Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (7): 694-713.doi: 10.3724/SP.J.1041.2021.00694
• Reports of Empirical Studies • Previous Articles Next Articles
CHE Xiaowei, XU Huiyun, WANG Kaixuan, ZHANG Qian(), LI Shouxin()
Received:
2020-05-13
Published:
2021-07-25
Online:
2021-05-24
Contact:
ZHANG Qian,LI Shouxin
E-mail:zhangqian_ psy@126.com;shouxinli@sdnu.edu.cn
Supported by:
CHE Xiaowei, XU Huiyun, WANG Kaixuan, ZHANG Qian, LI Shouxin. (2021). Precision requirement of working memory representations influences attentional guidance. Acta Psychologica Sinica, 53(7), 694-713.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2021.00694
Figure 2. Examples of stimuli and procedure in Experiment 1~4. The first line illustrates the experimental procedure of suppression condition in Experiment 1. The second line illustrates the experimental procedure of verbal labeling condition in Experiment 1. The third line illustrates the experimental procedure in Experiment 2. The fourth line illustrates the experimental procedure in Experiment 3. The fifth line illustrates the experimental procedure in Experiment 4; in the single trial, one of the search task and memory test task are presented randomly. The textures in the squares represent different colors.
Experiment | Conditions | High precision requirement | Low precision requirement | ||
---|---|---|---|---|---|
Accuracy | RT (ms) | Accuracy | RT (ms) | ||
Experiment 1 | |||||
Suppression | 0.92 ± 0.03 | 0.98 ± 0.01 | |||
Verbal labeling | 0.94 ± 0.02 | 0.99 ± 0.01 | |||
Experiment 2 | |||||
High-priority | 0.85 ± 0.04 | 699 ± 53 | 0.94 ± 0.02 | 611 ± 29 | |
Low priority | 0.72 ± 0.07 | 878 ± 88 | 0.80 ± 0.05 | 755 ± 61 | |
Experiment 3 | |||||
1 memory item | 0.92 ± 0.02 | 0.99 ± 0.01 | |||
2 memory items | 0.76 ± 0.04 | 0.87 ± 0.03 | |||
Experiment 4 | |||||
0.89 ± 0.03 | 0.98 ± 0.01 |
Table 1 The accuracy and mean RTs of the working memory task (M ± 95% CI) in Experiment 1~4
Experiment | Conditions | High precision requirement | Low precision requirement | ||
---|---|---|---|---|---|
Accuracy | RT (ms) | Accuracy | RT (ms) | ||
Experiment 1 | |||||
Suppression | 0.92 ± 0.03 | 0.98 ± 0.01 | |||
Verbal labeling | 0.94 ± 0.02 | 0.99 ± 0.01 | |||
Experiment 2 | |||||
High-priority | 0.85 ± 0.04 | 699 ± 53 | 0.94 ± 0.02 | 611 ± 29 | |
Low priority | 0.72 ± 0.07 | 878 ± 88 | 0.80 ± 0.05 | 755 ± 61 | |
Experiment 3 | |||||
1 memory item | 0.92 ± 0.02 | 0.99 ± 0.01 | |||
2 memory items | 0.76 ± 0.04 | 0.87 ± 0.03 | |||
Experiment 4 | |||||
0.89 ± 0.03 | 0.98 ± 0.01 |
Experiment | Conditions | Match-condition | High precision requirement | Low precision requirements | ||
---|---|---|---|---|---|---|
Accuracy | RT (ms) | Accuracy | RT (ms) | |||
Experiment 1 | ||||||
Suppression | Baseline | 0.98 ± 0.02 | 440 ± 91 | 0.99 ± 0.01 | 438 ± 110 | |
Nonmatching | 0.97 ± 0.02 | 475 ± 83 | 0.98 ± 0.01 | 470 ± 99 | ||
Matching | 0.98 ± 0.02 | 543 ± 88 | 0.98 ± 0.02 | 492 ± 103 | ||
Verbal labeling | Baseline | 0.99 ± 0.01 | 418 ± 75 | 0.99 ± 0.01 | 430 ± 81 | |
Nonmatching | 0.98 ± 0.01 | 450 ± 66 | 0.98 ± 0.01 | 468 ± 76 | ||
Matching | 0.98 ± 0.01 | 547 ± 75 | 0.98 ± 0.01 | 517 ± 78 | ||
Experiment 2 | ||||||
Baseline | 0.99 ± 0.01 | 554 ± 138 | 0.99 ± 0.01 | 514 ± 113 | ||
Nonmatching | 0.97 ± 0.02 | 577 ± 121 | 0.98 ± 0.02 | 570 ± 102 | ||
High-priority matching | 0.98 ± 0.01 | 614 ± 123 | 0.99 ± 0.01 | 610 ± 103 | ||
Low-priority matching | 0.97 ± 0.02 | 630 ± 127 | 0.98 ± 0.01 | 574 ± 108 | ||
Experiment 3 | ||||||
1 memory item | Baseline | 0.97 ± 0.02 | 470 ± 128 | 0.97 ± 0.02 | 471 ± 132 | |
Match-0 | 0.98 ± 0.02 | 523 ± 119 | 0.95 ± 0.02 | 488 ± 109 | ||
Match-1 | 0.97 ± 0.02 | 565 ± 108 | 0.97 ± 0.02 | 554 ± 123 | ||
2 memory items | Baseline | 0.98 ± 0.02 | 480 ± 132 | 0.97 ± 0.02 | 477 ± 125 | |
Match-0 | 0.98 ± 0.01 | 492 ± 111 | 0.98 ± 0.01 | 498 ± 116 | ||
Match-1 | 0.98 ± 0.02 | 544 ± 116 | 0.96 ± 0.02 | 500 ± 99 | ||
Match-2 | 0.98 ± 0.01 | 593 ± 111 | 0.98 ± 0.01 | 541 ± 117 | ||
Experiment 4 | ||||||
Baseline | 0.96 ± 0.03 | 755 ± 51 | 0.98 ± 0.01 | 756 ± 48 | ||
Nonmatching | 0.96 ± 0.03 | 747 ± 42 | 0.98 ± 0.02 | 755 ± 48 | ||
Matching | 0.95 ± 0.02 | 817 ± 47 | 0.96 ± 0.02 | 803 ± 51 |
Table 2 The accuracy and mean RTs of visual search task (M ± 95% CI) in Experiment 1~4
Experiment | Conditions | Match-condition | High precision requirement | Low precision requirements | ||
---|---|---|---|---|---|---|
Accuracy | RT (ms) | Accuracy | RT (ms) | |||
Experiment 1 | ||||||
Suppression | Baseline | 0.98 ± 0.02 | 440 ± 91 | 0.99 ± 0.01 | 438 ± 110 | |
Nonmatching | 0.97 ± 0.02 | 475 ± 83 | 0.98 ± 0.01 | 470 ± 99 | ||
Matching | 0.98 ± 0.02 | 543 ± 88 | 0.98 ± 0.02 | 492 ± 103 | ||
Verbal labeling | Baseline | 0.99 ± 0.01 | 418 ± 75 | 0.99 ± 0.01 | 430 ± 81 | |
Nonmatching | 0.98 ± 0.01 | 450 ± 66 | 0.98 ± 0.01 | 468 ± 76 | ||
Matching | 0.98 ± 0.01 | 547 ± 75 | 0.98 ± 0.01 | 517 ± 78 | ||
Experiment 2 | ||||||
Baseline | 0.99 ± 0.01 | 554 ± 138 | 0.99 ± 0.01 | 514 ± 113 | ||
Nonmatching | 0.97 ± 0.02 | 577 ± 121 | 0.98 ± 0.02 | 570 ± 102 | ||
High-priority matching | 0.98 ± 0.01 | 614 ± 123 | 0.99 ± 0.01 | 610 ± 103 | ||
Low-priority matching | 0.97 ± 0.02 | 630 ± 127 | 0.98 ± 0.01 | 574 ± 108 | ||
Experiment 3 | ||||||
1 memory item | Baseline | 0.97 ± 0.02 | 470 ± 128 | 0.97 ± 0.02 | 471 ± 132 | |
Match-0 | 0.98 ± 0.02 | 523 ± 119 | 0.95 ± 0.02 | 488 ± 109 | ||
Match-1 | 0.97 ± 0.02 | 565 ± 108 | 0.97 ± 0.02 | 554 ± 123 | ||
2 memory items | Baseline | 0.98 ± 0.02 | 480 ± 132 | 0.97 ± 0.02 | 477 ± 125 | |
Match-0 | 0.98 ± 0.01 | 492 ± 111 | 0.98 ± 0.01 | 498 ± 116 | ||
Match-1 | 0.98 ± 0.02 | 544 ± 116 | 0.96 ± 0.02 | 500 ± 99 | ||
Match-2 | 0.98 ± 0.01 | 593 ± 111 | 0.98 ± 0.01 | 541 ± 117 | ||
Experiment 4 | ||||||
Baseline | 0.96 ± 0.03 | 755 ± 51 | 0.98 ± 0.01 | 756 ± 48 | ||
Nonmatching | 0.96 ± 0.03 | 747 ± 42 | 0.98 ± 0.02 | 755 ± 48 | ||
Matching | 0.95 ± 0.02 | 817 ± 47 | 0.96 ± 0.02 | 803 ± 51 |
Figure 3. WM-based capture effects under each condition In Experiment 1~3. Figure A shows the result of Experiment 1, Figure B shows the result of Experiment 2, Figure C shows the result of Experiment 3. Error bars indicates 95% confidence interval, * p < 0.05, ** p < 0.01. H-P requirement: high precision requirement; L-P requirement: low precision requirement; M1-1: memory-1/match-1; M2-1: memory-2/match-1; M2-2: memory-2/match-2.
Figure 4. NSW in each condition of Experiment 4. Grey area represents time window of 600~1000 ms. H-P requirement: high precision requirement; L-P requirement: low precision requirement.
Figure 5. LPC in each condition of Experiment 4. Grey area represents time window of 450~1000 ms. H-P requirement: high precision requirement; L-P requirement: low precision requirement.
Figure 6. N2 in each condition of Experiment 4. Figure A shows N2 waveform at Fz, FCz and Cz electrodes under high precision requirement; Figure B shows N2 waveform at Fz, FCz and Cz electrodes under low precision requirement; Figure C shows the scale of N2 waveforms; Figure D shows the mean amplitude of N2 in each condition. Error bars indicates 95% confidence interval, * p < 0.05, ** p < 0.01. H-P requirement: high precision requirement; L-P requirement: low precision requirement.
Figure 7. N2pc in each condition of Experiment 4, Figure A shows the ERPs obtained in response to search displays at electrodes PO7/PO8 contralateral and ipsilateral to the side of the targets, and the N2pc waveforms under high precision requirement; Figure B shows the ERPs obtained in response to search displays at electrodes PO7/PO8 contralateral and ipsilateral to the side of the targets, and the N2pc waveforms under low precision requirement; Figure C shows the scale of N2pc waveforms; Figure D shows the mean amplitude of N2pc in each condition. Error bars indicates 95% confidence interval, **p < 0.01, *** p < 0.001. H-P requirement: high precision requirement; L-P requirement: low precision requirement.
[1] |
Al-Aidroos, N., Emrich, S. M., Ferber, S., & Pratt, J. (2012). Visual working memory supports the inhibition of previously processed information: Evidence from preview search. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 643-663.
doi: 10.1037/h0061442 URL |
[2] |
Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580-584.
doi: 10.1037/a0027885 URL |
[3] | Bae, G. Y., & Luck, S. J. (2017). Interactions between visual working memory representations. Attention, Perception, & Psychophysics, 79(8), 2376-2395. |
[4] |
Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854.
doi: 10.1126/science.1158023 URL |
[5] |
Beck, V. M., & Hollingworth, A. (2017). Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 225-230.
doi: 10.1037/xhp0000306 URL |
[6] |
Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887-898.
doi: 10.1177/0956797612439068 URL |
[7] |
Berggren, N., & Eimer, M. (2018). Object-based target templates guide attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(9), 1368-1382.
doi: 10.1037/xhp0000541 URL |
[8] |
Cohen, J. (1992). A power primer. Psychology Bulletin, 112(1), 155-159.
doi: 10.1037/0033-2909.112.1.155 URL |
[9] |
Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49(6), 1401-1406.
doi: 10.1016/j.neuropsychologia.2011.01.035 URL |
[10] |
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.
doi: 10.1146/annurev.ne.18.030195.001205 URL |
[11] |
Downing, P., & Dodds, C. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689-703.
doi: 10.1080/13506280344000446 URL |
[12] | Dube, B., & Al-Aidroos, N. (2019). Distinct prioritization of visual working memory representations for search and for recall. Attention, Perception, & Psychophysics, 81(5), 1253-1261. |
[13] |
Dube, B., Basciano, A., Emrich, S. M., & Al-Aidroos, N. (2016). Visual working memory simultaneously guides facilitation and inhibition during visual search. Attention, Perception, & Psychophysics, 78(5), 1232-1244.
doi: 10.3758/s13414-016-1105-8 URL |
[14] |
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458.
pmid: 2756067 |
[15] |
Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234.
pmid: 8862112 |
[16] |
Emrich, S. M., Al-Aidroos, N., Pratt, J., & Ferber, S. (2010). Finding memory in search: The effect of visual working memory load on visual search. Quarterly Journal of Experimental Psychology, 63(8), 1457-1466.
doi: 10.1080/17470218.2010.483768 URL |
[17] |
Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25(5), 754-761.
doi: 10.1162/jocn_a_00357 URL |
[18] |
Fan, L. X., Sun, M. D., Xu, M. S., Li, Z. A., Diao, L. T., & Zhang, X. M. (2019). Multiple representations in visual working memory simultaneously guide attention: The type of memory-matching representation matters. Acta Psychologica, 192, 126-137.
doi: 10.1016/j.actpsy.2018.11.005 URL |
[19] |
Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., & Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proceedings of the National Academy of Sciences, 108(42), 17510-17515.
doi: 10.1073/pnas.1106439108 URL |
[20] |
Gao, Z. F., Ding, X. W., Yang, T., Liang, J. Y., & Shui, R. (2013). Coarse-to-fine construction for high-resolution representation in visual working memory. PLoS ONE, 8(2), e57913.
doi: 10.1371/journal.pone.0057913 URL |
[21] |
Gao, Z. F., Xu, X. T., Chen, Z. B., Yin, J., Shen, M. W., & Shui, R. (2011). Contralateral delay activity tracks object identity information in visual short term memory. Brain Research, 1406, 30-42.
doi: 10.1016/j.brainres.2011.06.049 URL |
[22] |
Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia, 60, 29-38.
doi: 10.1016/j.neuropsychologia.2014.05.012 pmid: 24878275 |
[23] |
He, X., Zhang, W. W., Li, C. H., & Guo, C. Y. (2015). Precision requirements do not affect the allocation of visual working memory capacity. Brain Research, 1602, 136-143.
doi: 10.1016/j.brainres.2015.01.028 URL |
[24] |
Heil, M., Osman, A., Wiegelmann, J., Rolke, B., & Hennighausen, E. (2000). N200 in the Eriksen-task: Inhibitory executive process? Journal of Psychophysiology, 14(4), 218-225.
doi: 10.1027//0269-8803.14.4.218 URL |
[25] |
Hitch, G. J., Allen, R. J., & Baddeley, A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention, Perception, & Psychophysics, 82(1), 280-293.
doi: 10.3758/s13414-019-01837-x URL |
[26] |
Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911-917.
doi: 10.1037/xhp0000230 URL |
[27] | Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research PRPF, 73(3), 317-326. |
[28] |
Hu, Y. M., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory. Attention, Perception, & Psychophysics, 78(7), 2164-2175.
doi: 10.3758/s13414-016-1106-7 URL |
[29] | Kahneman, D. (1973). Attention and effort (Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall. |
[30] |
Kanske, P., & Kotz, S. A. (2010). Modulation of early conflict processing: N200 responses to emotional words in a flanker task. Neuropsychologia, 48(12), 3661-3664.
doi: 10.1016/j.neuropsychologia.2010.07.021 URL |
[31] |
Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645-658.
doi: 10.1037/xhp0000637 URL |
[32] |
Kursawe, M. A., & Zimmer, H. D. (2015). Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves. Acta Psychologica, 158, 67-77.
doi: 10.1016/j.actpsy.2015.04.004 URL |
[33] |
Li, C. H., He, X., & Guo, C. Y. (2015). The storage mechanism of multi-feature objects in visual working memory. Acta Psychologica Sinica, 47(6), 734-745.
doi: 10.3724/SP.J.1041.2015.00734 URL |
[34] |
Li, S. X., Che, X. W., Li, Y. J., Wang, L., & Chen, K. S. (2019). The effects of capacity load and resolution load on visual selective attention during visual working memory. Acta Psychologica Sinica, 51(5), 527-542.
doi: 10.3724/SP.J.1041.2019.00527 URL |
[35] | Li, X. B., Ouyang, Z. Z., & Luo, Y. J. (2010). The effect of cognitive load on interaction pattern of emotion and working memory: An ERP study. In The 9th IEEE International Conference on Cognitive Informatics (pp. 61-67). Beijing, China: IEEE Computer Society. |
[36] |
Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512.
doi: 10.1162/jocn.2009.21214 pmid: 19301998 |
[37] |
Machizawa, M. G., Goh, C. C. W., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychological Science, 23(6), 554-559.
doi: 10.1177/0956797611431988 pmid: 22527526 |
[38] |
Morcos, A. S., & Harvey, C. D. (2016). History-dependent variability in population dynamics during evidence accumulation in cortex. Nature Neuroscience, 19(12), 1672-1681.
doi: 10.1038/nn.4403 pmid: 27694990 |
[39] |
Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275-1291.
doi: 10.1037/a0013896 URL |
[40] | Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334. |
[41] |
Ort, E., Fahrenfort, J. J., & Olivers, C. N. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147.
doi: 10.1177/0956797617705667 URL |
[42] |
Panichello, M. F., DePasquale, B., Pillow, J. W., & Buschman, T. J. (2019). Error-correcting dynamics in visual working memory. Nature Communications, 10(1), 3366.
doi: 10.1038/s41467-019-11298-3 pmid: 31358740 |
[43] |
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455-1470.
doi: 10.3758/APP.72.6.1455 URL |
[44] |
Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Psychophysical scaling reveals a unified theory of visual memory strength. Nature Human Behaviour, 4(11), 1156-1172.
doi: 10.1038/s41562-020-00938-0 URL |
[45] |
Shen, M., Huang, X., & Gao, Z. (2015). Object-based attention underlies the rehearsal of feature binding in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 479-493.
doi: 10.1037/xhp0000018 URL |
[46] |
Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248-261.
doi: 10.1037/0096-1523.31.2.248 URL |
[47] |
Souza, A. S., & Skóra, Z. (2017). The interplay of language and visual perception in working memory. Cognition, 166, 277-297.
doi: 10.1016/j.cognition.2017.05.038 URL |
[48] |
van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450-1464.
doi: 10.1037/a0036229 URL |
[49] |
Wen, W., Hou, Y., & Li, S. (2018). Memory guidance in distractor suppression is governed by the availability of cognitive control. Attention, Perception, & Psychophysics, 80(5), 1157-1168.
doi: 10.3758/s13414-018-1511-1 URL |
[50] |
Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363-377.
doi: 10.1037/0096-1523.33.2.363 URL |
[51] | Yang, P., Wang, M., Jin, Z. L., & Li, L. (2015). Visual short-term memory load modulates the early attention and perception of task- irrelevant emotional faces. Frontiers in Human Neuroscience, 9, 490. |
[52] |
Zhang, W. W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235.
doi: 10.1038/nature06860 URL |
[53] |
Zhang, W. W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22(11), 1434-1441.
doi: 10.1177/0956797611417006 URL |
[54] |
Zhang, W. W., & Luck, S. J. (2015). Opposite effects of capacity load and resolution load on distractor processing. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 22-27.
doi: 10.1037/xhp0000013 URL |
[55] |
Zhao, Y. J., Kuai, S. G., Zanto, T. P., & Ku, Y. X. (2020). Neural correlates underlying the precision of visual working memory. Neuroscience, 425, 301-311.
doi: 10.1016/j.neuroscience.2019.11.037 URL |
[1] | HUANG Yuesheng, ZHANG Bao, FAN Xinhua, HUANG Jie. Can negative emotion of task-irrelevant working memory representation affect its attentional capture? A study of eye movements [J]. Acta Psychologica Sinica, 2021, 53(1): 26-37. |
[2] | ZHENG Xutao, GUO Wenjiao, CHEN Man, JIN Jia, YIN Jun. Influence of the valence of social actions on attentional capture: Focus on helping and hindering actions [J]. Acta Psychologica Sinica, 2020, 52(5): 584-596. |
[3] | Hui-Yuan WANG, Jie SUI, Ming ZHANG. Attentional capture is contingent on attentional control setting for semantic meaning: Evidence from modified spatial cueing paradigm [J]. Acta Psychologica Sinica, 2018, 50(10): 1071-1082. |
[4] | LIU Li, BAI Xuejun. The effects of attentional control setting and types of cues on attentional capture [J]. Acta Psychologica Sinica, 2016, 48(9): 1093-1104. |
[5] | WANG Huiyuan, SUI Jie, ZHANG Ming. The effect of cue-target relevance and search strategies on attentional capture: Evidence from meaning cues [J]. Acta Psychologica Sinica, 2016, 48(7): 783-793. |
[6] | BAI Xuejun, LIU Li, SONG Juan, GUO Zhiying. The role of feature and spatial location in value-driven attentional capture [J]. Acta Psychologica Sinica, 2016, 48(11): 1357-1369. |
[7] | HU Yanmei, ZHANG Ming. Electrophysiological evidence for memory-based attentional capture and memory-based attentional rejection effects [J]. Acta Psychologica Sinica, 2016, 48(1): 12-21. |
[8] | ZHANG Bao, SHAO Jiaying, HU Cenlou, Huang Sai. Attentional Guidance from Activated and Inhibitory States of Working Memory Representations [J]. Acta Psychologica Sinica, 2015, 47(9): 1089-1100. |
[9] | ZHANG Wei, ZHOU Bingping, ZANG Ling, MO Shuliang. The Attentional Capture of Internet Addicts under the Guidance of Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(10): 1223-1234. |
[10] | WANG Huiyuan;ZHANG Ming;SUI Jie. The Effect of Cue-Target Relevance and Search Strategies on Attentional Capture [J]. Acta Psychologica Sinica, 2014, 46(2): 185-195. |
[11] | LIU Li; LI Yun; LI Lihong; BAI Xuejun. The Effect of Top-down Attentional Control Setting on Attentional Capture [J]. Acta Psychologica Sinica, 2014, 46(10): 1442-1453. |
[12] | ZHANG Bao, Huang Sai, HOU Qiuxia. The Priority of Color in Working-Memory-Driven Ocular Capture [J]. Acta Psychologica Sinica, 2014, 46(1): 17-26. |
[13] | ZHANG Bao;HUANG Sai;QI Lu. Working Memory Representation Does Guide Visual Attention: Evidence from Eye Movements [J]. Acta Psychologica Sinica, 2013, 45(2): 139-148. |
[14] | WEI Ping;KANG Guan-Lan. The Interaction between Perceptual Load and the Target-Distractor Distance in Regulating Stimulus-Driven Attentional Capture [J]. Acta Psychologica Sinica, 2012, 44(11): 1454-1462. |
[15] | Liang Hua, Chen Xiangchuan, Zhang Daren. STIMULUS-DRIVEN ATTENTIONAL CAPTURE UNDER DIFFERENT ATTENTION LOAD [J]. , 2004, 36(01): 31-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||