Acta Psychologica Sinica ›› 2023, Vol. 55 ›› Issue (5): 696-710.doi: 10.3724/SP.J.1041.2023.00696
• Reports of Empirical Studies • Previous Articles Next Articles
ZHU Xiaoliang1,2, ZHAO Xin1,2()
Published:
2023-05-25
Online:
2023-02-14
Contact:
ZHAO Xin
E-mail:psyzhaoxin@nwnu.edu.cn
ZHU Xiaoliang, ZHAO Xin. (2023). Role of executive function in mathematical ability of children in different grades. Acta Psychologica Sinica, 55(5), 696-710.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2023.00696
Figure 1. Hypothetical theoretical model of the relationship between each executive function component and different mathematical capabilities. Note. interference inhibition(I-I), response inhibition(R-I), working memory updating(WM-U), cognitive flexibility(C-F), working memory span(WM-S), mathematical operations(M-O), spatial imagination(S-I), logical thinking(L-T), addition(Add), subtraction(Sub), visual length(V-L), number continuation(N-C), Same below.
Grade | Total | Male | Female | Age (M±SD, years) |
---|---|---|---|---|
Third Year | 183 | 82 | 101 | 8.90 ± 0.50 |
Fourth Grade | 202 | 92 | 110 | 9.84 ± 0.41 |
Fifth Grade | 210 | 104 | 106 | 10.90 ± 0.40 |
Sixth Grade | 217 | 112 | 105 | 11.94 ± 0.50 |
Total | 812 | 390 | 422 | 10.46 ± 1.22 |
Table 1 Participants demographic variables
Grade | Total | Male | Female | Age (M±SD, years) |
---|---|---|---|---|
Third Year | 183 | 82 | 101 | 8.90 ± 0.50 |
Fourth Grade | 202 | 92 | 110 | 9.84 ± 0.41 |
Fifth Grade | 210 | 104 | 106 | 10.90 ± 0.40 |
Sixth Grade | 217 | 112 | 105 | 11.94 ± 0.50 |
Total | 812 | 390 | 422 | 10.46 ± 1.22 |
Measures | Third Grade (n = 183) | Fourth Grade (n = 202) | Fifth Grade (n = 210) | Sixth Grade (n = 217) | F(3, 808) | ηp2 | Post hoc comparison | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | ||||
Arithmetic | |||||||||||
Addition | 18.51 | 3.61 | 19.37 | 3.72 | 21.34 | 3.80 | 22.97 | 3.98 | 56.67*** | 0.17 | 6>5>4>3 |
Subtraction | 17.25 | 3.92 | 17.53 | 4.43 | 19.55 | 4.57 | 20.95 | 4.55 | 32.47*** | 0.11 | 6>5>4=3 |
Logical Thinking | |||||||||||
Continuing to write numbers | 11.20 | 3.31 | 11.35 | 3.35 | 12.28 | 2.91 | 12.47 | 3.28 | 7.92*** | 0.03 | 6=5>4=3 |
Visual length measurement | 7.21 | 4.50 | 9.67 | 5.69 | 12.03 | 5.22 | 13.65 | 6.91 | 54.09*** | 0.15 | 6>5>4>3 |
Spatial Imagination | |||||||||||
Square counting | 14.13 | 3.65 | 15.52 | 4.31 | 17.11 | 4.62 | 19.23 | 4.81 | 52.72*** | 0.16 | 6>5>4>3 |
Interference suppression | |||||||||||
Stroop interference effect (ms) | -0.82 | 73.73 | 19.37 | 69.70 | 10.47 | 69.44 | 7.84 | 63.95 | 2.79* | 0.01 | 4>3 |
Reaction suppression | |||||||||||
NOGO correct rate | 0.76 | 0.13 | 0.79 | 0.12 | 0.81 | 0.10 | 0.79 | 0.15 | 5.55** | 0.02 | 6=5=4>3 |
Working Memory Updating | |||||||||||
Simple updating Correct Rate | 0.57 | 0.24 | 0.64 | 0.18 | 0.71 | 0.18 | 0.74 | 0.17 | 26.54*** | 0.10 | 6=5>4>3 |
Difficult updating Correct Rate | 0.61 | 0.24 | 0.69 | 0.19 | 0.74 | 0.18 | 0.77 | 0.17 | 22.00*** | 0.09 | 6=5>4>3 |
Working Memory Span | |||||||||||
Forward Digit span | 5.74 | 1.35 | 6.22 | 1.31 | 6.79 | 1.24 | 6.72 | 1.71 | 25.15*** | 0.08 | 6=5>4>3 |
Backward Digit span | 4.16 | 0.89 | 4.74 | 1.18 | 5.09 | 1.36 | 5.46 | 1.40 | 49.52*** | 0.13 | 6>5>4>3 |
Cognitive flexibility | |||||||||||
Switching cost (ms) | 145.33 | 195.95 | 235.31 | 216.08 | 235.61 | 222.96 | 312.45 | 247.51 | 19.36*** | 0.07 | 6>5=4>3 |
Table 2 Mean and standard deviation and ANOVA results for each task of executive function and mathematical ability at different grade levels
Measures | Third Grade (n = 183) | Fourth Grade (n = 202) | Fifth Grade (n = 210) | Sixth Grade (n = 217) | F(3, 808) | ηp2 | Post hoc comparison | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | ||||
Arithmetic | |||||||||||
Addition | 18.51 | 3.61 | 19.37 | 3.72 | 21.34 | 3.80 | 22.97 | 3.98 | 56.67*** | 0.17 | 6>5>4>3 |
Subtraction | 17.25 | 3.92 | 17.53 | 4.43 | 19.55 | 4.57 | 20.95 | 4.55 | 32.47*** | 0.11 | 6>5>4=3 |
Logical Thinking | |||||||||||
Continuing to write numbers | 11.20 | 3.31 | 11.35 | 3.35 | 12.28 | 2.91 | 12.47 | 3.28 | 7.92*** | 0.03 | 6=5>4=3 |
Visual length measurement | 7.21 | 4.50 | 9.67 | 5.69 | 12.03 | 5.22 | 13.65 | 6.91 | 54.09*** | 0.15 | 6>5>4>3 |
Spatial Imagination | |||||||||||
Square counting | 14.13 | 3.65 | 15.52 | 4.31 | 17.11 | 4.62 | 19.23 | 4.81 | 52.72*** | 0.16 | 6>5>4>3 |
Interference suppression | |||||||||||
Stroop interference effect (ms) | -0.82 | 73.73 | 19.37 | 69.70 | 10.47 | 69.44 | 7.84 | 63.95 | 2.79* | 0.01 | 4>3 |
Reaction suppression | |||||||||||
NOGO correct rate | 0.76 | 0.13 | 0.79 | 0.12 | 0.81 | 0.10 | 0.79 | 0.15 | 5.55** | 0.02 | 6=5=4>3 |
Working Memory Updating | |||||||||||
Simple updating Correct Rate | 0.57 | 0.24 | 0.64 | 0.18 | 0.71 | 0.18 | 0.74 | 0.17 | 26.54*** | 0.10 | 6=5>4>3 |
Difficult updating Correct Rate | 0.61 | 0.24 | 0.69 | 0.19 | 0.74 | 0.18 | 0.77 | 0.17 | 22.00*** | 0.09 | 6=5>4>3 |
Working Memory Span | |||||||||||
Forward Digit span | 5.74 | 1.35 | 6.22 | 1.31 | 6.79 | 1.24 | 6.72 | 1.71 | 25.15*** | 0.08 | 6=5>4>3 |
Backward Digit span | 4.16 | 0.89 | 4.74 | 1.18 | 5.09 | 1.36 | 5.46 | 1.40 | 49.52*** | 0.13 | 6>5>4>3 |
Cognitive flexibility | |||||||||||
Switching cost (ms) | 145.33 | 195.95 | 235.31 | 216.08 | 235.61 | 222.96 | 312.45 | 247.51 | 19.36*** | 0.07 | 6>5=4>3 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1 | |||||||||
2. Age | 0.08* | 1 | ||||||||
3. Arithmetic | 0.08* | 0.32** | 1 | |||||||
4. logical thinking | 0.05 | 0.32** | 0.52** | 1 | ||||||
5. spatial imagination | 0.15** | 0.32** | 0.43** | 0.49** | 1 | |||||
6. interference inhibition | -0.06 | 0.02 | 0.03 | 0.09** | 0.04 | 1 | ||||
7. Response inhibition | -0.23** | 0.07* | 0.05 | 0.05 | 0.05 | 0.12** | 1 | |||
8. Working memory updating | -0.07* | 0.26** | 0.36** | 0.36** | 0.32** | 0.10** | 0.14** | 1 | ||
9. Working memory span | 0.02 | 0.35** | 0.39** | 0.36** | 0.34** | 0.09** | 0.11** | 0.46** | 1 | |
10. Cognitive flexibility | -0.02 | 0.20** | 0.18** | 0.20** | 0.20** | 0.04 | 0.06 | 0.23** | 0.16** | 1 |
Table 3 Correlation analysis between each executive function component and different mathematical abilities of participants in grades 3 to 6 (N=812)
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1 | |||||||||
2. Age | 0.08* | 1 | ||||||||
3. Arithmetic | 0.08* | 0.32** | 1 | |||||||
4. logical thinking | 0.05 | 0.32** | 0.52** | 1 | ||||||
5. spatial imagination | 0.15** | 0.32** | 0.43** | 0.49** | 1 | |||||
6. interference inhibition | -0.06 | 0.02 | 0.03 | 0.09** | 0.04 | 1 | ||||
7. Response inhibition | -0.23** | 0.07* | 0.05 | 0.05 | 0.05 | 0.12** | 1 | |||
8. Working memory updating | -0.07* | 0.26** | 0.36** | 0.36** | 0.32** | 0.10** | 0.14** | 1 | ||
9. Working memory span | 0.02 | 0.35** | 0.39** | 0.36** | 0.34** | 0.09** | 0.11** | 0.46** | 1 | |
10. Cognitive flexibility | -0.02 | 0.20** | 0.18** | 0.20** | 0.20** | 0.04 | 0.06 | 0.23** | 0.16** | 1 |
Figure 2. Structural equation modeling of the relationship between each executive function component and different mathematical abilities at the third to sixth grade level. Note: All path coefficients are standardized coefficients, single-arrow lines represent predicted relationships, double-arrow curves represent correlations. Solid lines represent significant regression paths, and dashed lines represent insignificant regression paths; only paths where the correlation coefficients of the independent variables reached significant levels are presented. The following is the same.
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1 | |||||||||
2. Age | 0.06 | 1 | ||||||||
3. Arithmetic | 0.10* | -0.03 | 1 | |||||||
4. logical thinking | 0.03 | 0.10 | 0.52** | 1 | ||||||
5. spatial imagination | 0.24** | 0.04 | 0.36** | 0.46** | 1 | |||||
6. interference inhibition | -0.02 | 0.11* | 0.06 | 0.14** | 0.06 | 1 | ||||
7. Response inhibition | -0.23** | 0.09 | 0.00 | 0.05 | 0.00 | 0.12* | 1 | |||
8. Working memory updating | -0.07 | 0.07 | 0.29** | 0.27** | 0.22** | 0.14** | 0.13* | 1 | ||
9. Working memory span | 0.08 | 0.27** | 0.32** | 0.31** | 0.27** | 0.17** | 0.09 | 0.42** | 1 | |
10. Cognitive flexibility | 0.01 | 0.15** | 0.10 | 0.16** | 0.16** | 0.06 | 0.06 | 0.23** | 0.10* | 1 |
Table 4 Correlation analysis between each executive function component and different mathematical abilities of third and fourth grade participants (n=385)
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1 | |||||||||
2. Age | 0.06 | 1 | ||||||||
3. Arithmetic | 0.10* | -0.03 | 1 | |||||||
4. logical thinking | 0.03 | 0.10 | 0.52** | 1 | ||||||
5. spatial imagination | 0.24** | 0.04 | 0.36** | 0.46** | 1 | |||||
6. interference inhibition | -0.02 | 0.11* | 0.06 | 0.14** | 0.06 | 1 | ||||
7. Response inhibition | -0.23** | 0.09 | 0.00 | 0.05 | 0.00 | 0.12* | 1 | |||
8. Working memory updating | -0.07 | 0.07 | 0.29** | 0.27** | 0.22** | 0.14** | 0.13* | 1 | ||
9. Working memory span | 0.08 | 0.27** | 0.32** | 0.31** | 0.27** | 0.17** | 0.09 | 0.42** | 1 | |
10. Cognitive flexibility | 0.01 | 0.15** | 0.10 | 0.16** | 0.16** | 0.06 | 0.06 | 0.23** | 0.10* | 1 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1 | |||||||||
2. Age | 0.08 | 1 | ||||||||
3. Arithmetic | 0.03 | 0.08 | 1 | |||||||
4. logical thinking | 0.03 | 0.02 | 0.40** | 1 | ||||||
5. spatial imagination | 0.06 | 0.08 | 0.33** | 0.40** | 1 | |||||
6. interference inhibition | -0.09 | -0.03 | 0.00 | 0.07 | 0.03 | 1 | ||||
7. Response inhibition | -0.23** | -0.09 | 0.03 | -0.01 | 0.03 | 0.12* | 1 | |||
8. Working memory updating | -0.12* | -0.04 | 0.28** | 0.33** | 0.27** | 0.05 | 0.10* | 1 | ||
9. Working memory span | -0.05 | 0.02 | 0.29** | 0.24** | 0.24** | 0.05 | 0.07 | 0.40** | 1 | |
10. Cognitive flexibility | -0.07 | 0.05 | 0.15** | 0.15** | 0.15** | 0.03 | 0.03 | 0.16** | 0.11* | 1 |
Table 5 Correlation analysis between each executive function component and different mathematical abilities of participants in grades 5 and 6 (n=427)
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1. Gender | 1 | |||||||||
2. Age | 0.08 | 1 | ||||||||
3. Arithmetic | 0.03 | 0.08 | 1 | |||||||
4. logical thinking | 0.03 | 0.02 | 0.40** | 1 | ||||||
5. spatial imagination | 0.06 | 0.08 | 0.33** | 0.40** | 1 | |||||
6. interference inhibition | -0.09 | -0.03 | 0.00 | 0.07 | 0.03 | 1 | ||||
7. Response inhibition | -0.23** | -0.09 | 0.03 | -0.01 | 0.03 | 0.12* | 1 | |||
8. Working memory updating | -0.12* | -0.04 | 0.28** | 0.33** | 0.27** | 0.05 | 0.10* | 1 | ||
9. Working memory span | -0.05 | 0.02 | 0.29** | 0.24** | 0.24** | 0.05 | 0.07 | 0.40** | 1 | |
10. Cognitive flexibility | -0.07 | 0.05 | 0.15** | 0.15** | 0.15** | 0.03 | 0.03 | 0.16** | 0.11* | 1 |
Figure 3. Structural equation model of the relationship between each executive function component and different mathematical abilities at the third to fourth grade level
Figure 4. Structural equation modeling of the relationship between each executive function component and different mathematical abilities at the fifth to sixth grade level
[1] |
Ahmed, S. F., Tang, S., Waters, N. E., & Davis-Kean, P. (2019). Executive function and academic achievement: Longitudinal relations from early childhood to adolescence. Journal of Educational Psychology, 111(3), 446-458.
doi: 10.1037/edu0000296 URL |
[2] | Archambeau, K., & Gevers, W. (2018). (How) are executive functions actually related to arithmetic abilities?. Heterogeneity of Function in Numerical Cognition, 337-357. |
[3] |
Bailey, D. H., Littlefield, A., & Geary, D. C. (2012). The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: Individual and sex differences from first to sixth grades. Journal of Experimental Child Psychology, 113(1), 78-92.
doi: 10.1016/j.jecp.2012.04.014 pmid: 22704036 |
[4] |
Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5: Changes and correlates. Developmental Review, 29(3), 180-200.
doi: 10.1016/j.dr.2009.05.002 pmid: 20161467 |
[5] |
Blakey, E., Matthews, D., Cragg, L., Buck, J., Cameron, D., Higgins, B., ... Carroll, D. J. (2020). The role of executive functions in socioeconomic attainment gaps: Results from a randomized controlled trial. Child Development, 91(5), 1594-1614.
doi: 10.1111/cdev.13358 URL |
[6] |
Bryce, D., Whitebread, D., & Szűcs, D. (2015). The relationships among executive functions, metacognitive skills and educational achievement in 5 and 7 year-old children. Metacognition and Learning, 10(2), 181-198.
doi: 10.1007/s11409-014-9120-4 URL |
[7] |
Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 36-41.
doi: 10.1111/cdep.12059 URL |
[8] |
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273-293.
doi: 10.1207/S15326942DN1903_3 pmid: 11758669 |
[9] |
Camerota, M., Willoughby, M. T., & Blair, C. B. (2020). Measurement models for studying child executive functioning: Questioning the status quo. Developmental Psychology, 56(12), 2236-2245.
doi: 10.1037/dev0001127 pmid: 33104374 |
[10] |
Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., & Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. Journal of Experimental Child Psychology, 146, 66-78.
doi: 10.1016/j.jecp.2016.01.014 pmid: 26914106 |
[11] |
Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 2217-2229.
doi: 10.1162/jocn.2008.21159 pmid: 19016605 |
[12] |
Chen, E. H., & Bailey, D. H. (2021). Dual-task studies of working memory and arithmetic performance: A meta-analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(2), 220-233.
doi: 10.1037/xlm0000822 URL |
[13] |
Cirino, P. T., Ahmed, Y., Miciak, J., Taylor, W. P., Gerst, E. H., & Barnes, M. A. (2018). A framework for executive function in the late elementary years. Neuropsychology, 32(2), 176-189.
doi: 10.1037/neu0000427 pmid: 29528682 |
[14] |
Clements, D. H., Sarama, J., & Germeroth, C. (2016). Learning executive function and early mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 79-90.
doi: 10.1016/j.ecresq.2015.12.009 URL |
[15] |
Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63-68.
doi: 10.1016/j.tine.2013.12.001 URL |
[16] |
Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influences of executive functions on mathematics achievement. Cognition, 162, 12-26.
doi: S0010-0277(17)30023-9 pmid: 28189034 |
[17] |
Cueli, M., Areces, D., García, T., Alves, R. A., & González-Castro, P. (2020). Attention, inhibitory control and early mathematical skills in preschool students. Psicothema, 32(2), 237-244.
doi: 10.7334/psicothema2019.225 pmid: 32249750 |
[18] |
Dekker, M. C., Ziermans, T. B., Spruijt, A. M., & Swaab, H. (2017). Cognitive, parent and teacher rating measures of executive functioning: Shared and unique influences on school achievement. Frontiers in Psychology, 8, 48.
doi: 10.3389/fpsyg.2017.00048 pmid: 28194121 |
[19] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
doi: 10.1146/annurev-psych-113011-143750 pmid: 23020641 |
[20] |
Dick, A. S. (2014). The development of cognitive flexibility beyond the preschool period: An investigation using a modified Flexible Item Selection Task. Journal of Experimental Child Psychology, 125, 13-34.
doi: 10.1016/j.jecp.2014.01.021 pmid: 24814204 |
[21] | Du, W. P. (2013). The evolution of the connotation of mathematical competence in elementary school mathematics syllabus or curriculum standards. Mathematics for Primary and Secondary Schools (Primary Edition), 12, 43-45. |
[22] |
Duncan, R. J., McClelland, M. M., & Acock, A. C. (2017). Relations between executive function, behavioral regulation, and achievement: Moderation by family income. Journal of Applied Developmental Psychology, 49, 21-30.
doi: 10.1016/j.appdev.2017.01.004 URL |
[23] |
Ellefson, M. R., Zachariou, A., Ng, F. F-Y., Wang, Q., & Hughes, C. (2020). Do executive functions mediate the link between socioeconomic status and numeracy skills? A cross-site comparison of Hong Kong and the United Kingdom. Journal of Experimental Child Psychology, 194, 104734.
doi: 10.1016/j.jecp.2019.104734 URL |
[24] |
Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465-486.
doi: 10.1207/s15326942dn2601_6 pmid: 15276905 |
[25] |
Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26(7), 874-890.
pmid: 15742539 |
[26] |
Friso-den Bos, I., der Ven, S. H., Kroesbergen, E. H., & Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-44.
doi: 10.1016/j.edurev.2013.05.003 URL |
[27] | Fung, W. K., Chung, K. K. H., & Lam, C. B. (2020). Mathematics, executive functioning, and visual-spatial skills in Chinese kindergarten children: Examining the bidirectionality. Journal of Experimental Child Psychology, 199, 1-10. |
[28] |
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15.
pmid: 15493463 |
[29] |
Georgiou, G. K., Wei, W., Inoue, T., Das, J. P., & Deng, C. (2020). Cultural influences on the relation between executive functions and academic achievement. Reading and Writing, 33(4), 991-1013.
doi: 10.1007/s11145-019-09961-8 URL |
[30] |
Gilmore, C., Keeble, S., Richardson, S., & Cragg, L. (2015). The role of cognitive inhibition in different components of arithmetic. ZDM Mathematics Education, 47, 771-782.
doi: 10.1007/s11858-014-0659-y URL |
[31] |
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.
doi: 10.1038/nature07246 URL |
[32] |
Harvey, H. A., & Miller, G. E. (2017). Executive function skills, early mathematics, and vocabulary in head start preschool children. Early Education and Development, 28(3), 290-307.
doi: 10.1080/10409289.2016.1218728 URL |
[33] |
Hilbert, S., Bruckmaier, G., Binder, K., Krauss, S., & Bühner, M. (2019). Prediction of elementary mathematics grades by cognitive abilities. European Journal of Psychology of Education, 34(3), 665-683.
doi: 10.1007/s10212-018-0394-9 |
[34] | Himi, S. A., Bühner, M., & Hilbert, S. (2021). Advancing the understanding of the factor structure of executive functioning. Journal of Intelligence, 9(1), 16. |
[35] | Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9-F15. |
[36] |
Holmes, J., Guy, J., Kievit, R. A., Bryant, A., Mareva, S., & Gathercole, S. E. (2021). Cognitive dimensions of learning in children with problems in attention, learning, and memory. Journal of Educational Psychology, 113(7), 1454-1480.
doi: 10.1037/edu0000644 pmid: 35855686 |
[37] |
Jenks, K. M., van Lieshout, E. C., & de Moor, J. M. (2012). Cognitive correlates of mathematical achievement in children with cerebral palsy and typically developing children. British Journal of Educational Psychology, 82(1), 120-135.
doi: 10.1111/j.2044-8279.2011.02034.x URL |
[38] |
Jiang, R., Li, X., Xu, P., & Chen, Y. (2019). Inhibiting intuitive rules in a geometry comparison task: Do age level and math achievement matter?. Journal of Experimental Child Psychology, 186, 1-16.
doi: S0022-0965(18)30587-3 pmid: 31176912 |
[39] |
Kahl, T., Grob, A., Segerer, R., & Möhring, W. (2021). Executive functions and visual-spatial skills predict mathematical achievement: Asymmetrical associations across age. Psychological Research, 85(1), 36-46.
doi: 10.1007/s00426-019-01249-4 URL |
[40] |
Lan, X., Legare, C. H., Ponitz, C. C., Li, S., & Morrison, F. J. (2011). Investigating the links between the subcomponents of executive function and academic achievement: A cross-cultural analysis of Chinese and American preschoolers. Journal of Experimental Child Psychology, 108(3), 677-692.
doi: 10.1016/j.jecp.2010.11.001 pmid: 21238977 |
[41] |
Lee, K., Ng, S. F., & Bull, R. (2018). Learning and solving algebra word problems: The roles of relational skills, arithmetic, and executive functioning. Developmental Psychology, 54(9), 1758-1772.
doi: 10.1037/dev0000561 pmid: 30148402 |
[42] |
Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 59-80.
doi: 10.1348/026151003321164627 URL |
[43] | Lin, C. D. (2011). Intellectual Development and Mathematical Learning (Fourth Edition). Beijing: China Light Industry Press. |
[44] |
Magalhães, S., Carneiro, L., Limpo, T., & Filipe, M. (2020). Executive functions predict literacy and mathematics achievements: The unique contribution of cognitive flexibility in grades 2, 4, and 6. Child Neuropsychology, 26(7), 934-952.
doi: 10.1080/09297049.2020.1740188 pmid: 32200681 |
[45] |
McKenna, R., Rushe, T., & Woodcock, K. A. (2017). Informing the structure of executive function in children: meta-analysis of functional neuroimaging data. Frontiers in Human Neuroscience, 11, 154.
doi: 10.3389/fnhum.2017.00154 pmid: 28439231 |
[46] |
Miller-Cotto, D., & Byrnes, J. P. (2020). What’s the best way to characterize the relationship between working memory and achievement?: An initial examination of competing theories. Journal of Educational Psychology, 112(5), 1074-1084.
doi: 10.1037/edu0000395 URL |
[47] |
Monette, S., Bigras, M., & Guay, M-C.(2011). The role of the executive functions in school achievement at the end of Grade 1. Journal of Experimental Child Psychology, 109(2), 158-173.
doi: 10.1016/j.jecp.2011.01.008 pmid: 21349537 |
[48] |
Nguyen, T., & Duncan, G. J. (2019). Kindergarten components of executive function and third grade achievement: A national study. Early Childhood Research Quarterly, 46, 49-61.
doi: 10.1016/j.ecresq.2018.05.006 URL |
[49] |
Passolunghi, M. C., Mammarella, I. C., & Altoè, G. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33(3), 229-250.
doi: 10.1080/87565640801982320 pmid: 18473198 |
[50] |
Peng, P., Congying, S., Beilei, L., & Sha, T. (2012). Phonological storage and executive function deficits in children with mathematics difficulties. Journal of Experimental Child Psychology, 112(4), 452-466.
doi: 10.1016/j.jecp.2012.04.004 pmid: 22633135 |
[51] |
Peng, P., Wang, C., &Namkung, J. (2018). Understanding the cognition related to mathematics difficulties: A meta-analysis on the cognitive deficit profiles and the bottleneck theory. Review of Educational Research, 88(3), 434-476.
doi: 10.3102/0034654317753350 URL |
[52] |
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110-122.
doi: 10.1016/j.lindif.2009.10.005 URL |
[53] |
Rutherford, T., Buschkuehl, M., Jaeggi, S. M., & Farkas, G. (2018). Links between achievement, executive functions, and self‐ regulated learning. Applied Cognitive Psychology, 32(6), 763-774.
doi: 10.1002/acp.3462 URL |
[54] |
Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations between executive functions and academic outcomes in elementary school children: A meta-analysis. Psychological Bulletin, 147(4), 329-351.
doi: 10.1037/bul0000322 pmid: 34166004 |
[55] |
St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59(4), 745-759.
doi: 10.1080/17470210500162854 URL |
[56] |
Stipek, D., & Valentino, R. A. (2015). Early childhood memory and attention as predictors of academic growth trajectories. Journal of Educational Psychology, 107(3), 771-788.
doi: 10.1037/edu0000004 URL |
[57] |
Sulik, M. J., & Obradović, J. (2018). Teachers’ rankings of children’s executive functions: Validating a methodology for school-based data collection. Journal of Experimental Child Psychology, 173, 136-154.
doi: 10.1016/j.jecp.2018.01.016 URL |
[58] |
Swanson, H. L. (2011). Working memory, attention, and mathematical problem solving: A longitudinal study of elementary school children. Journal of Educational Psychology, 103(4), 821-837.
doi: 10.1037/a0025114 URL |
[59] |
Toll, S. W., van der Ven, S. H., Kroesbergen, E. H., & Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44(6), 521-532.
doi: 10.1177/0022219410387302 pmid: 21177978 |
[60] |
der Ven, S. H., Kroesbergen, E. H., Boom, J., & Leseman, P. P. (2012). The development of executive functions and early mathematics: A dynamic relationship. British Journal of Educational Psychology, 82(1), 100-119.
doi: 10.1111/j.2044-8279.2011.02035.x URL |
[61] |
Viterbori, P., Traverso, L., & Usai, M. C. (2017). The role of executive function in arithmetic problem-solving processes: A study of third graders. Journal of Cognition and Development, 18(5), 595-616.
doi: 10.1080/15248372.2017.1392307 URL |
[62] |
Wang, C., Jaeggi, S. M., Yang, L., Zhang, T., He, X., Buschkuehl, M., & Zhang, Q. (2019). Narrowing the achievement gap in low-achieving children by targeted executive function training. Journal of Applied Developmental Psychology, 63, 87-95.
doi: 10.1016/j.appdev.2019.06.002 URL |
[63] | Wang, X. F., Liu, X. N., Zhao., X., & Zhou, R. L. (2011). The developmental research on the updating ability of primary school children with mathematics learning disabilities. Chinese Journal of Special Education, 128(2), 47-57. |
[64] |
Wang, Y., & Zhou, X. (2019). Longitudinal relations between executive function and internalizing problems in grade school: The role of peer difficulty and academic performance. Developmental Psychology, 55(10), 2147-2158.
doi: 10.1037/dev0000790 pmid: 31368763 |
[65] | Wen, P., Zhang, L., Li, H., Liu, L. X-J, & Zhang, X-Y., (2007). Model of executive functioning as predictor of children’s mathematical ability. Psychological Development and Education, 23(3), 13-18. |
[66] | Wu, H. R., & Li, L. (2005). Development of chinese rating scale of pupil’s mathematic abilities and study on its reliability and validity. Chinese Journal of Public Health, 21(4), 473-475. |
[67] |
Yang, X., Chung, K. K. H., & McBride, C. (2019). Longitudinal contributions of executive functioning and visual-spatial skills to mathematics learning in young Chinese children. Educational Psychology, 39(5), 678-704.
doi: 10.1080/01443410.2018.1546831 URL |
[68] |
Yeniad, N., Malda, M., Mesman, J., IJzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta-analytical study. Learning and Individual Differences, 23, 1-9.
doi: 10.1016/j.lindif.2012.10.004 URL |
[69] | Yu, P., & Zuo, M. L. (1996). The development of mathematical ability and cognitive structure of elementary school students in grades 3 to 6. Psychological Development and Education, 12, 30-36. |
[70] |
Zhang, J., Cheung, S. K., Wu, C., & Meng, Y. (2018). Cognitive and affective correlates of Chinese children’s mathematical word problem solving. Frontiers in Psychology, 9, 2357.
doi: 10.3389/fpsyg.2018.02357 pmid: 30618901 |
[71] | Zhao, X., Chen, L., & Maes, J. H. (2018). Training and transfer effects of response inhibition training in children and adults. Developmental Science, 21(1), e12511. |
[72] |
Zhao, X., Jia, L. N., & Zan, X. Y. (2016). Interference control training: effect and mechanism. Advances in Psychological Science, 24(6), 900-908.
doi: 10.3724/SP.J.1042.2016.00900 URL |
[1] | ZHANG Qing, WANG Zhengyan. The interplay of maternal sensitivity and infant temperament and attention in predicting toddlers’ executive function: A two-year longitudinal study [J]. Acta Psychologica Sinica, 2022, 54(2): 141-153. |
[2] | GAI XiaoSong, XU Jie, YAN Yan, WANG Yuan, XIE XiaoChun. Exergame can improve children’s executive function: The role of physical intensity and cognitive engagement [J]. Acta Psychologica Sinica, 2021, 53(5): 505-514. |
[3] | SUN Qiwu, WU Caizhi, YU Lixia, WANG Weixin, SHEN Guocheng. Progress feedback and its effects on working alliance and treatment outcomes [J]. Acta Psychologica Sinica, 2021, 53(4): 349-361. |
[4] | ZHANG Jinghuan, FU Mengmeng, XIN Yuwen, CHEN Peipei, SHA Sha. The development of creativity in senior primary school students: Gender differences and the role of school support [J]. Acta Psychologica Sinica, 2020, 52(9): 1057-1070. |
[5] | ZHAO Xin, LI Hongli, JIN Ge, LI Shifeng, ZHOU Aibao, LIANG Wenjia, GUO Hongxia, CAI Yaya. Effects of phonological memory and central executive function on decoding, language comprehension of children in different grades [J]. Acta Psychologica Sinica, 2020, 52(4): 469-484. |
[6] | WANG Yuan, LI Ke, GAI Xiaosong, CAO Yifei. Training and transfer effects of response inhibition training with online feedback on adolescents and adults’ executive function [J]. Acta Psychologica Sinica, 2020, 52(10): 1212-1223. |
[7] | WANG Ting,ZHI Fengying,LU Yutong,ZHANG Jijia. Effect of Dong Chorus on the executive function of Dong high school students [J]. Acta Psychologica Sinica, 2019, 51(9): 1040-1056. |
[8] | LI Quan, SONG Yanan, LIAN Bin, FENG Tingyong. Mindfulness training can improve 3-and 4-year-old children’s attention and executive function [J]. Acta Psychologica Sinica, 2019, 51(3): 324-336. |
[9] | Mingliang ZHANG, Jiwei SI, Weixing YANG, Shufen XING, Hongxia LI, Jiajia ZHANG. Interaction effects between BDNF gene rs6265 polymorphism and parent-involved education on basic mathematical ability in primary school children [J]. Acta Psychologica Sinica, 2018, 50(9): 1007-1017. |
[10] | Shufen XING,Qianqian LI,Xin GAO,Yuanyuan MA,Rui FU. Differential influence of sleep time parameters on preschoolers’ executive function [J]. Acta Psychologica Sinica, 2018, 50(11): 1269-1281. |
[11] | YANG Haibo; ZHAO Xin; WANG Yang; ZHANG Lei; WANG Ruimeng; ZHANG Yi; WANG Li. The emotional specificity of executive function defects of earthquake PTSD teenagers [J]. Acta Psychologica Sinica, 2017, 49(5): 643-652. |
[12] | WANG Ting, WANG Dan, ZHANG Jijia, CUI Jianai. Effects of “each speaks their own dialect” phenomenon on the executive function of Jingpo students [J]. Acta Psychologica Sinica, 2017, 49(11): 1392-1403. |
[13] |
CHEN Shuai.
The influence of team faultlines on team performance: Mediating effect of team transactive memory system
[J]. Acta Psychologica Sinica, 2016, 48(1): 84-94.
|
[14] | CHEN Ai-Guo,YIN Heng-Chan,YAN Jun,YANG Yu. Effects of Acute Aerobic Exercise of Different Intensity on Executive Function [J]. , 2011, 43(09): 1055-1062. |
[15] | Wu Wenjie,Zhang Li,Feng Tingyong,Li Hong. The Effect of Hot Executive Function on Children’s Test with the Standard Windows Task [J]. , 2008, 40(03): 319-326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||