Acta Psychologica Sinica ›› 2025, Vol. 57 ›› Issue (11): 1885-1900.doi: 10.3724/SP.J.1041.2025.1885
• Reports of Empirical Studies • Previous Articles Next Articles
GENG Xiaowei1,2(
), LIU Chao3, SU Li2, HAN Bingxue2, ZHANG Qiaoming4, WU Mingzheng5(
)
Published:2025-11-25
Online:2025-09-25
Contact:
GENG Xiaowei, GENG Xiaowei, LIU Chao, SU Li, HAN Bingxue, ZHANG Qiaoming, WU Mingzheng. (2025). Human-AI cooperation makes individuals more risk seeking: The mediating role of perceived agentic responsibility. Acta Psychologica Sinica, 57(11), 1885-1900.
Figure 2. risk levels under different experimental conditions in Experiment 1a. Note. The central white dot represents the mean, and the black square represents the range of quartiles.
| Predictive variables | Equation 1 (dependent variable: risk taking) | Equation 2 (Dependent variable: Perceived agentic responsibility) | Equation 3 (dependent variable: risk taking) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| β | SE | t | β | SE | t | β | SE | t | ||
| constant | 2.37 | 2.93** | 0.38 | 8.98*** | 2.78 | 1.09 | ||||
| Age | ?0.002 | 0.09 | ?0.03 | 0.03 | 0.01 | 0.55 | ?0.01 | 0.09 | ?0.13 | |
| Gender | ?0.16 | 0.50 | ?2.44* | ?0.12 | 0.08 | ?2.38* | ?0.13 | 0.50 | ?2.00* | |
| Sensation Seeking | ?0.01 | 0.03 | ?0.12 | ?0.03 | 0.004 | ?0.62 | < 0.001 | 0.03 | ?0.01 | |
| Partner | 0.42 | 0.43 | 6.52*** | 0.69 | 0.07 | 13.32*** | 0.26 | 0.59 | 3.00** | |
| Perceived agentic responsibility | 0.23 | 0.45 | 2.59* | |||||||
| F | F (4, 194) = 12.86*** | F (4, 194) = 47.16*** | F (5, 193) = 11.93*** | |||||||
| R2 | 0.21 | 0.49 | 0.24 | |||||||
Table 1 Regression analysis of the impact of partners and perceived agentic responsibilityon individual risk-taking
| Predictive variables | Equation 1 (dependent variable: risk taking) | Equation 2 (Dependent variable: Perceived agentic responsibility) | Equation 3 (dependent variable: risk taking) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| β | SE | t | β | SE | t | β | SE | t | ||
| constant | 2.37 | 2.93** | 0.38 | 8.98*** | 2.78 | 1.09 | ||||
| Age | ?0.002 | 0.09 | ?0.03 | 0.03 | 0.01 | 0.55 | ?0.01 | 0.09 | ?0.13 | |
| Gender | ?0.16 | 0.50 | ?2.44* | ?0.12 | 0.08 | ?2.38* | ?0.13 | 0.50 | ?2.00* | |
| Sensation Seeking | ?0.01 | 0.03 | ?0.12 | ?0.03 | 0.004 | ?0.62 | < 0.001 | 0.03 | ?0.01 | |
| Partner | 0.42 | 0.43 | 6.52*** | 0.69 | 0.07 | 13.32*** | 0.26 | 0.59 | 3.00** | |
| Perceived agentic responsibility | 0.23 | 0.45 | 2.59* | |||||||
| F | F (4, 194) = 12.86*** | F (4, 194) = 47.16*** | F (5, 193) = 11.93*** | |||||||
| R2 | 0.21 | 0.49 | 0.24 | |||||||
Figure 7. Perceived intermediary role of agentic responsibility. Note. The cooperative patner is a dummy variable, 1 = human-AI cooperation, 0 = human-human cooperation* p < 0.05, *** p < 0.001
| Predictive variables | Equation 1 (dependent variable: risk level) | Equation 2 (dependent variable: perceived agentic responsibility) | Equation 3 (dependent variable: risk level) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| β | SE | t | β | SE | t | β | SE | t | |
| constant | 0.003 | 0.07 | 0.04 | ?0.01 | 0.07 | ?0.15 | ?0.03 | 0.07 | ?0.44 |
| Age | ?0.01 | 0.07 | ?0.12 | 0.01 | 0.07 | 0.20 | ?0.01 | 0.06 | ?0.17 |
| Gender | ?0.10 | 0.07 | ?1.47 | ?0.07 | 0.07 | ?1.05 | ?0.08 | 0.07 | ?1.21 |
| Sensation Seeking | 0.06 | 0.07 | 0.84 | ?0.01 | 0.07 | ?0.15 | 0.07 | 0.06 | 0.03 |
| Positive emotions | 0.14 | 0.07 | 1.86 | 0.14 | 0.07 | 1.87 | 0.10 | 0.07 | 1.36 |
| Negative emotions | ?0.09 | 0.07 | ?1.22 | ?0.05 | 0.07 | ?0.70 | ?0.09 | 0.07 | ?1.31 |
| Collaboration partner | 0.34 | 0.07 | 5.05*** | 0.22 | 0.07 | 3.28** | 0.30 | 0.07 | 4.50*** |
| Result feedback | ?0.02 | 0.08 | ?0.20 | 0.33 | 0.08 | 4.36*** | ?0.09 | 0.08 | ?1.20 |
| Perceived agentic responsibility | 0.25 | 0.07 | 3.57*** | ||||||
| feedback x Partner | 0.05 | 0.07 | 0.79 | ?0.18 | 0.07 | ?2.61** | 0.06 | 0.07 | 0.94 |
| feedback x perceived agentic responsibility | 0.13 | 0.07 | 1.82 | ||||||
| F | F (8, 190) = 5.67*** | F (8, 190) = 5.13*** | F (10, 188) = 6.50*** | ||||||
| R2 | 0.19 | 0.18 | 0.26 | ||||||
Table 2 Moderated mediation effect test (N = 199)
| Predictive variables | Equation 1 (dependent variable: risk level) | Equation 2 (dependent variable: perceived agentic responsibility) | Equation 3 (dependent variable: risk level) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| β | SE | t | β | SE | t | β | SE | t | |
| constant | 0.003 | 0.07 | 0.04 | ?0.01 | 0.07 | ?0.15 | ?0.03 | 0.07 | ?0.44 |
| Age | ?0.01 | 0.07 | ?0.12 | 0.01 | 0.07 | 0.20 | ?0.01 | 0.06 | ?0.17 |
| Gender | ?0.10 | 0.07 | ?1.47 | ?0.07 | 0.07 | ?1.05 | ?0.08 | 0.07 | ?1.21 |
| Sensation Seeking | 0.06 | 0.07 | 0.84 | ?0.01 | 0.07 | ?0.15 | 0.07 | 0.06 | 0.03 |
| Positive emotions | 0.14 | 0.07 | 1.86 | 0.14 | 0.07 | 1.87 | 0.10 | 0.07 | 1.36 |
| Negative emotions | ?0.09 | 0.07 | ?1.22 | ?0.05 | 0.07 | ?0.70 | ?0.09 | 0.07 | ?1.31 |
| Collaboration partner | 0.34 | 0.07 | 5.05*** | 0.22 | 0.07 | 3.28** | 0.30 | 0.07 | 4.50*** |
| Result feedback | ?0.02 | 0.08 | ?0.20 | 0.33 | 0.08 | 4.36*** | ?0.09 | 0.08 | ?1.20 |
| Perceived agentic responsibility | 0.25 | 0.07 | 3.57*** | ||||||
| feedback x Partner | 0.05 | 0.07 | 0.79 | ?0.18 | 0.07 | ?2.61** | 0.06 | 0.07 | 0.94 |
| feedback x perceived agentic responsibility | 0.13 | 0.07 | 1.82 | ||||||
| F | F (8, 190) = 5.67*** | F (8, 190) = 5.13*** | F (10, 188) = 6.50*** | ||||||
| R2 | 0.19 | 0.18 | 0.26 | ||||||
Figure 11. Mediating effect with regulation. Note. The cooperative object is a dummy variable, 1 = human-AI cooperation, 0 = human-human cooperation** p < 0.01, *** p < 0.001
| Intermediary variable | Result feedback | effect | BootSE | BootCI lower limit | BootCI upper limit |
|---|---|---|---|---|---|
| Perceived Agentic Responsibility | Success (0) | 0.0821 | 0.0354 | 0.0246 | 0.1622 |
| Failed (1) | 0.0094 | 0.0233 | ?0.0329 | 0.0607 |
Table 3 Mediating effect of perceived agentic responsibility under success/failure feedback
| Intermediary variable | Result feedback | effect | BootSE | BootCI lower limit | BootCI upper limit |
|---|---|---|---|---|---|
| Perceived Agentic Responsibility | Success (0) | 0.0821 | 0.0354 | 0.0246 | 0.1622 |
| Failed (1) | 0.0094 | 0.0233 | ?0.0329 | 0.0607 |
| [1] | Abele, A. E., & Wojciszke, B. (2014). Communal and agentic content in social cognition:A dual perspective model. In M. P. Zanna & J. M. Olson (Eds.), Advances in experimental social psychology (Vol. 50, pp. 195-255). Academic Press. |
| [2] | Atanasov, P., & Kunreuther, H. (2016). Cautious defection: Group representatives cooperate and risk less than individuals. Journal of Behavioral Decision Making, 29(4), 372-380. |
| [3] | Awad, E., Levine, S., Kleiman-Weiner, M., Dsouza, S., Tenenbaum, J. B., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2019). Drivers are blamed more than their automated cars when both make mistakes. Nature Human Behaviour, 4(2), 134-143. |
| [4] | Bolton, G. E., Ockenfels, A., & Stauf, J. (2015). Social responsibility promotes conservative risk behavior. European Economic Review, 74, 109-127. |
| [5] | Charness, G., & Jackson, M. O. (2009). The role of responsibility in strategic risk-taking. Journal of Economic Behavior & Organization, 69(3), 241-247. |
| [6] | Chong, L., Zhang, G., Goucher-Lambert, K., Kotovsky, K., & Cagan, J. (2022). Human confidence in artificial intelligence and in themselves: The evolution and impact of confidence on adoption of AI advice. Computers in Human Behavior, 127, 107018. |
| [7] |
Darley, J. M., & Latane, B. (1968). Bystander intervention in emergencies: Diffusion of responsibility. Journal of Personality and Social Psychology, 8, 377-383.
pmid: 5645600 |
| [8] |
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. Neuroimage, 23(2), 744-751.
pmid: 15488424 |
| [9] | Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data - Evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. |
| [10] |
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/bf03193146 pmid: 17695343 |
| [11] |
Forgiarini, M., Gallucci, M., & Maravita, A. (2011). Racism and the empathy for pain on our skin. Frontiers in Psychology, 2, 108.
doi: 10.3389/fpsyg.2011.00108 pmid: 21687466 |
| [12] | Franklin, M., Ashton, H., Awad, E., & Lagnado, D. (2022). Causal framework of artificial autonomous agent responsibility. In V. Conitzer & J. Tasioulas (Chair), Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (pp. 276-284), Oxford United Kingdom, |
| [13] | Gombolay, M. C., Gutierrez, R. A., Clarke, S. G., Sturla, G. F., & Shah, J. A (2015). Decision-making authority, team efficiency and human worker satisfaction in mixed human-robot teams. Autonomous AI, 39(3), 293-312 |
| [14] | Gong, J. P., Zhang, X., Zhang, G., Wang, Q. L., & Fan, C. X. (2021). The relationship between college students subjective well-being, coping styles, and social desirability. Chinese Journal of Health Psychology, 29(8), 1262-1265. |
| [15] | Haesevoets, T., De Cremer, D., Dierckx, K., & Van Hiel, A. (2021). human-AI collaboration in managerial decision making. Computers in Human Behavior, 119, Article 106730.. |
| [16] | Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). New York: Guilford Press. |
| [17] | He, H., Martinsson, P., & Sutter, M. (2012). Group decision making under risk: An experiment with student couples. Economics Letters, 117(3), 691-693. |
| [18] | Hewstone, M., Rubin, M., & Willis, H. (2002). Intergroup bias. Annual Review of Psychology, 53(1), 575-604. |
| [19] | Hinds, P. J., Roberts, T. L., & Jones, H. (2004). Whose job is it anyway? A study of human-robot interaction in a collaborative task. Human-Computer Interaction, 19(1-2), 151-181. |
| [20] | Hong, J. W., Cruz, I., & Williams, D. (2021). AI, you can drive my car: How we evaluate human drivers vs. self-driving cars. Computers in Human Behavior, 125, 106944. |
| [21] | Huang, L., Yang, Y. Z., & Ji, Z. M. (2003). Applicability of the Positive and Negative Affect Scale in Chinese. Chinese Mental Health Journal, 17(1), 54-56. |
| [22] | Kim, T., & Hinds, P. (2006, September). Who should I blame? Effects of autonomy and transparency on attributions in human-robot interaction. ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication. |
| [23] | Lei, X., & Rau, P. P. (2021a). Effect of relative status on responsibility attributions in human-robot collaboration: Mediating role of responsibility attribution and moderating role of power distance orientation. Computers in Human Behavior, 122, 106820. |
| [24] | Lei, X., & Rau, P. P. (2021b). Should I Blame the human or the robot? attribution within a human-robot group. International Journal of Social Robotics, 13(2), 363-377. |
| [25] |
Levine, M., Prosser, A., Evans, D., & Reicher, S. (2005). Identity and emergency intervention: How social group membership and inclusiveness of group boundaries shape helping behavior. Personality and Social Psychology Bulletin, 31(4), 443-453.
doi: 10.1177/0146167204271651 pmid: 15743980 |
| [26] | Matsui, T., & Koike, A. (2021). Who is to blame? The appearance of virtual agents and the attribution of perceived responsibility. Sensors, 21(8), 2646. |
| [27] | Miller, D. T., & Ross, M. (1975). Self-serving biases in the attribution of causality: Fact or fiction? Psychological Bulletin, 82(2), 213-225. |
| [28] | Mittal, S. K. (2022). Behavior biases and investment decision: Theoretical and research framework. Qualitative Research in Financial Markets, 14(2), 213-228. |
| [29] | Oliveira, R., Arriaga, P., Correia, F., & Paiva, A. (2020). Looking beyond collaboration: Socioemotional positive, negative and task-oriented behaviors in human-robot group interactions. International Journal of Social Robotics, 12(2), 505-518. |
| [30] | Parise, S., Kiesler, S., Sproull, L., & Waters, K. (1996, November). My partner is a real dog: Cooperation with social agents. Paper presented at the meeting of the CSCW 96 Conference on Computer-Supported Cooperative Work. New York: ACM. |
| [31] | Posard, M. N., & Rinderknecht, R. G. (2015). Do people like working with computers more than human beings? Computers in Human Behavior, 51, 232-238. |
| [32] | Savela, N., Kaakinen, M., Ellonen, N., & Oksanen, A. (2021). Sharing a work team with AI: The negative effect of robot co-workers on in-group identification with the work team. Computers in Human Behavior, 115, 106585. |
| [33] | Schoemann, A. M., Boulton, A. J., & Short, S. D. (2017). Determining power and sample size for simple and complex mediation models. Social Psychological and Personality Science, 8(4), 379-386. |
| [34] | Silva, K., Chein, J., & Steinberg, L. (2020). The influence of romantic partners on male risk-taking. Journal of Social and Personal Relationships, 37(5), 1405-1415. |
| [35] | Tang, W. C. (2017). Men and women working together can make of job easier: The study on risk decisions made by two-person group of different genders [Unpublished master’s thesis]. Beijing University of Posts and Telecommunications. |
| [36] | Turner, J. C., Hogg, M. A., Oakes, P. J., Reicher, S. D., & Wetherell, M. S. (1987). Rediscovering the social group: A self-categorization theory. Basil Blackwell. |
| [37] | Wang, Z., Kuang, Y., Tang, H., Gao, C., Chen, A., & Chan, K. (2018). Are decisions made by group representatives more risk averse? The effect of responsibility attribution. Journal of Behavioral Decision Making, 31(3), 311-323. |
| [38] | Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal Personal Social Psychology, 54(6), 1063-1070. |
| [39] |
Wen, Z. L., & Ye, B. J. (2014). Different methods for testing moderated mediation models: Competitors or backups? Acta Psychologica Sinica, 46(5), 714-726.
doi: 10.3724/SP.J.1041.2014.00714 |
| [40] | Xiong, W., Wang, C., & Ma, L. (2023). Partner or subordinate? Sequential risky decision-making behaviors under human-AI collaboration contexts. Computers in Human Behavior, 139, 107556. |
| [41] |
Xu, S. H., Fang, Z., & Rao, H. Y. (2013). Real or hypothetical monetary rewards modulates risk taking behavior. Acta Psychologica Sinica, 45(8), 874-886.
doi: 10.3724/SP.J.1041.2013.00874 |
| [42] | Xu, S. H., Pan, Y., Qu, Z., Fang, Z., Yang, Z. J., Yang, F.,... Rao, H. Y. (2018). Differential effects of real versus hypothetical monetary reward magnitude on risk-taking behavior and brain activity. Scientific Reports, 8(1), 3712. |
| [43] | You, S., Nie, J., Suh, K., & Sundar, S. S. (2011). When the robot criticizes you… Self-serving bias in human-robot interaction. 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI). |
| [44] | Yue, B., & Li, H. (2023). The impact of human-AI collaboration types on consumer evaluation and usage intention: A perspective of responsibility attribution. Frontiers in Psychology, 14, 1277861. |
| [45] | Yue, L. Z., Li, S., & Liang, Z. Y. (2018). New avenues for the development of domain-specific nature of risky decision making. Advances in Psychological Science, 26(5), 928-938. |
| [46] | Zhao, S. (2004). A study on the relationship between Sensation seeking (SS) and mental health of college students [Unpublished master’s thesis]. Northeast Normal University, Changchun. |
| [1] | LI Chunhao, LIU Rongyuan, LIU Yuanhao. The dependence of classic and dual common consequence effects on the choice-set outcome range: From the perspective of probability weights* [J]. Acta Psychologica Sinica, 2025, 57(3): 398-414. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||