | 98 | 4.490 | 2.042 | 7 | 1 | 3.699 | 1.157 | 6 | 1 |
China | 88 | 4.761 | 1.781 | 7 | 1 | 3.818 | 0.995 | 6 | 1 |
哥伦比亚 Colombia | 68 | 4.838 | 1.897 | 7 | 1 | 4.125 | 1.124 | 6 | 1 |
France | 48 | 4.104 | 1.825 | 7 | 1 | 3.344 | 1.195 | 6 | 1 |
Germany | 80 | 4.963 | 1.746 | 7 | 1 | 3.744 | 1.067 | 6 | 1.5 |
India | 175 | 5.251 | 1.628 | 7 | 1 | 4.240 | 1.049 | 6 | 1 |
Ireland | 32 | 4.250 | 2.064 | 7 | 1 | 3.469 | 1.332 | 6 | 1 |
Italy | 96 | 4.083 | 1.739 | 7 | 1 | 3.662 | 0.950 | 5.5 | 1.5 |
Japan | 78 | 4.846 | 1.810 | 7 | 1 | 4.250 | 1.271 | 6 | 1.5 |
Korea | 124 | 4.766 | 1.892 | 7 | 1 | 3.951 | 1.230 | 6 | 1 |
Mexico | 60 | 5.150 | 1.764 | 7 | 1 | 3.975 | 1.170 | 6 | 1 |
Netherlands | 75 | 4.893 | 1.632 | 7 | 1 | 4.033 | 0.991 | 6 | 1.5 |
Nigeria | 78 | 5.103 | 1.951 | 7 | 1 | 4.224 | 1.404 | 6 | 1 |
Pakistan | 58 | 5.069 | 1.872 | 7 | 1 | 4.181 | 1.075 | 6 | 2 |
Philippines | 56 | 4.821 | 1.478 | 7 | 1 | 4.054 | 0.923 | 6 | 1.5 |
Spain | 80 | 4.588 | 1.998 | 7 | 1 | 3.644 | 1.228 | 6 | 1 |
Turkey | 61 | 5.639 | 1.693 | 7 | 1 | 4.475 | 1.340 | 6 | 1 |
United Kingdom | 93 | 4.441 | 2.029 | 7 | 1 | 3.559 | 1.216 | 6 | 1 |
United States | 99 | 5.091 | 1.585 | 7 | 1 | 4.189 | 1.090 | 6 | 1 |
Venezuela | 57 | 4.316 | 2.458 | 7 | 1 | 4.114 | 1.090 | 6 | 2 |
Illegal mobile tendency | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
B | SE | B | SE | B | SE | |
Constant | 4.016** | 0.383 | 4.635** | 0.577 | 6.204** | 0.638 |
Independence | 0.012 | 0.006 | 0.012* | 0.006 | 0.014* | 0.006 |
Interdependence | -0.012 | 0.008 | -0.014 | 0.008 | ||
Governmental norm | 0.001 | 0.008 | -0.018* | 0.007 | ||
Per capita GDP | -0.000 | 0.000 | ||||
Total population | 0.000 | 0.000 | ||||
Population density | -0.001* | 0.0002 | ||||
Old age ratio | -2.532 | 1.296 |
Table S12 Study 4: Hierarchical Linear Model of Illegal Mobile Tendency
Illegal mobile tendency | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
B | SE | B | SE | B | SE | |
Constant | 4.016** | 0.383 | 4.635** | 0.577 | 6.204** | 0.638 |
Independence | 0.012 | 0.006 | 0.012* | 0.006 | 0.014* | 0.006 |
Interdependence | -0.012 | 0.008 | -0.014 | 0.008 | ||
Governmental norm | 0.001 | 0.008 | -0.018* | 0.007 | ||
Per capita GDP | -0.000 | 0.000 | ||||
Total population | 0.000 | 0.000 | ||||
Population density | -0.001* | 0.0002 | ||||
Old age ratio | -2.532 | 1.296 |
[1] |
Alesina, A., & Angeletos, G. M. (2005). Fairness and redistribution. American Economic Review, 95(4), 960-980.
doi: 10.1257/0002828054825655 URL |
[2] |
Allcott, H., Boxell, L., Conway, J. C., Gentzkow, M., Thaler, M., & Yang, D. Y. (2020). Polarization and public health: Partisan differences in social distancing during the coronavirus pandemic. Journal of Public Economics, 191, 104254. https://doi.org/10.1016/j.jpubeco.2020.104254
doi: 10.1016/j.jpubeco.2020.104254 URL |
[3] |
Anderson, B. (2020). Cultural geography III: The concept of ‘culture'. Progress in Human Geography, 44(3), 608-617.
doi: 10.1177/0309132519856264 URL |
[4] | Becvar, D. S. (2005). Cancer in context: A commentary. Families Systems & Health, 23(2), 148-154. |
[5] |
Benabou, R., & Tirole, J. (2006). Belief in a just world and redistributive politics. Quarterly Journal of Economics, 121(2), 699-746.
doi: 10.1162/qjec.2006.121.2.699 URL |
[6] |
Bergua, M., Luis-Arteaga, M., & Escriu, F. (2008). Comparison of logistic regression and growth function models for the analysis of the incidence of virus infection. Spanish Journal of Agricultural Research, 6(1), 170-176.
doi: 10.5424/sjar/200806S1-385 URL |
[7] | Canning, D., Karra, M., Dayalu, R., Guo, M., & Bloom, D. E. (2010). The association between age, COVID-19 symptoms, and social distancing behavior in the United States. MedRxiv. 10.1101/2020.04. 19.20065219 |
[8] |
Cao, C., Li, N., & Liu, L. (2020). Do national cultures matter in the containment of COVID-19? International Journal of Sociology and Social Policy, 40, 939-961.
doi: 10.1108/IJSSP-07-2020-0334 URL |
[9] | Cheeyandira, A. (2020). The effects of COVID-19 pandemic on the provision of urgent surgery: A perspective from the USA. Journal of Surgical Case Reports, 2020(4), 1-2. |
[10] |
Chen, C., Frey, C. B., & Presidente, G. (2021). Culture and contagion: Individualism and compliance with COVID-19 policy. Journal of Economic Behavior & Organization, 190, 191-200.
doi: 10.1016/j.jebo.2021.07.026 URL |
[11] |
Chiao, J. Y., Harada, T., Komeda, H., Li, Z., Mano, Y., Saito, D.,... Iidaka, T. (2010). Dynamic cultural influences on neural representations of the self. Journal of Cognitive Neuroscience, 22(1), 1-11.
doi: 10.1162/jocn.2009.21192 pmid: 19199421 |
[12] | Civitarese, J. (2020). Social distancing under epistemic distress. Available at SSRN 3570298. 10.2139/ssrn.3570298. |
[13] |
Cohen, A. B., Wu, M. S., & Miller, J. (2016). Religion and culture individualism and collectivism in the east and west. Journal of Cross-Cultural Psychology, 47(9), 1236-1249.
doi: 10.1177/0022022116667895 URL |
[14] |
Cohen, J., & Kupferschmidt, K. (2020). Countries test tactics in ‘war' against COVID-19. Science, 367(6484), 1287-1288
doi: 10.1126/science.367.6484.1287 pmid: 32193299 |
[15] | Conlon, A., Ashur, C., Washer, L., Eagle, K. A., & Bowman, M. A. H. (2021). Impact of the influenza vaccine on COVID-19 infection rates and severity. American Journal of Infection Control, (5), 1-33. |
[16] |
Cuevas, E. (2020). An agent-based model to evaluate the COVID-19 transmission risks in facilities. Computers in Biology and Medicine, 121, 103827.
doi: 10.1016/j.compbiomed.2020.103827 URL |
[17] |
Dehning, J., Zierenberg, J., Spitzner, F. P., Wibral, M., Neto, J. P., Wilczek, M., & Priesemann, V. (2020). Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science, 369(6500), eabb9789.
doi: 10.1126/science.abb9789 URL |
[18] | Deng, W., & Dong., L.-Y. (2021). Collaborative emergency:“medical squeeze” and cooperative management in major epidemic-take the COVID-19 crisis as an example. Journal of South China University of Technology (Social Science Edition), 23(1), 104-112. |
[19] |
Fincher, C. L., Thornhill, R., Murray, D. R., & Schaller, M. (2008). Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism. Proceedings of the Royal Society B: Biological Sciences, 275(1640), 1279-1285.
doi: 10.1098/rspb.2008.0094 pmid: 18302996 |
[20] |
Fischer, R., & van de Vliert, E. (2011). Does climate undermine subjective well-being? A 58-nation study. Personality and Social Psychology Bulletin, 37(8), 1031-1041.
doi: 10.1177/0146167211407075 pmid: 21555504 |
[21] | Gelfand, M. J., Jackson, J. C., Pan, X., Nau, D., Pieper, D., Denison, E.,... Wang, M. (2021). The relationship between cultural tightness-looseness and COVID-19 cases and deaths: A global analysis. The Lancet Planetary Health, 5(3), e135-e144. |
[22] |
Han, S., & Ma, Y. (2015). A culture-behavior-brain loop model of human development. Trends in Cognitive Sciences, 19(11), 666-676.
doi: 10.1016/j.tics.2015.08.010 URL |
[23] |
Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435-456.
doi: 10.1146/annurev-neuro-062012-170325 URL |
[24] | Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications. |
[25] |
Her, M. (2020). How is COVID-19 affecting South Korea? What is our current strategy? Disaster Medicine and Public Health Preparedness, 14(5), 684-686.
doi: 10.1017/dmp.2020.69 URL |
[26] | Hulme, M. (2014). Attributing weather extremes to ‘climate change': A review. Progress in Physical Geography, 38(4), 499-511. |
[27] |
Huynh, T. L. D. (2020). Does culture matter social distancing under the COVID-19 pandemic? Safety Science, 130(130), 104872.
doi: 10.1016/j.ssci.2020.104872 URL |
[28] |
Jackson, J. C., Rand, D., Lewis, K., Norton, M. I., & Gray, K. (2017). Agent-based modeling. Social Psychological and Personality Science, 8(4), 387-395.
doi: 10.1177/1948550617691100 URL |
[29] | Jiang, S., Wei, Q., & Zhang, L. (2021). Individualism vs. collectivism and the early-stage transmission of COVID-19. Available at SSRN: https://ssrn.com/abstract=3646229 or http://dx.doi.org/10.2139/ssrn.3646229 |
[30] |
Kearl, M. C., & Harris, R. (1982). Individualism and the emerging “modern” ideology of death. OMEGA-Journal of Death and Dying, 12(3), 269-280.
doi: 10.2190/KRE9-H8X9-8HYF-27E4 URL |
[31] |
Kemmelmeier, M., Wieczorkowska, G., Erb, H. P., & Burnstein, E. (2002). Individualism, authoritarianism, and attitudes toward assisted death: Cross‐cultural, cross‐regional, and experimental evidence. Journal of Applied Social Psychology, 32(1), 60-85.
doi: 10.1111/j.1559-1816.2002.tb01420.x URL pmid: 12680373 |
[32] |
Kleitman, S., Fullerton, D. J., Zhang, L. M., Blanchard, M. D., Lee, J., Stankov, L., & Thompson, V. (2021). To comply or not comply? A latent profile analysis of behaviours and attitudes during the COVID-19 pandemic. Plos One, 16(7), e0255268.
doi: 10.1371/journal.pone.0255268 URL |
[33] |
Kreuter, M. W., & McClure, S. M. (2004). The role of culture in health communication. Annual Review of Public Health, 25(1), 439-455.
doi: 10.1146/annurev.publhealth.25.101802.123000 URL |
[34] |
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.
doi: 10.3389/neuro.06.004.2008 pmid: 19104670 |
[35] |
Lai, S., Ruktanonchai, N. W., Zhou, L., Prosper, O., Luo, W., Floyd, J. R.,... Du, X. (2020). Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature, 585(7825), 410-413.
doi: 10.1038/s41586-020-2293-x URL |
[36] |
Liu, J. H. (2021). Majority world successes and European and American failure to contain COVID-19: Cultural collectivism and global leadership. Asian Journal of Social Psychology, 24(1), 23-29.
doi: 10.1111/ajsp.12461 URL |
[37] | Lu, J. G., Jin, P., & English, A. S. (2021). Collectivism predicts mask use during COVID-19. Proceedings of the National Academy of Sciences, 118(23). https://doi.org/10.1073/pnas.2021793118 |
[38] | Lunn, P. D., Belton, C. A., Lavin, C., McGowan, F. P., Timmons, S., & Robertson, D. A. (2020). Using behavioral science to help fight the coronavirus. Journal of Behavioral Public Administration, 3(1). https://doi.org/10.30636/jbpa.31.147 |
[39] | Macal, C. M., & North, M. J. (2009). Agent-based modeling and simulation. In Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE. Austin, TX, USA. |
[40] | MacKinnon, D. P. (2008). Multivariate applications series. Introduction to statistical mediation analysis. Taylor & Francis Group/ Lawrence Erlbaum Associates. |
[41] |
Markus, H. R., & Kitayama, S. (2010). Cultures and selves: A cycle of mutual constitution. Perspectives on Psychological Science, 5(4), 420-430.
doi: 10.1177/1745691610375557 pmid: 26162188 |
[42] | Messner, W. (2020). The institutional and cultural context of cross-national variation in COVID-19 outbreaks. Medrxiv. https://doi.org/10.1101/2020.03.30.20047589 |
[43] |
Murray, D. R., & Schaller, M. (2010). Historical prevalence of disease within 230 geopolitical regions: A tool for investigating origins of culture. Journal of Cross-Cultural Psychology, 41, 99-108.
doi: 10.1177/0022022109349510 URL |
[44] | Nisbett, R. E., Peng, K., Choi, I., Norenzayan, A., Zhamkochyan, M. S., & Magun, V. S. (2011). Culture and systems of thought: Comparison of holistic and analytic cognition. Psikhologicheskii Zhurnal, 32(1), 55-86. |
[45] |
Oyserman, D., Coon, H. M., & Kemmelmeier, M. (2002). Rethinking individualism and collectivism: Evaluation of theoretical assumptions and meta-analyses. Psychological Bulletin, 128(1), 3-72.
pmid: 11843547 |
[46] | Painter, M., & Qiu, T. (2020). Political beliefs affect compliance with covid-19 social distancing orders. Covid Economics, 4, 103-123. |
[47] | Pennisi, E. (2018). Trio of genes supercharged human brain evolution. Science, 372(6544), 1-4. |
[48] | Perc, M., Miksić, N. G., Slavinec, M., & Stožer, A. (2020). Forecasting COVID-19. Frontiers of Physics in China, 8, 127. |
[49] |
Petherick, A., Goldszmidt, R., Andrade, E. B., Furst, R., Hale, T., Pott, A., & Wood, A. (2021). A worldwide assessment of changes in adherence to COVID-19 protective behaviours and hypothesized pandemic fatigue. Nature Human Behaviour, 5(9), 1145-1160.
doi: 10.1038/s41562-021-01181-x pmid: 34345009 |
[50] |
Popal, H., Wang, Y., & Olson, I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 1243-1253.
doi: 10.1093/scan/nsz099 URL |
[51] | Prorokova, T. (2019). Review of a cultural history of climate change. Journal of Ecological Anthropology, 20(1), 6. |
[52] |
Roos, P., Gelfand, M., Nau, D., & Lun, J. (2015). Societal threat and cultural variation in the strength of social norms: An evolutionary basis. Organizational Behavior and Human Decision Processes, 129(1), 14-23.
doi: 10.1016/j.obhdp.2015.01.003 URL |
[53] |
Popal, H., Wang, Y., & Olson, I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 1243-1253.
doi: 10.1093/scan/nsz099 URL |
[54] | Ross, C. T., & Richerson, P. J. (2014). New frontiers in the study of human cultural and genetic evolution. Current Opinion in Genetics & Development, 29, 103-109. |
[55] | Schaller, M., & Murray, D. R. (2010). Infectious diseases and the evolution of cross-cultural differences. Evolution, Culture, and the Human Mind, 243-56. |
[56] | Seymour, J. E., French, J., & Richardson, E. (2010). Dying matters: Let's talk about it. BMJ, 341(7774), 646-648. |
[57] |
Singelis, T. M. (1994). The measurement of independent and interdependent self-construals. Personality and Social Psychology Bulletin, 20(5), 580-591.
doi: 10.1177/0146167294205014 URL |
[58] | Talhelm, T., & Oishi, S. (2018). How rice farming shaped culture in southern China. Socioeconomic Environment and Human Psychology, 21(3), 53-76. |
[59] |
Talhelm, T., Zhang, X., Oishi, S., Shimin, C., Duan, D., Lan, X., & Kitayama, S. (2014). Large-scale psychological differences within China explained by rice versus wheat agriculture. Science, 344(6184), 603-608.
doi: 10.1126/science.1246850 pmid: 24812395 |
[60] |
Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental influences on cognition across the life span: A meta-analysis of longitudinal twin and adoption studies. Psychological Bulletin, 140(4), 949-979.
doi: 10.1037/a0035893 pmid: 24611582 |
[61] |
Uskul, A. K., Kitayama, S., & Nisbett, R. E. (2008). Ecocultural basis of cognition: Farmers and fishermen are more holistic than herders. Proceedings of the National Academy of Sciences of the United States of America, 105(25), 8552-8556.
doi: 10.1073/pnas.0803874105 pmid: 18552175 |
[62] |
van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M.,... Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4(5), 460-471.
doi: 10.1038/s41562-020-0884-z pmid: 32355299 |
[63] |
van de Vliert, E., & Postmes, T. (2012). Climato-economic livability predicts societal collectivism and political autocracy better than parasitic stress does. Behavioral and Brain Sciences, 35(2), 94.
doi: 10.1017/S0140525X11001075 pmid: 22289160 |
[64] | Williams, L., Rasmussen, S., Kleczkowski, A., Maharaj, S., & Cairns, N. (2015). Protection motivation theory and social distancing behaviour in response to a simulated infectious disease epidemic. Psychology Health & Medicine, 20(7), 832-837. |
[65] |
Wong, J. E. L., Leo, Y. S., & Tan, C. C. (2020). COVID-19 in Singapore-current experience: Critical global issues that require attention and action. JAMA, 323(13), 1243-1244.
doi: 10.1001/jama.2020.2467 URL |
[66] | Wu, L., & Bai, Z. (2019). Why do individuals tend to conduct immoral behaviors repeatedly? - Based on psychology interpretation. Journal of Central China Normal University (Humanities and Social Sciences). 58(2), 184-192. |
[67] | Zhou, H., Long, L. R. (2004). Statistical remedies for common method biases. Advance in Psychological Science. 12(6), 942-950. |
[1] | TIAN Yi, WANG Li, XU Yan, JIAO Liying. Psychological structure of social mindfulness in Chinese culture [J]. Acta Psychologica Sinica, 2021, 53(9): 1003-1017. |
[2] | JIAO Liying, YANG Ying, XU Yan, GAO Shuqing, ZHANG Heyun. Good and evil in Chinese culture: Personality structure and connotation [J]. Acta Psychologica Sinica, 2019, 51(10): 1128-1142. |
[3] | NIE Chunyan, WANG Tao, ZHAO Peng, CUI Nan. The influence of interpretation frame on the evaluation of culturally mixed products: The moderating effect of comparison focus and interpretation strategy [J]. Acta Psychologica Sinica, 2018, 50(12): 1438-1448. |
[4] | Ting WANG,Yuxia GUAN,Hongying GUAN,Jijia ZHANG. Effect of ecological environment and mode of production on the visual-spatial working memory of Oroqens [J]. Acta Psychologica Sinica, 2018, 50(10): 1094-1104. |
[5] | WANG Haizhong, FAN Xiaowen, OUYANG Jianying. Consumer self-construal, need of uniqueness and preference of brand logo shape [J]. Acta Psychologica Sinica, 2017, 49(8): 1113-1124. |
[6] | HE Xiumei; ZHANG Xiani; ZHANG Jijia; XIAO Erping; WANG Juan. Cultural Schema Affect the Spatial Metaphors in the Semantic Processing of Kinship Words: The Evidence from the Han and the Moso [J]. Acta Psychologica Sinica, 2015, 47(5): 584-599. |
[7] | YAN Bihua; JI Ming; ZHAO Xiaojun; TU Jinlu; YOU Xuqun. Predictive Effect of Implicit Safety Attitudes on Safety Performance in Aviation Safety Culture [J]. Acta Psychologica Sinica, 2015, 47(1): 119-128. |
[8] | Zhang Jijia;Wang Juan;Xiao Erping;He Xiumei. Influence of Culture and Circumstance on Kinship Words’ Conceptual Structure [J]. Acta Psychologica Sinica, 2013, 45(8): 825-839. |
[9] | HUO Yongquan1; CHEN Yongyong1,2; GUO Zhuyi. An Exploration on the Inter Complementary Optimistic Psychological Thoughts of the Confucianism and Taoism in the Traditional Chinese Culture [J]. Acta Psychologica Sinica, 2013, 45(11): 1305-1312. |
[10] | ZHANG Hong-Xia,LIU Xue-Nan. How Deeply Involved Should Celebrities Be in Advertising? [J]. , 2010, 42(05): 587-598. |
[11] | Yoshihisa Kashima,and Victoria Wai-Lan Yeung. Serial Reproduction: An Experimental Simulation of Cultural Dynamics [J]. , 2010, 42(01): 56-71. |
[12] | LU Ai-Tao,ZHANG Ji-Jia,Michael Harris Bond,ZHANG Xue-Xin,Michael Friedman,CHAN Ching. Cultural Differences in the Impacts of Conflict and Support on Romantic Partner Attachment [J]. , 2009, 41(06): 534-544. |
[13] | YOU Xu-Qun,YAN Bi-Hua,LI Ying,GU Xiang-Hua, YANG Shi-Yun,TU Jin-Lu. The Effects of Flight Management Attitude on the Standardization of the Navigation Behavior of Airline Pilots [J]. , 2008, 40(04): 466-473. |
[14] | Jing-Huaibin. What can Confucian thought do for psychological counseling [J]. , 2007, 39(02): 371-380. |
[15] | Jing-Huaibin. Confucian Coping and Its Role to Mental Health [J]. , 2006, 38(01): 126-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||