Acta Psychologica Sinica ›› 2023, Vol. 55 ›› Issue (5): 685-695.doi: 10.3724/SP.J.1041.2023.00685
• Reports of Empirical Studies • Previous Articles Next Articles
CHEN Fakun, CHEN Tian, CAI Wenqi, WANG Xiaojuan(), YANG Jianfeng()
Received:
2021-10-18
Published:
2023-05-25
Online:
2023-02-14
Contact:
WANG Xiaojuan,YANG Jianfeng
E-mail:wangxj@snnu.edu.cn;yangjf@snnu.edu.cn
Supported by:
CHEN Fakun, CHEN Tian, CAI Wenqi, WANG Xiaojuan, YANG Jianfeng. (2023). fNIRS evidence for left middle frontal gyrus involved in visual-spatial analysis of Chinese characters. Acta Psychologica Sinica, 55(5), 685-695.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2023.00685
Effect type | Accuracy | Response Time | ||||
---|---|---|---|---|---|---|
F | p | η2 p | F | p | η2 p | |
Character type | F (2, 54) = 12.88 | 0.001 | 0.323 | F (2, 54) = 7.02 | 0.002 | 0.206 |
Spatial frequency | F (2, 54) = 0.04 | 0.964 | 0.001 | F (2, 54) = 1.00 | 0.373 | 0.036 |
Interaction | F (4, 108) = 3.72 | 0.007 | 0.121 | F (4, 108) = 0.98 | 0.419 | 0.035 |
Table 1 Main effects of character type and spatial frequency, and their interaction results in ACC and RT
Effect type | Accuracy | Response Time | ||||
---|---|---|---|---|---|---|
F | p | η2 p | F | p | η2 p | |
Character type | F (2, 54) = 12.88 | 0.001 | 0.323 | F (2, 54) = 7.02 | 0.002 | 0.206 |
Spatial frequency | F (2, 54) = 0.04 | 0.964 | 0.001 | F (2, 54) = 1.00 | 0.373 | 0.036 |
Interaction | F (4, 108) = 3.72 | 0.007 | 0.121 | F (4, 108) = 0.98 | 0.419 | 0.035 |
Figure 3. Heat map of the main effect F-value of character type (left) and activation difference of character type under the significant channel of MFG (right).
Condition | Channel 10 | Channel 13 | ||||
---|---|---|---|---|---|---|
t(27) | p | Cohen d | t(27) | p | Cohen d | |
FSF | ||||||
Real-Pseudo | -2.23 | 0.034 | 0.42 | -1.16 | 0.255 | 0.22 |
Real-Artificial | -0.37 | 0.712 | 0.07 | 1.12 | 0.275 | 0.21 |
Pseudo-Artificial | 1.80 | 0.083 | 0.35 | 2.33 | 0.027 | 0.44 |
LSF | ||||||
Real-Pseudo | -3.17 | 0.004 | 0.60 | -2.30 | 0.030 | 0.44 |
Real-Artificial | -1.41 | 0.169 | 0.27 | 0.03 | 0.978 | 0.01 |
Pseudo-Artificial | 2.46 | 0.020 | 0.47 | 3.70 | 0.001 | 0.70 |
HSF | ||||||
Real-Pseudo | 0.92 | 0.365 | 0.18 | 1.54 | 0.134 | 0.29 |
Real-Artificial | -0.79 | 0.436 | 0.15 | 0.07 | 0.942 | 0.01 |
Pseudo-Artificial | -1.13 | 0.268 | 0.21 | -0.64 | 0.528 | 0.12 |
Table 2. Paired comparison of character types at different spatial frequencies in MFG channels (10 and 13)
Condition | Channel 10 | Channel 13 | ||||
---|---|---|---|---|---|---|
t(27) | p | Cohen d | t(27) | p | Cohen d | |
FSF | ||||||
Real-Pseudo | -2.23 | 0.034 | 0.42 | -1.16 | 0.255 | 0.22 |
Real-Artificial | -0.37 | 0.712 | 0.07 | 1.12 | 0.275 | 0.21 |
Pseudo-Artificial | 1.80 | 0.083 | 0.35 | 2.33 | 0.027 | 0.44 |
LSF | ||||||
Real-Pseudo | -3.17 | 0.004 | 0.60 | -2.30 | 0.030 | 0.44 |
Real-Artificial | -1.41 | 0.169 | 0.27 | 0.03 | 0.978 | 0.01 |
Pseudo-Artificial | 2.46 | 0.020 | 0.47 | 3.70 | 0.001 | 0.70 |
HSF | ||||||
Real-Pseudo | 0.92 | 0.365 | 0.18 | 1.54 | 0.134 | 0.29 |
Real-Artificial | -0.79 | 0.436 | 0.15 | 0.07 | 0.942 | 0.01 |
Pseudo-Artificial | -1.13 | 0.268 | 0.21 | -0.64 | 0.528 | 0.12 |
Channel | Character type | Interaction | ||||
---|---|---|---|---|---|---|
F(2,54) | p | η2 p | F(4,108) | p | η2 p | |
8(PreCG) | 3.23 | 0.047 | 0.107 | / | / | / |
23(SFG) | 4.15 | 0.021 | 0.133 | / | / | / |
18(PostCG) | 4.09 | 0.022 | 0.131 | / | / | / |
41(MOG) | / | / | / | 2.73 | 0.033 | 0.092 |
Appendix Table 1 Non-MFG channels with significant main effects and interactions of ANOVA
Channel | Character type | Interaction | ||||
---|---|---|---|---|---|---|
F(2,54) | p | η2 p | F(4,108) | p | η2 p | |
8(PreCG) | 3.23 | 0.047 | 0.107 | / | / | / |
23(SFG) | 4.15 | 0.021 | 0.133 | / | / | / |
18(PostCG) | 4.09 | 0.022 | 0.131 | / | / | / |
41(MOG) | / | / | / | 2.73 | 0.033 | 0.092 |
Appendix Figure 1 Heat map of the main effect F-value of character type (upper left) and paired comparisons among character types under non-MFG channels. Note: △HbO represents HbO concentration changes; μM represents micromole; * * * denotes p < 0.001/3, ** denotes p < 0.01/3, * denotes p < 0.05/3, and † denotes marginal significance.
Appendix Figure 2 Heat map of the interaction F-value (left) and paired comparison results of conditions under the significant channel of MOG (right).
Channel | Real vs. Pseudo | Real vs. Artificial | Pseudo vs. Artificial | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | P | Cohen d | |
8(PreCG) | -2.63 | 0.014 | 0.81 | -0.70 | 0.493 | 0.21 | 1.75 | 0.091 | 0.57 |
23(SFG) | -2.96 | 0.006 | 0.70 | -1.07 | 0.296 | 0.25 | 1.72 | 0.097 | 0.47 |
18(PosCG) | -1.20 | 0.242 | 0.29 | -2.50 | 0.019 | 0.64 | -1.68 | 0.105 | 0.43 |
Appendix Table 2 Paired comparison results of main effects of character type in non-MFG channels
Channel | Real vs. Pseudo | Real vs. Artificial | Pseudo vs. Artificial | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | P | Cohen d | |
8(PreCG) | -2.63 | 0.014 | 0.81 | -0.70 | 0.493 | 0.21 | 1.75 | 0.091 | 0.57 |
23(SFG) | -2.96 | 0.006 | 0.70 | -1.07 | 0.296 | 0.25 | 1.72 | 0.097 | 0.47 |
18(PosCG) | -1.20 | 0.242 | 0.29 | -2.50 | 0.019 | 0.64 | -1.68 | 0.105 | 0.43 |
Condition | Real vs. Pseudo | Real vs. Artificial | Pseudo vs. Artificial | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | p | Cohen d | |
FSF | -2.66 | 0.013 | 0.50 | -0.10 | 0.919 | 0.02 | 2.03 | 0.052 | 0.38 |
LSF | -2.60 | 0.015 | 0.49 | -2.06 | 0.049 | 0.39 | 1.11 | 0.279 | 0.21 |
HSF | 0.77 | 0.447 | 0.15 | -0.52 | 0.608 | 0.10 | -1.14 | 0.264 | 0.22 |
Appendix Table 3 Paired comparison of character types at different spatial frequencies in MOG (channel 41)
Condition | Real vs. Pseudo | Real vs. Artificial | Pseudo vs. Artificial | ||||||
---|---|---|---|---|---|---|---|---|---|
t (27) | p | Cohen d | t (27) | p | Cohen d | t (27) | p | Cohen d | |
FSF | -2.66 | 0.013 | 0.50 | -0.10 | 0.919 | 0.02 | 2.03 | 0.052 | 0.38 |
LSF | -2.60 | 0.015 | 0.49 | -2.06 | 0.049 | 0.39 | 1.11 | 0.279 | 0.21 |
HSF | 0.77 | 0.447 | 0.15 | -0.52 | 0.608 | 0.10 | -1.14 | 0.264 | 0.22 |
[1] |
Allen, P. A., Smith, A. F., Lien, M.-C., Kaut, K. P., & Canfield, A. (2009). A multistream model of visual word recognition. Attention Perception & Psychophysics, 71(2), 281-296.
doi: 10.3758/APP.71.2.281 URL |
[2] |
Ashtiani, M. N., Kheradpisheh, S. R., Masquelier, T., & Ganjtabesh, M. (2017). Object categorization in finer levels relies more on higher spatial frequencies and takes longer. Frontiers in Psychology, 8, 1261.
doi: 10.3389/fpsyg.2017.01261 pmid: 28790954 |
[3] |
Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., ... Cooper, R. J. (2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage, 85(Pt. 1), 181-191.
doi: 10.1016/j.neuroimage.2013.04.082 URL |
[4] |
Calderone, D. J., Hoptman, M. J., Martinez, A., Nair-Collins, S., Mauro, C. J., Bar, M., ... Butler, P. D. (2013). Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex, 23(8), 1849-1858.
doi: 10.1093/cercor/bhs169 URL |
[5] | Cao, F., & Perfetti, C. A. (2016). Neural signatures of the reading-writing connection: Greater involvement of writing in Chinese reading than English reading. Plos One, 11(12), e0168414. |
[6] |
Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage, 54(4), 2808-2821.
doi: 10.1016/j.neuroimage.2010.10.069 pmid: 21047559 |
[7] |
Defenderfer, J., Kerr-German, A., Hedrick, M., & Buss, A. T. (2017). Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults: An event-related fNIRS study. Neuropsychologia, 106, 31-41.
doi: S0028-3932(17)30330-5 pmid: 28888891 |
[8] | Feng, X. X., Altarelli, I., Monzalvo, K., Ding, G. S., Ramus, F., Shu, H., ... Dehaene-Lambertz, G. (2020). A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife, 9, e54591. |
[9] |
Fiset, D., Blais, C., Ethier-Majcher, C., Arguin, M., Bub, D., & Gosselin, F. (2008). Features for identification of uppercase and lowercase letters. Psychological Science, 19(11), 1161-1168.
doi: 10.1111/j.1467-9280.2008.02218.x pmid: 19076489 |
[10] | Guo, X. C. (1999). Effects of spatial frequency, strokes and word frequency on Chinese character recognition. Chinese Journal of Ergonomics, 5(4), 5-11. |
[11] |
Horie, S., Yamasaki, T., Okamoto, T., Kan, S., Ogata, K., Miyauchi, S., & Tobimatsu, S. (2012). Distinct role of spatial frequency in dissociative reading of ideograms and phonograms: An fMRI study. Neuroimage, 63(2), 979-988.
doi: 10.1016/j.neuroimage.2012.03.046 pmid: 22480729 |
[12] |
Horie, S., Yamasaki, T., Okamoto, T., Nakashima, T., Ogata, K., & Tobimatsu, S. (2012). Differential roles of spatial frequency on reading processes for ideograms and phonograms: A high-density ERP study. Neuroscience Research, 72(1), 68-78.
doi: 10.1016/j.neures.2011.10.003 pmid: 22020307 |
[13] | Huppert, T. J., Franceschini, M. A., Diamond, S. G., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280-D298. |
[14] |
Jordan, T. R., Dixon, J., McGowan, V. A., Kurtev, S., & Paterson, K. B. (2016). Fast and slow readers and the effectiveness of the spatial frequency content of text: Evidence from reading times and eye movements. Journal of Experimental Psychology. Human Perception and Performance, 42(8), 1066-1071.
doi: 10.1037/xhp0000234 URL |
[15] |
Kuo, W. J., Yeh, T. C., Lee, J. R., Chen, L. F., Lee, P. L., Chen, S. S., ... Hsieh, J. C. (2004). Orthographic and phonological processing of Chinese characters: An fMRI study. Neuroimage, 21(4), 1721-1731.
doi: 10.1016/j.neuroimage.2003.12.007 URL |
[16] |
Kveraga, K., Boshyan, J., & Bar, M. (2007). Magnocellular projections as the trigger of top-down facilitation in recognition. Journal of Neuroscience, 27(48), 13232-13240.
doi: 10.1523/JNEUROSCI.3481-07.2007 pmid: 18045917 |
[17] |
Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13336-13341.
doi: 10.1073/pnas.162486399 pmid: 12244209 |
[18] |
Kwon, M., & Legge, G. E. (2012). Spatial-frequency requirements for reading revisited. Vision Research, 62, 139-147.
doi: 10.1016/j.visres.2012.03.025 pmid: 22521659 |
[19] |
Leonova, A., Pokorny, J., & Smith, V. C. (2003). Spatial frequency processing in inferred PC- and MC-pathways. Vision Research, 43(20), 2133-2139.
pmid: 12855249 |
[20] |
Liu, C., Zhang, W. T., Tang, Y. Y., Mai, X. Q., Chen, H.-C., Tardif, T., & Luo, Y. J. (2008). The Visual Word Form Area: Evidence from an fMRI study of implicit processing of Chinese characters. Neuroimage, 40(3), 1350-1361.
doi: 10.1016/j.neuroimage.2007.10.014 pmid: 18272399 |
[21] |
Liu, J. Q., Zhang, R. Q., Geng, B. B., Zhang, T. Y., Yuan, D., Otani, S., & Li, X. (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. Neuroimage, 193, 93-102.
doi: S1053-8119(19)30171-5 pmid: 30851445 |
[22] |
Liu, Y., Dunlap, S., Fiez, J., & Perfettil, C. A. (2007). Evidence for neural accommodation to a writing system following learning. Human Brain Mapping, 28(11), 1223-1234.
doi: 10.1002/hbm.20356 pmid: 17274024 |
[23] |
Mercure, E., Dick, F., Halit, H., Kaufman, J., & Johnson, M. H. (2008). Differential lateralization for words and faces: Category or psychophysics? Journal of Cognitive Neuroscience, 20(11), 2070-2087.
doi: 10.1162/jocn.2008.20137 pmid: 18416685 |
[24] |
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46-59.
doi: 10.1002/hbm.20131 pmid: 15846822 |
[25] |
Perfetti, C., Cao, F., & Booth, J. (2013). Specialization and universals in the development of reading skill: How Chinese research informs a universal science of reading. Scientific Studies of Reading, 17(1), 5-21.
doi: 10.1080/10888438.2012.689786 pmid: 24744605 |
[26] |
Perfetti, C. A., Liu, Y., Fiez, J., Nelson, J., Bolger, D. J., & Tan, L. H. (2007). Reading in two writing systems: Accommodation and assimilation of the brain’s reading network. Bilingualism: Language and Cognition, 10(2), 131-146.
doi: 10.1017/S1366728907002891 URL |
[27] |
Perfetti, C. A., Liu, Y., & Tan, L. H. (2005). The lexical constituency model: Some implications of research on Chinese for general theories of reading. Psychological Review, 112(1), 43-59.
pmid: 15631587 |
[28] |
Petras, K., Ten Oever, S., Jacobs, C., & Goffaux, V. (2019). Coarse-to-fine information integration in human vision. Neuroimage, 186, 103-112.
doi: S1053-8119(18)32070-6 pmid: 30403971 |
[29] |
Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., ... Vuilleumier, P. (2010). The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes a combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 2768-2780.
doi: 10.1162/jocn.2010.21424 URL |
[30] | Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5-29. |
[31] |
Roberts, D. J., Woollams, A. M., Kim, E., Beeson, P. M., Rapcsak, S. Z., & Ralph, M. A. L. (2013). Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: Evidence from a case-series of patients with ventral occipito-temporal cortex damage. Cerebral Cortex, 23(11), 2568-2580.
doi: 10.1093/cercor/bhs224 URL |
[32] | Sato, H., Kiguchi, M., Maki, A., Fuchino, Y., Obata, A., Yoro, T., & Koizumi, H. (2006). Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months. Journal of Biomedical Optics, 11(1), 014021. |
[33] |
Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5561-5566.
doi: 10.1073/pnas.0801750105 pmid: 18391194 |
[34] |
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431(7004), 71-76.
doi: 10.1038/nature02865 URL |
[35] |
Stoeckel, M. C., & Binkofski, F. (2010). The role of ipsilateral primary motor cortex in movement control and recovery from brain damage. Experimental Neurology, 221(1), 13-17.
doi: 10.1016/j.expneurol.2009.10.021 pmid: 19896482 |
[36] |
Sun, Y. F., Yang, Y. H., Desroches, A. S., Liu, L., & Peng, D. L. (2011). The role of the ventral and dorsal pathways in reading Chinese characters and English words. Brain and Language, 119(2), 80-88.
doi: 10.1016/j.bandl.2011.03.012 pmid: 21546073 |
[37] |
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83-91.
pmid: 15846817 |
[38] |
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001). The neural system underlying Chinese logograph reading. Neuroimage, 13(5), 836-846.
doi: 10.1006/nimg.2001.0749 pmid: 11304080 |
[39] |
Tan, L. H., Spinks, J. A., Feng, C. M., Siok, W. T., Perfetti, C. A., Xiong, J. H., ... Gao, J. H. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18(3), 158-166.
pmid: 12599273 |
[40] |
Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J. H., ... Fox, P. T. (2000). Brain activation in the processing of Chinese characters and words: A functional MRI study. Human Brain Mapping, 10(1), 16-27.
pmid: 10843515 |
[41] | Tian, F. H., Lin, Z.-J., & Liu, H. L. (2013). EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 8578, 85782J. |
[42] |
Wang, H., & Legge, G. E. (2018). Comparing the minimum spatial-frequency content for recognizing Chinese and alphabet characters. Journal of Vision, 18(1), 1-13.
doi: 10.1167/18.1.1 pmid: 29297056 |
[43] |
Wang, X., Yang, J., Shu, H., & Zevin, J. D. (2011). Left fusiform BOLD responses are inversely related to word-likeness in a one-back task. Neuroimage, 55(3), 1346-1356.
doi: 10.1016/j.neuroimage.2010.12.062 pmid: 21216293 |
[44] |
Winsler, K., Holcomb, P. J., Midgley, K. J., & Grainger, J. (2017). Evidence for separate contributions of high and low spatial frequencies during visual word recognition. Frontiers in Human Neuroscience, 11, 324.
doi: 10.3389/fnhum.2017.00324 pmid: 28690505 |
[45] |
Woodhead, Z. V., Wise, R. J., Sereno, M., & Leech, R. (2011). Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus. Cerebral Cortex, 21(10), 2307-2312.
doi: 10.1093/cercor/bhr008 URL |
[46] |
Wu, C.-Y., Ho, M.-H. R., & Chen, S.-H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63(1), 381-391.
doi: 10.1016/j.neuroimage.2012.06.047 URL |
[47] |
Yang, J. F., Wang, X. J., Shu, H., & Zevin, J. D. (2011). Brain networks associated with sublexical properties of Chinese characters. Brain and Language, 119(2), 68-79.
doi: 10.1016/j.bandl.2011.03.004 pmid: 21600637 |
[48] |
Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447.
doi: 10.1016/j.neuroimage.2008.08.036 pmid: 18848897 |
[49] | Zhao, J., Bi, H. Y., & Qian, Y. (2013). The influence of visual magnocellular pathway on the recognition of Chinese character. Progress in Biochemistry and Biophysics, 40(2), 141-146. |
[50] |
Zhao, J., Qian, Y., Bi, H. Y., & Coltheart, M. (2014). The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition. Scientific Reports, 4, 7068.
doi: 10.1038/srep07068 pmid: 25412386 |
[51] |
Zhao, R., Fan, R., Liu, M. X., Wang, X. J., & Yang, J. F. (2017). Rethinking the function of brain regions for reading Chinese characters in a meta-analysis of fMRI studies. Journal of Neurolinguistics, 44, 120-133.
doi: 10.1016/j.jneuroling.2017.04.001 URL |
[1] | CHENG Xiaojun, LIU Meihuan, PAN Yafeng. Shared responsibility promotes the benefit of interactive decision-making in novices: A hyperscanning study [J]. Acta Psychologica Sinica, 2022, 54(11): 1391-1402. |
[2] | ZHANG Ruqian, LIU Jieqiong, LI Xianchun. Neural mechanisms of fairness formation in the perspective of social interactions [J]. Acta Psychologica Sinica, 2019, 51(9): 1007-1017. |
[3] | YANG Haibo,LIU Hejun,ZHANG Peng,LI Liang. The role of masking stimulation in target recognition processing: Evidence from fNIRS [J]. Acta Psychologica Sinica, 2019, 51(11): 1187-1197. |
[4] | SUN Yusheng; ZHANG Zhijun; WU Binxing. The impact of contextual expectation on rapid natural scene recognition [J]. Acta Psychologica Sinica, 2017, 49(5): 577-589. |
[5] | BAI Xuejun, ZHANG Qihan, ZHANG Peng, ZHOU Song, LIU Ying, SONG Xing, PENG Guohui. Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study [J]. Acta Psychologica Sinica, 2016, 48(5): 495-508. |
[6] | YANG Yaping, XU Qiang, ZHANG Lin, DENG Peizhuang, LIANG Ningjian. Scenes Differing in Spatial Frequencies Affect Facial Expression Processing: Evidence from ERP [J]. Acta Psychologica Sinica, 2015, 47(12): 1433-1444. |
[7] | WANG Ya-Min,WANG Zhi-Xian,HUANG Ya-Mei,JIANG Jing,DING Jin-Hong. Effects of Spatial Frequencies on Recognition of Facial Identity and Facial Expression [J]. , 2011, 43(04): 373-383. |
[8] | Cai Houde(Nanjing Normal University,210024). AN EXPERIMENTAL STUDY ON FUNCTIONAL HEMISPHERIC LATERALIZATION IN COGNITIVE PROCESSING ARABIC NUMERALS AND NUMERALS IN CAPITALS OF CHINESE CHARACTERS [J]. , 1996, 28(02): 209-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||