Acta Psychologica Sinica ›› 2024, Vol. 56 ›› Issue (12): 1773-1787.doi: 10.3724/SP.J.1041.2024.01773
• Reports of Empirical Studies • Previous Articles Next Articles
WU Zhengyu1, WANG Fei1, WANG Dewen1, LIU Zhengkui2()
Received:
2024-10-09
Published:
2024-12-25
Online:
2024-11-04
Contact:
LIU Zhengkui
E-mail:liuzk@psych.ac.cn
WU Zhengyu, WANG Fei, WANG Dewen, LIU Zhengkui. (2024). Depression above the plateau: The relationship between altitude and depression risk. Acta Psychologica Sinica, 56(12), 1773-1787.
Variable | Random Intercept Model | Random Slope Model | Random Slope + Random Intercept Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | t | 95% CI | p | β | SE | t | 95% CI | p | β | SE | t | 95% CI | p | |
Intercept | 9.06 | 0.92 | 9.81 | 7.25~10.87 | <0.001 | 8.81 | 0.62 | 14.24 | 7.60~10.02 | <0.001 | 8.96 | 0.92 | 9.75 | 7.16~10.77 | <0.001 |
Level-1 Individual Level | |||||||||||||||
Age | ?0.01 | 0.00 | ?1.85 | ?0.01~0.01 | 0.064 | ?0.01 | 0.00 | ?1.91 | ?0.01~0.01 | 0.056 | ?0.01 | 0.00 | ?1.86 | ?0.01~0.01 | 0.064 |
Gender | ?0.68 | 0.06 | ?11.31 | ?0.79~?0.56 | <0.001 | ?0.67 | 0.06 | ?11.24 | ?0.79~?0.56 | <0.001 | ?0.67 | 0.06 | ?11.30 | ?0.79~?0.56 | <0.001 |
Years of Education | ?0.12 | 0.01 | ?15.63 | ?0.14~?0.11 | <0.001 | ?0.12 | 0.01 | ?15.85 | ?0.14~?0.11 | <0.001 | ?0.12 | 0.01 | ?15.65 | ?0.14~?0.11 | <0.001 |
Marital Status | ?0.78 | 0.08 | ?9.96 | ?0.93~?0.62 | <0.001 | ?0.81 | 0.08 | 10.34 | ?0.96~?0.65 | <0.001 | ?0.78 | 0.08 | ?9.99 | ?0.93~?0.62 | <0.001 |
Urban/Rural | ?0.18 | 0.07 | ?2.73 | ?0.32~?0.05 | 0.006 | ?0.19 | 0.06 | ?2.96 | ?0.32~?0.06 | 0.003 | 0.18 | 0.07 | ?2.67 | ?0.31~?0.05 | 0.008 |
Employment Status | 0.46 | 0.07 | 6.63 | 0.33~0.60 | <0.001 | 0.46 | 0.07 | 6.61 | 0.33~0.60 | <0.001 | 0.47 | 0.07 | 6.63 | 0.33~0.60 | <0.001 |
Chronic Illness Status | 1.59 | 0.08 | 19.18 | 1.43~1.75 | <0.001 | 1.61 | 0.08 | 19.47 | 1.45~1.78 | <0.001 | 1.59 | 0.08 | 19.21 | 1.43~1.75 | <0.001 |
Self-Reported Income | ?0.53 | 0.03 | ?18.76 | ?0.59~?0.48 | <0.001 | ?0.53 | 0.03 | ?19.86 | ?0.59~?0.48 | <0.001 | ?0.53 | 0.03 | ?18.78 | ?0.59~?0.48 | <0.001 |
Level-2 Regional Level | |||||||||||||||
Altitude | 0.46 | 0.13 | 2.83 | 0.14~0.78 | 0.005 | 0.68 | 0.20 | 3.39 | 0.29~1.08 | 0.001 | 0.49 | 0.18 | 2.66 | 0.13~0.85 | 0.008 |
Per Capita GDP | ?0.06 | 0.02 | ?3.44 | ?0.12~?0.03 | 0.001 | ?0.10 | 0.01 | ?9.30 | ?0.12~?0.08 | <0.001 | ?0.08 | 0.02 | ?4.21 | ?0.12~?0.05 | <0.001 |
Hospital Beds/10,000 | ?0.01 | 0.01 | ?0.55 | ?0.02~0.01 | 0.580 | ?0.01 | 0.00 | ?1.10 | ?0.01~0.01 | 0.269 | ?0.01 | 0.01 | ?0.44 | ?0.02~0.01 | 0.663 |
Average Annual Temp. | ?0.01 | 0.02 | ?0.08 | ?0.05~0.05 | 0.938 | 0.01 | 0.02 | 0.84 | ?0.02~0.04 | 0.399 | 0.01 | 0.02 | 0.21 | ?0.04~0.05 | 0.834 |
Average Annual Precipitation | 0.39 | 0.25 | 1.57 | ?0.10~0.88 | 0.116 | 0.42 | 0.14 | 3.10 | 0.15~0.68 | 0.002 | 0.38 | 0.23 | 1.68 | ?0.06~0.83 | 0.093 |
Average Annual Sunshine Duration | 0.03 | 0.16 | 0.16 | ?0.29~0.35 | 0.869 | 0.14 | 0.11 | 1.29 | ?0.07~0.34 | 0.196 | 0.06 | 0.16 | 0.37 | ?0.25~0.37 | 0.712 |
Average Annual PM2.5 | ?0.01 | 0.01 | ?0.23 | ?0.01~0.01 | 0.817 | ?0.01 | 0.00 | ?0.75 | ?0.01~0.01 | 0.457 | ?0.01 | 0.01 | ?0.51 | ?0.02~0.01 | 0.608 |
Table 1 Multilevel Linear Model of Altitude and Depression in the Population
Variable | Random Intercept Model | Random Slope Model | Random Slope + Random Intercept Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | t | 95% CI | p | β | SE | t | 95% CI | p | β | SE | t | 95% CI | p | |
Intercept | 9.06 | 0.92 | 9.81 | 7.25~10.87 | <0.001 | 8.81 | 0.62 | 14.24 | 7.60~10.02 | <0.001 | 8.96 | 0.92 | 9.75 | 7.16~10.77 | <0.001 |
Level-1 Individual Level | |||||||||||||||
Age | ?0.01 | 0.00 | ?1.85 | ?0.01~0.01 | 0.064 | ?0.01 | 0.00 | ?1.91 | ?0.01~0.01 | 0.056 | ?0.01 | 0.00 | ?1.86 | ?0.01~0.01 | 0.064 |
Gender | ?0.68 | 0.06 | ?11.31 | ?0.79~?0.56 | <0.001 | ?0.67 | 0.06 | ?11.24 | ?0.79~?0.56 | <0.001 | ?0.67 | 0.06 | ?11.30 | ?0.79~?0.56 | <0.001 |
Years of Education | ?0.12 | 0.01 | ?15.63 | ?0.14~?0.11 | <0.001 | ?0.12 | 0.01 | ?15.85 | ?0.14~?0.11 | <0.001 | ?0.12 | 0.01 | ?15.65 | ?0.14~?0.11 | <0.001 |
Marital Status | ?0.78 | 0.08 | ?9.96 | ?0.93~?0.62 | <0.001 | ?0.81 | 0.08 | 10.34 | ?0.96~?0.65 | <0.001 | ?0.78 | 0.08 | ?9.99 | ?0.93~?0.62 | <0.001 |
Urban/Rural | ?0.18 | 0.07 | ?2.73 | ?0.32~?0.05 | 0.006 | ?0.19 | 0.06 | ?2.96 | ?0.32~?0.06 | 0.003 | 0.18 | 0.07 | ?2.67 | ?0.31~?0.05 | 0.008 |
Employment Status | 0.46 | 0.07 | 6.63 | 0.33~0.60 | <0.001 | 0.46 | 0.07 | 6.61 | 0.33~0.60 | <0.001 | 0.47 | 0.07 | 6.63 | 0.33~0.60 | <0.001 |
Chronic Illness Status | 1.59 | 0.08 | 19.18 | 1.43~1.75 | <0.001 | 1.61 | 0.08 | 19.47 | 1.45~1.78 | <0.001 | 1.59 | 0.08 | 19.21 | 1.43~1.75 | <0.001 |
Self-Reported Income | ?0.53 | 0.03 | ?18.76 | ?0.59~?0.48 | <0.001 | ?0.53 | 0.03 | ?19.86 | ?0.59~?0.48 | <0.001 | ?0.53 | 0.03 | ?18.78 | ?0.59~?0.48 | <0.001 |
Level-2 Regional Level | |||||||||||||||
Altitude | 0.46 | 0.13 | 2.83 | 0.14~0.78 | 0.005 | 0.68 | 0.20 | 3.39 | 0.29~1.08 | 0.001 | 0.49 | 0.18 | 2.66 | 0.13~0.85 | 0.008 |
Per Capita GDP | ?0.06 | 0.02 | ?3.44 | ?0.12~?0.03 | 0.001 | ?0.10 | 0.01 | ?9.30 | ?0.12~?0.08 | <0.001 | ?0.08 | 0.02 | ?4.21 | ?0.12~?0.05 | <0.001 |
Hospital Beds/10,000 | ?0.01 | 0.01 | ?0.55 | ?0.02~0.01 | 0.580 | ?0.01 | 0.00 | ?1.10 | ?0.01~0.01 | 0.269 | ?0.01 | 0.01 | ?0.44 | ?0.02~0.01 | 0.663 |
Average Annual Temp. | ?0.01 | 0.02 | ?0.08 | ?0.05~0.05 | 0.938 | 0.01 | 0.02 | 0.84 | ?0.02~0.04 | 0.399 | 0.01 | 0.02 | 0.21 | ?0.04~0.05 | 0.834 |
Average Annual Precipitation | 0.39 | 0.25 | 1.57 | ?0.10~0.88 | 0.116 | 0.42 | 0.14 | 3.10 | 0.15~0.68 | 0.002 | 0.38 | 0.23 | 1.68 | ?0.06~0.83 | 0.093 |
Average Annual Sunshine Duration | 0.03 | 0.16 | 0.16 | ?0.29~0.35 | 0.869 | 0.14 | 0.11 | 1.29 | ?0.07~0.34 | 0.196 | 0.06 | 0.16 | 0.37 | ?0.25~0.37 | 0.712 |
Average Annual PM2.5 | ?0.01 | 0.01 | ?0.23 | ?0.01~0.01 | 0.817 | ?0.01 | 0.00 | ?0.75 | ?0.01~0.01 | 0.457 | ?0.01 | 0.01 | ?0.51 | ?0.02~0.01 | 0.608 |
Mediation Pathway | Effect Type | Effect Size | Standard Error | 95% CI Lower | 95% CI Upper | Proportion of Total Effect (%) |
---|---|---|---|---|---|---|
Altitude→Per Capita GDP→Depression Score | Total Effect | 0.41 | 0.06 | 0.31 | 0.52 | ? |
Direct Effect | 0.16 | 0.01 | 0.46 | 0.87 | 38.01% | |
Indirect Effect | 0.26 | 0.02 | 0.21 | 0.30 | 61.99% | |
Using Matched Data: Altitude→Per Capita GDP→Depression Score | Total Effect | 1.39 | 0.11 | 1.17 | 1.58 | ? |
Direct Effect | 1.00 | 0.12 | 0.75 | 1.22 | 71.94% | |
Indirect Effect | 0.39 | 0.06 | 0.28 | 0.50 | 28.06% | |
Altitude→C-Reactive Protein→Depression Score | Total Effect | 1.093 | 0.160 | 0.785 | 1.403 | ? |
Direct Effect | 1.087 | 0.013 | 0.063 | 0.113 | 99.46% | |
Indirect Effect | 0.006 | 0.003 | 0.001 | 0.013 | 0.54% |
Table 2 Mediation Effect Test of Regional Per Capita GDP and C-Reactive Protein
Mediation Pathway | Effect Type | Effect Size | Standard Error | 95% CI Lower | 95% CI Upper | Proportion of Total Effect (%) |
---|---|---|---|---|---|---|
Altitude→Per Capita GDP→Depression Score | Total Effect | 0.41 | 0.06 | 0.31 | 0.52 | ? |
Direct Effect | 0.16 | 0.01 | 0.46 | 0.87 | 38.01% | |
Indirect Effect | 0.26 | 0.02 | 0.21 | 0.30 | 61.99% | |
Using Matched Data: Altitude→Per Capita GDP→Depression Score | Total Effect | 1.39 | 0.11 | 1.17 | 1.58 | ? |
Direct Effect | 1.00 | 0.12 | 0.75 | 1.22 | 71.94% | |
Indirect Effect | 0.39 | 0.06 | 0.28 | 0.50 | 28.06% | |
Altitude→C-Reactive Protein→Depression Score | Total Effect | 1.093 | 0.160 | 0.785 | 1.403 | ? |
Direct Effect | 1.087 | 0.013 | 0.063 | 0.113 | 99.46% | |
Indirect Effect | 0.006 | 0.003 | 0.001 | 0.013 | 0.54% |
Age (years) | Altitude (meters) | 2016 CES-D 8 scores | 2018 CES-D 8 scores | 2020 CES-D 8 scores | ||||||
---|---|---|---|---|---|---|---|---|---|---|
> = 9 | <3 | OR | > = 9 | <3 | OR | > = 9 | <3 | OR | ||
18~30 | 500~1 000 | 84 | 135 | 1.57 | 78 | 87 | 1.60 | 60 | 91 | 1.02 |
<500 | 608 | 1 534 | 590 | 1 055 | 541 | 834 | ||||
31~40 | 500~1 000 | 77 | 94 | 1.63 | 91 | 67 | 1.84 | 68 | 76 | 1.12 |
<500 | 545 | 1 083 | 599 | 813 | 590 | 737 | ||||
41~50 | 500~1 000 | 148 | 118 | 2.44 | 129 | 90 | 1.88 | 88 | 68 | 1.87 |
<500 | 764 | 1 486 | 776 | 1 020 | 548 | 790 | ||||
51~60 | 500~1 000 | 127 | 125 | 1.69 | 129 | 101 | 1.86 | 108 | 85 | 1.68 |
<500 | 828 | 1 374 | 807 | 1 175 | 656 | 869 | ||||
61~70 | 500~1 000 | 99 | 93 | 1.66 | 122 | 92 | 1.81 | 87 | 67 | 1.80 |
<500 | 797 | 1 245 | 812 | 1 106 | 526 | 732 | ||||
71~ | 500~1 000 | 58 | 43 | 1.81 | 76 | 55 | 1.77 | 40 | 37 | 1.77 |
<500 | 449 | 603 | 429 | 551 | 241 | 392 | ||||
Overall | 500~1 000 | 593 | 608 | 1.79 | 625 | 492 | 1.81 | 451 | 424 | 1.49 |
<500 | 3 991 | 7 325 | 4 013 | 5 720 | 3 102 | 4 354 | ||||
18~30 | 1 000~2 000 | 208 | 364 | 1.44 | 233 | 268 | 1.55 | 218 | 268 | 1.25 |
<500 | 608 | 1 534 | 590 | 1 055 | 541 | 834 | ||||
31~40 | 1 000~2 000 | 208 | 228 | 1.81 | 238 | 154 | 2.10 | 231 | 193 | 1.50 |
<500 | 545 | 1 083 | 599 | 813 | 590 | 737 | ||||
41~50 | 1 000~2 000 | 350 | 317 | 2.15 | 370 | 229 | 2.09 | 256 | 200 | 1.75 |
<500 | 764 | 1 486 | 776 | 1 002 | 548 | 750 | ||||
51~60 | 1 000~2 000 | 294 | 233 | 2.09 | 366 | 194 | 2.75 | 310 | 188 | 2.18 |
<500 | 828 | 1 374 | 807 | 1 175 | 656 | 869 | ||||
61~70 | 1 000~2 000 | 277 | 161 | 2.69 | 288 | 131 | 2.99 | 181 | 121 | 2.42 |
<500 | 797 | 1 245 | 812 | 1 106 | 526 | 852 | ||||
71~ | 1 000~2 000 | 132 | 58 | 3.06 | 132 | 51 | 3.32 | 90 | 54 | 2.71 |
<500 | 449 | 603 | 429 | 551 | 241 | 392 | ||||
Overall | 1 000~2 000 | 1 469 | 1 361 | 1.98 | 1 627 | 1 027 | 2.25 | 1 286 | 1 024 | 1.80 |
<500 | 3 991 | 7 325 | 4 013 | 5 702 | 3 102 | 4 434 |
Table 3 Age-Related Differences in Depression Risk for Altitude Exposure of 500-2,000 meters
Age (years) | Altitude (meters) | 2016 CES-D 8 scores | 2018 CES-D 8 scores | 2020 CES-D 8 scores | ||||||
---|---|---|---|---|---|---|---|---|---|---|
> = 9 | <3 | OR | > = 9 | <3 | OR | > = 9 | <3 | OR | ||
18~30 | 500~1 000 | 84 | 135 | 1.57 | 78 | 87 | 1.60 | 60 | 91 | 1.02 |
<500 | 608 | 1 534 | 590 | 1 055 | 541 | 834 | ||||
31~40 | 500~1 000 | 77 | 94 | 1.63 | 91 | 67 | 1.84 | 68 | 76 | 1.12 |
<500 | 545 | 1 083 | 599 | 813 | 590 | 737 | ||||
41~50 | 500~1 000 | 148 | 118 | 2.44 | 129 | 90 | 1.88 | 88 | 68 | 1.87 |
<500 | 764 | 1 486 | 776 | 1 020 | 548 | 790 | ||||
51~60 | 500~1 000 | 127 | 125 | 1.69 | 129 | 101 | 1.86 | 108 | 85 | 1.68 |
<500 | 828 | 1 374 | 807 | 1 175 | 656 | 869 | ||||
61~70 | 500~1 000 | 99 | 93 | 1.66 | 122 | 92 | 1.81 | 87 | 67 | 1.80 |
<500 | 797 | 1 245 | 812 | 1 106 | 526 | 732 | ||||
71~ | 500~1 000 | 58 | 43 | 1.81 | 76 | 55 | 1.77 | 40 | 37 | 1.77 |
<500 | 449 | 603 | 429 | 551 | 241 | 392 | ||||
Overall | 500~1 000 | 593 | 608 | 1.79 | 625 | 492 | 1.81 | 451 | 424 | 1.49 |
<500 | 3 991 | 7 325 | 4 013 | 5 720 | 3 102 | 4 354 | ||||
18~30 | 1 000~2 000 | 208 | 364 | 1.44 | 233 | 268 | 1.55 | 218 | 268 | 1.25 |
<500 | 608 | 1 534 | 590 | 1 055 | 541 | 834 | ||||
31~40 | 1 000~2 000 | 208 | 228 | 1.81 | 238 | 154 | 2.10 | 231 | 193 | 1.50 |
<500 | 545 | 1 083 | 599 | 813 | 590 | 737 | ||||
41~50 | 1 000~2 000 | 350 | 317 | 2.15 | 370 | 229 | 2.09 | 256 | 200 | 1.75 |
<500 | 764 | 1 486 | 776 | 1 002 | 548 | 750 | ||||
51~60 | 1 000~2 000 | 294 | 233 | 2.09 | 366 | 194 | 2.75 | 310 | 188 | 2.18 |
<500 | 828 | 1 374 | 807 | 1 175 | 656 | 869 | ||||
61~70 | 1 000~2 000 | 277 | 161 | 2.69 | 288 | 131 | 2.99 | 181 | 121 | 2.42 |
<500 | 797 | 1 245 | 812 | 1 106 | 526 | 852 | ||||
71~ | 1 000~2 000 | 132 | 58 | 3.06 | 132 | 51 | 3.32 | 90 | 54 | 2.71 |
<500 | 449 | 603 | 429 | 551 | 241 | 392 | ||||
Overall | 1 000~2 000 | 1 469 | 1 361 | 1.98 | 1 627 | 1 027 | 2.25 | 1 286 | 1 024 | 1.80 |
<500 | 3 991 | 7 325 | 4 013 | 5 702 | 3 102 | 4 434 |
Age (years) | Altitude (meters) | 2016 CES-D 10 scores | ||
---|---|---|---|---|
> = 14 | <10 | OR | ||
18~30 | 4 000~ 6 000 | 94 | 470 | 54.80 |
<500 | 3 | 822 | ||
31~40 | 4 000~ 6 000 | 295 | 618 | 28.45 |
<500 | 10 | 596 | ||
41~50 | 4 000~ 6 000 | 169 | 566 | 9.44 |
<500 | 24 | 759 | ||
51~60 | 4 000~ 6 000 | 110 | 274 | 8.48 |
<500 | 23 | 486 | ||
61~70 | 4 000~ 6 000 | 28 | 200 | 1.42 |
<500 | 35 | 354 | ||
71~ | 4 000~ 6 000 | 45 | 118 | 1.87 |
<500 | 19 | 93 | ||
Overall | 4 000~ 6 000 | 741 | 2 246 | 9.00 |
<500 | 114 | 3 110 |
Table 4 Age-Related Differences in Depression Risk for Altitude Exposure of 4,000-6,000 meters
Age (years) | Altitude (meters) | 2016 CES-D 10 scores | ||
---|---|---|---|---|
> = 14 | <10 | OR | ||
18~30 | 4 000~ 6 000 | 94 | 470 | 54.80 |
<500 | 3 | 822 | ||
31~40 | 4 000~ 6 000 | 295 | 618 | 28.45 |
<500 | 10 | 596 | ||
41~50 | 4 000~ 6 000 | 169 | 566 | 9.44 |
<500 | 24 | 759 | ||
51~60 | 4 000~ 6 000 | 110 | 274 | 8.48 |
<500 | 23 | 486 | ||
61~70 | 4 000~ 6 000 | 28 | 200 | 1.42 |
<500 | 35 | 354 | ||
71~ | 4 000~ 6 000 | 45 | 118 | 1.87 |
<500 | 19 | 93 | ||
Overall | 4 000~ 6 000 | 741 | 2 246 | 9.00 |
<500 | 114 | 3 110 |
Variable | Altitude < 500 meters (n = 12 610) | Altitude 500~1000 meters (n = 1 250) | Altitude 1000~2000 meters (n = 4 348) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 95] | 48.05 ± 16.13 | [18, 87] | 47.96 ± 16.26 | [18, 93] | 45.11 ± 15.54 | |||
Gender | |||||||||
Male | 6224(50.64) | 615(49.20) | 2233(51.36) | ||||||
Female | 6386(49.36) | 635(50.80) | 2115(48.64) | ||||||
Years of Education | [0, 22] | 8.98 ± 4.54 | [0, 20] | 8.23 ± 4.60 | [0, 19] | 7.37 ± 5.12 | |||
Marital Status | |||||||||
Married | 10146(80.46) | 987(78.96) | 3447(79.28) | ||||||
Unmarried/Divorced/Widowed | 2464(19.54) | 263(21.04) | 901(20.72) | ||||||
Urban/Rural | |||||||||
Urban | 6957(55.17) | 505(40.40) | 1429(32.87) | ||||||
Rural | 5653(44.83) | 745(59.60) | 2919(67.13) | ||||||
Employment Status | |||||||||
Employed | 8964(71.09) | 906(72.48) | 3387(77.90) | ||||||
Unemployed | 3646(28.91) | 344(27.52) | 961(22.10) | ||||||
Chronic Illness | |||||||||
Yes | 1995(15.82) | 1089(87.12) | 705(16.21) | ||||||
No | 10615(84.18) | 161(12.88) | 3643(83.79) | ||||||
Depression Score | [0, 24] | 5.36 ± 4.04 | [0, 20] | 6.36 ± 4.22 | [0, 24] | 6.48 ± 4.20 | |||
Per Capita GDP (10,000 RMB) | [2.46, 16.59] | 7.12 ± 4.03 | [3.71, 8.57] | 5.05 ± 1.53 | [1.74, 11.30] | 3.99 ± 2.32 | |||
Self-Reported Income Level | [1, 5] | 2.92 ± 1.02 | [1, 5] | 2.95 ± 1.07 | [1, 5] | 3.03 ± 1.08 | |||
Hospital Beds per 10,000 People | [29.47, 88.60] | 51.54 ± 12.14 | [46.44, 78.61] | 61.43 ± 10.95 | [33.10, 77.10] | 54.38 ± 9.99 | |||
Average Annual Temperature (°C) | [2.80, 24.40] | 15.30 ± 4.66 | [6.90, 17.20] | 14.21 ± 3.25 | [7.00, 20.30] | 11.83 ± 3.89 | |||
Average Annual Rainfall (mm) | [458.70, 2364.00] | 1092.94 ± 488.74 | [461.20, 1655.40] | 1065.03 ± 452.44 | [170.00, 1335.10] | 630.36 ± 298.66 | |||
Average Annual Sunshine Duration (hours) | [1047.80, 3542.50] | 2079.80 ± 558.29 | [564.00, 3103.20] | 1707.96 ± 922.92 | [1134.00, 3231.00] | 2185.01 ± 388.91 | |||
PM 2.5(μg/m3) | [12.00, 62.00] | 38.99 ± 11.98 | [18.00, 64.00] | 36.18 ± 14.21 | [15.30, 54.70] | 28.05 ± 9.70 |
Supplementary Table 1-1. Basic Information of the Analysis Database for Study 1's HLM Model (N = 18 208)
Variable | Altitude < 500 meters (n = 12 610) | Altitude 500~1000 meters (n = 1 250) | Altitude 1000~2000 meters (n = 4 348) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 95] | 48.05 ± 16.13 | [18, 87] | 47.96 ± 16.26 | [18, 93] | 45.11 ± 15.54 | |||
Gender | |||||||||
Male | 6224(50.64) | 615(49.20) | 2233(51.36) | ||||||
Female | 6386(49.36) | 635(50.80) | 2115(48.64) | ||||||
Years of Education | [0, 22] | 8.98 ± 4.54 | [0, 20] | 8.23 ± 4.60 | [0, 19] | 7.37 ± 5.12 | |||
Marital Status | |||||||||
Married | 10146(80.46) | 987(78.96) | 3447(79.28) | ||||||
Unmarried/Divorced/Widowed | 2464(19.54) | 263(21.04) | 901(20.72) | ||||||
Urban/Rural | |||||||||
Urban | 6957(55.17) | 505(40.40) | 1429(32.87) | ||||||
Rural | 5653(44.83) | 745(59.60) | 2919(67.13) | ||||||
Employment Status | |||||||||
Employed | 8964(71.09) | 906(72.48) | 3387(77.90) | ||||||
Unemployed | 3646(28.91) | 344(27.52) | 961(22.10) | ||||||
Chronic Illness | |||||||||
Yes | 1995(15.82) | 1089(87.12) | 705(16.21) | ||||||
No | 10615(84.18) | 161(12.88) | 3643(83.79) | ||||||
Depression Score | [0, 24] | 5.36 ± 4.04 | [0, 20] | 6.36 ± 4.22 | [0, 24] | 6.48 ± 4.20 | |||
Per Capita GDP (10,000 RMB) | [2.46, 16.59] | 7.12 ± 4.03 | [3.71, 8.57] | 5.05 ± 1.53 | [1.74, 11.30] | 3.99 ± 2.32 | |||
Self-Reported Income Level | [1, 5] | 2.92 ± 1.02 | [1, 5] | 2.95 ± 1.07 | [1, 5] | 3.03 ± 1.08 | |||
Hospital Beds per 10,000 People | [29.47, 88.60] | 51.54 ± 12.14 | [46.44, 78.61] | 61.43 ± 10.95 | [33.10, 77.10] | 54.38 ± 9.99 | |||
Average Annual Temperature (°C) | [2.80, 24.40] | 15.30 ± 4.66 | [6.90, 17.20] | 14.21 ± 3.25 | [7.00, 20.30] | 11.83 ± 3.89 | |||
Average Annual Rainfall (mm) | [458.70, 2364.00] | 1092.94 ± 488.74 | [461.20, 1655.40] | 1065.03 ± 452.44 | [170.00, 1335.10] | 630.36 ± 298.66 | |||
Average Annual Sunshine Duration (hours) | [1047.80, 3542.50] | 2079.80 ± 558.29 | [564.00, 3103.20] | 1707.96 ± 922.92 | [1134.00, 3231.00] | 2185.01 ± 388.91 | |||
PM 2.5(μg/m3) | [12.00, 62.00] | 38.99 ± 11.98 | [18.00, 64.00] | 36.18 ± 14.21 | [15.30, 54.70] | 28.05 ± 9.70 |
Variable | Altitude < 500 meters (n = 9 827) | Altitude 500-1000 meters (n = 1 019) | Altitude 1000-2000 meters (n = 3 011) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 91] | 46.77 ± 14.83 | [18, 89] | 46.57 ± 14.63 | [18, 81] | 44.35 ± 13.90 | |||
Gender | |||||||||
Male | 4764(48.48) | 489(47.99) | 1547(51.38) | ||||||
Female | 5063(51.52) | 530(52.01) | 1464(48.62) | ||||||
Years of Education | [0, 22] | 8.43 ± 4.31 | [0, 21] | 7.81 ± 4.17 | [0, 19] | 6.83 ± 4.73 | |||
Marital Status | |||||||||
Married | 8384(85.32) | 874(85.77) | 2548(84.62) | ||||||
Unmarried/Divorced/Widowed | 1443(14.68) | 145(14.23) | 463(15.38) | ||||||
Urban/Rural | |||||||||
Urban | 4587(46.68) | 676(66.34) | 2205(73.23) | ||||||
Rural | 5240(53.32) | 343(33.66) | 806(26.77) | ||||||
Employment Status | |||||||||
Employed | 7332(74.61) | 779(76.45) | 2446(81.24) | ||||||
Unemployed | 2495(25.39) | 240(23.55) | 565(18.76) | ||||||
Chronic Illness | |||||||||
Yes | 1572(16.00) | 159(15.60) | 544(18.07) | ||||||
No | 8255(84.00) | 860(84.40) | 2467(81.93) | ||||||
Depression Score | [0, 24] | 4.73 ± 3.84 | [0, 23] | 5.80 ± 4.22 | [0, 24] | 5.87 ± 4.06 | |||
Per Capita GDP (10,000 RMB) | [2.22, 17.43] | 6.47 ± 3.70 | [2.51, 9.48] | 4.35 ± 1.67 | [1.19, 11.30] | 3.29 ± 2.04 | |||
Self-Reported Income Level | [1, 5] | 2.44 ± 0.96 | [1, 5] | 2.50 ± 1.01 | [1, 5] | 2.51 ± 1.02 | |||
Hospital Beds per 10,000 People | [20.12, 138.64] | 53.11 ± 19.57 | [37.77, 100.44] | 58.45 ± 15.83 | [23.56, 82.22] | 47.51 ± 13.32 | |||
Average Annual Temperature (℃) | [1.59, 23.69] | 15.16 ± 4.51 | [8.96, 17.40] | 13.56 ± 2.62 | [7.00, 21.07] | 11.39 ± 3.68 | |||
Average Annual Rainfall (mm) | [355.00, 2938.20] | 1171.13 ± 645.62 | [400.70, 1060.00] | 692.23 ± 225.15 | [165.40, 1154.20] | 557.88 ± 266.94 | |||
Average Annual Sunshine Duration (hours) | [971.10, 3119.10] | 2007.59 ± 431.26 | [973.60, 2586.10] | 1677.91 ± 528.62 | [1455.50, 3269.70] | 2219.99 ± 358.17 | |||
PM 2.5(μg/m3) | [10.39, 78.93] | 43.96 ± 17.22 | [8.00, 49.77] | 31.48 ± 15.02 | [10.00, 41.23] | 29.79 ± 8.86 |
Supplementary Table 2-1. Basic Information of the Analysis Database for the Per Capita GDP Mediation Model in Study 2 (N = 13 857)
Variable | Altitude < 500 meters (n = 9 827) | Altitude 500-1000 meters (n = 1 019) | Altitude 1000-2000 meters (n = 3 011) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 91] | 46.77 ± 14.83 | [18, 89] | 46.57 ± 14.63 | [18, 81] | 44.35 ± 13.90 | |||
Gender | |||||||||
Male | 4764(48.48) | 489(47.99) | 1547(51.38) | ||||||
Female | 5063(51.52) | 530(52.01) | 1464(48.62) | ||||||
Years of Education | [0, 22] | 8.43 ± 4.31 | [0, 21] | 7.81 ± 4.17 | [0, 19] | 6.83 ± 4.73 | |||
Marital Status | |||||||||
Married | 8384(85.32) | 874(85.77) | 2548(84.62) | ||||||
Unmarried/Divorced/Widowed | 1443(14.68) | 145(14.23) | 463(15.38) | ||||||
Urban/Rural | |||||||||
Urban | 4587(46.68) | 676(66.34) | 2205(73.23) | ||||||
Rural | 5240(53.32) | 343(33.66) | 806(26.77) | ||||||
Employment Status | |||||||||
Employed | 7332(74.61) | 779(76.45) | 2446(81.24) | ||||||
Unemployed | 2495(25.39) | 240(23.55) | 565(18.76) | ||||||
Chronic Illness | |||||||||
Yes | 1572(16.00) | 159(15.60) | 544(18.07) | ||||||
No | 8255(84.00) | 860(84.40) | 2467(81.93) | ||||||
Depression Score | [0, 24] | 4.73 ± 3.84 | [0, 23] | 5.80 ± 4.22 | [0, 24] | 5.87 ± 4.06 | |||
Per Capita GDP (10,000 RMB) | [2.22, 17.43] | 6.47 ± 3.70 | [2.51, 9.48] | 4.35 ± 1.67 | [1.19, 11.30] | 3.29 ± 2.04 | |||
Self-Reported Income Level | [1, 5] | 2.44 ± 0.96 | [1, 5] | 2.50 ± 1.01 | [1, 5] | 2.51 ± 1.02 | |||
Hospital Beds per 10,000 People | [20.12, 138.64] | 53.11 ± 19.57 | [37.77, 100.44] | 58.45 ± 15.83 | [23.56, 82.22] | 47.51 ± 13.32 | |||
Average Annual Temperature (℃) | [1.59, 23.69] | 15.16 ± 4.51 | [8.96, 17.40] | 13.56 ± 2.62 | [7.00, 21.07] | 11.39 ± 3.68 | |||
Average Annual Rainfall (mm) | [355.00, 2938.20] | 1171.13 ± 645.62 | [400.70, 1060.00] | 692.23 ± 225.15 | [165.40, 1154.20] | 557.88 ± 266.94 | |||
Average Annual Sunshine Duration (hours) | [971.10, 3119.10] | 2007.59 ± 431.26 | [973.60, 2586.10] | 1677.91 ± 528.62 | [1455.50, 3269.70] | 2219.99 ± 358.17 | |||
PM 2.5(μg/m3) | [10.39, 78.93] | 43.96 ± 17.22 | [8.00, 49.77] | 31.48 ± 15.02 | [10.00, 41.23] | 29.79 ± 8.86 |
Variable | Altitude < 500 meters (n = 2 449) | Altitude 500-1000 meters (n = 273) | Altitude 1000-2000 meters (n = 758) | Altitude 4000-6000 meters (n = 4 156) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 95] | 44.48 ± 15.39 | [18, 84] | 45.54 ± 14.54 | [18, 83] | 43.65 ± 14.56 | [18, 96] | 43.78 ± 14.97 | ||||
Gender | ||||||||||||
Male | 1239(50.59) | 140(51.28) | 396(52.24) | 2267(54.55) | ||||||||
Female | 1210(49.41) | 133(48.72) | 362(47.76) | 1889(45.45) | ||||||||
Years of Education | [0, 19] | 6.64 ± 5.10 | [0, 16] | 5.20 ± 4.83 | [0, 16] | 5.06 ± 5.04 | [0, 18] | 6.12 ± 5.47 | ||||
Marital Status | ||||||||||||
Married | 464(18.95) | 42(15.38) | 147(19.39) | 471(11.33) | ||||||||
Unmarried/Divorced/Widowed | 1985(81.05) | 231(84.62) | 611(80.61) | 3685(88.67) | ||||||||
Depression Score | [0, 21] | 6.58 ± 3.22 | [0, 18] | 6.70 ± 3.42 | [0, 18] | 6.88 ± 3.26 | [0, 25] | 7.91 ± 5.90 | ||||
Per Capita GDP (10,000 RMB) | [2.22, 14.19] | 5.78 ± 3.26 | [2.16, 7.70] | 3.60 ± 1.53 | [1.19, 8.18] | 2.82 ± 1.65 | [1.52, 4.47] | 1.53 ± 0.14 | ||||
Hospital Beds per 10,000 People | [22.02, 138.64] | 52.21 ± 20.27 | [37.77, 93.28] | 55.58 ± 15.67 | [27.70, 65.11] | 45.67 ± 11.77 | [51.90, 58.30] | 51.92 ± 0.36 | ||||
Average Annual Temperature (℃) | [1.59, 23.69] | 15.67 ± 4.56 | [8.96, 17.40] | 14.29 ± 2.24 | [7.00, 21.07] | 11.89 ± 3.76 | [4.26, 17.79] | 4.30 ± 0.68 | ||||
Average Annual Rainfall (mm) | [355.00, 2938.20] | 1254.77 ± 680.81 | [400.70, 1060.00] | 720.89 ± 236.98 | [165.40, 1154.20] | 588.68 ± 297.17 | [428.10, 1546.10] | 431.17 ± 56.11 | ||||
Average Annual Sunshine Duration (hours) | [971.10, 3119.10] | 1980.30 ± 448.62 | [973.60, 2586.10] | 1557.26 ± 485.53 | [1455.50, 3269.70] | 2189.50 ± 349.55 | [1356.40, 2491.10] | 2483.49 ± 55.36 | ||||
PM 2.5(μg/m3) | [10.39, 78.93] | 42.91 ± 16.60 | [8.00, 49.77] | 31.94 ± 15.47 | [10.00, 41.23] | 28.29 ± 9.87 | [26.00, 40.42] | 26.04 ± 0.75 |
Supplementary Table 2-2. Basic Information of the PSM Mediation Model Analysis Database for Study 2 (N = 7 636)
Variable | Altitude < 500 meters (n = 2 449) | Altitude 500-1000 meters (n = 273) | Altitude 1000-2000 meters (n = 758) | Altitude 4000-6000 meters (n = 4 156) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 95] | 44.48 ± 15.39 | [18, 84] | 45.54 ± 14.54 | [18, 83] | 43.65 ± 14.56 | [18, 96] | 43.78 ± 14.97 | ||||
Gender | ||||||||||||
Male | 1239(50.59) | 140(51.28) | 396(52.24) | 2267(54.55) | ||||||||
Female | 1210(49.41) | 133(48.72) | 362(47.76) | 1889(45.45) | ||||||||
Years of Education | [0, 19] | 6.64 ± 5.10 | [0, 16] | 5.20 ± 4.83 | [0, 16] | 5.06 ± 5.04 | [0, 18] | 6.12 ± 5.47 | ||||
Marital Status | ||||||||||||
Married | 464(18.95) | 42(15.38) | 147(19.39) | 471(11.33) | ||||||||
Unmarried/Divorced/Widowed | 1985(81.05) | 231(84.62) | 611(80.61) | 3685(88.67) | ||||||||
Depression Score | [0, 21] | 6.58 ± 3.22 | [0, 18] | 6.70 ± 3.42 | [0, 18] | 6.88 ± 3.26 | [0, 25] | 7.91 ± 5.90 | ||||
Per Capita GDP (10,000 RMB) | [2.22, 14.19] | 5.78 ± 3.26 | [2.16, 7.70] | 3.60 ± 1.53 | [1.19, 8.18] | 2.82 ± 1.65 | [1.52, 4.47] | 1.53 ± 0.14 | ||||
Hospital Beds per 10,000 People | [22.02, 138.64] | 52.21 ± 20.27 | [37.77, 93.28] | 55.58 ± 15.67 | [27.70, 65.11] | 45.67 ± 11.77 | [51.90, 58.30] | 51.92 ± 0.36 | ||||
Average Annual Temperature (℃) | [1.59, 23.69] | 15.67 ± 4.56 | [8.96, 17.40] | 14.29 ± 2.24 | [7.00, 21.07] | 11.89 ± 3.76 | [4.26, 17.79] | 4.30 ± 0.68 | ||||
Average Annual Rainfall (mm) | [355.00, 2938.20] | 1254.77 ± 680.81 | [400.70, 1060.00] | 720.89 ± 236.98 | [165.40, 1154.20] | 588.68 ± 297.17 | [428.10, 1546.10] | 431.17 ± 56.11 | ||||
Average Annual Sunshine Duration (hours) | [971.10, 3119.10] | 1980.30 ± 448.62 | [973.60, 2586.10] | 1557.26 ± 485.53 | [1455.50, 3269.70] | 2189.50 ± 349.55 | [1356.40, 2491.10] | 2483.49 ± 55.36 | ||||
PM 2.5(μg/m3) | [10.39, 78.93] | 42.91 ± 16.60 | [8.00, 49.77] | 31.94 ± 15.47 | [10.00, 41.23] | 28.29 ± 9.87 | [26.00, 40.42] | 26.04 ± 0.75 |
Variable | Altitude < 500meters (n = 10 022) | Altitude 500~1000 meters (n = 1 585) | Altitude 1000~2000 meters (n = 1 560) | Altitude 2000~4000 meters (n = 253) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [19, 101] | 60.43 ± 10.16 | [39, 87] | 58.92 ± 9.73 | [26, 93] | 58.17 ± 9.99 | [30, 94] | 57.25 ± 9.20 | ||||
Gender | ||||||||||||
Male | 4573(45.63) | 749(47.26) | 743(47.63) | 109(43.08) | ||||||||
Female | 5449(54.37) | 836(52.74) | 817(52.37) | 144(56.92) | ||||||||
Educational Level | ||||||||||||
Below Primary School | 4435(44.25) | 619(39.05) | 586(37.56) | 89(35.18) | ||||||||
Primary School and Above | 5587(55.75) | 966(60.95) | 974(62.44) | 164(64.82) | ||||||||
Marital Status | ||||||||||||
Married | 8735(87.16) | 1399(88.26) | 1340(85.90) | 209(82.61) | ||||||||
Unmarried/Divorced/Widowed | 1287(12.84) | 186(11.74) | 220(14.10) | 44(17.39) | ||||||||
Urban/Rural | ||||||||||||
Urban | 2691(26.85) | 367(23.15) | 392(25.13) | 11(4.35) | ||||||||
Rural | 7331(73.15) | 1218(76.85) | 1168(74.87) | 242(95.65) | ||||||||
Chronic Illness | ||||||||||||
Yes | 6083(60.70) | 1023(64.54) | 954(61.15) | 172(67.98) | ||||||||
No | 3939(39.30) | 562(35.46) | 606(38.85) | 81(32.02) | ||||||||
Smoking Habit | ||||||||||||
Yes | 3485(34.77) | 613(38.68) | 558(35.77) | 83(32.81) | ||||||||
No | 6537(65.23) | 972(61.32) | 1002(64.23) | 170(67.19) | ||||||||
Drinking Habit | ||||||||||||
Yes | 3579(35.71) | 522(32.93) | 479(30.71) | 84(33.20) | ||||||||
No | 6443(64.29) | 1063(67.07) | 1081(69.29) | 169(66.80) | ||||||||
Depression Score | [10, 40] | 17.41 ± 6.19 | [10, 40] | 18.29 ± 6.65 | [10, 40] | 19.11 ± 6.96 | [10, 37] | 20.89 ± 6.84 | ||||
C-Reactive Protein (mg/l) | [0.10, 132.90] | 2.66 ± 5.66 | [0.10, 104.20] | 2.75 ± 5.81 | [0.10, 150.20] | 3.13 ± 7.77 | [0.10, 44.90] | 2.84 ± 4.80 | ||||
Per Capita GDP (10,000 RMB) | [1.61, 15.80] | 4.92 ± 2.61 | [2.02, 7.43] | 4.34 ± 1.71 | [1.10, 10.15] | 3.35 ± 2.11 | [2.07, 2.65] | 2.40 ± 0.27 | ||||
Hospital Beds per 10,000 People | [23.27, 91.69] | 46.05 ± 14.84 | [34.23, 88.44] | 52.64 ± 14.08 | [32.73, 92.48] | 53.20 ± 16.22 | [31.07, 44.00] | 35.08 ± 4.53 | ||||
Average Annual Temperature (℃) | [4.00, 24.00] | 15.98 ± 3.83 | [8.00, 18.10] | 13.92 ± 2.92 | [1.50, 18.10] | 12.71 ± 4.50 | [6.70, 14.20] | 10.03 ± 3.21 | ||||
Average Annual Rainfall (mm) | [328.40, 2471.90] | 1122.86 ± 587.07 | [350.00, 1648.20] | 649.47 ± 304.17 | [98.50, 1217.00] | 715.68 ± 390.84 | [298.80, 897.30] | 579.43 ± 292.10 | ||||
Average Annual Sunshine Duration (hours) | [971.10, 2898.80] | 1789.36 ± 444.71 | [840.20, 2949.90] | 1848.89 ± 683.82 | [1645.30, 3201.60] | 2453.32 ± 434.87 | [2475.20, 2559.70] | 2518.90 ± 33.88 | ||||
PM 2.5(μg/m3) | [18.07, 87.35] | 50.27 ± 17.81 | [9.38, 60.50] | 31.31 ± 16.04 | [10.00, 41.38] | 21.87 ± 7.65 | [10.98, 46.00] | 32.44 ± 16.50 |
Supplementary Table 2-3. Basic Information of the C-Reactive Protein Mediation Model Analysis Database for Study 2 (N = 13 420)
Variable | Altitude < 500meters (n = 10 022) | Altitude 500~1000 meters (n = 1 585) | Altitude 1000~2000 meters (n = 1 560) | Altitude 2000~4000 meters (n = 253) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [19, 101] | 60.43 ± 10.16 | [39, 87] | 58.92 ± 9.73 | [26, 93] | 58.17 ± 9.99 | [30, 94] | 57.25 ± 9.20 | ||||
Gender | ||||||||||||
Male | 4573(45.63) | 749(47.26) | 743(47.63) | 109(43.08) | ||||||||
Female | 5449(54.37) | 836(52.74) | 817(52.37) | 144(56.92) | ||||||||
Educational Level | ||||||||||||
Below Primary School | 4435(44.25) | 619(39.05) | 586(37.56) | 89(35.18) | ||||||||
Primary School and Above | 5587(55.75) | 966(60.95) | 974(62.44) | 164(64.82) | ||||||||
Marital Status | ||||||||||||
Married | 8735(87.16) | 1399(88.26) | 1340(85.90) | 209(82.61) | ||||||||
Unmarried/Divorced/Widowed | 1287(12.84) | 186(11.74) | 220(14.10) | 44(17.39) | ||||||||
Urban/Rural | ||||||||||||
Urban | 2691(26.85) | 367(23.15) | 392(25.13) | 11(4.35) | ||||||||
Rural | 7331(73.15) | 1218(76.85) | 1168(74.87) | 242(95.65) | ||||||||
Chronic Illness | ||||||||||||
Yes | 6083(60.70) | 1023(64.54) | 954(61.15) | 172(67.98) | ||||||||
No | 3939(39.30) | 562(35.46) | 606(38.85) | 81(32.02) | ||||||||
Smoking Habit | ||||||||||||
Yes | 3485(34.77) | 613(38.68) | 558(35.77) | 83(32.81) | ||||||||
No | 6537(65.23) | 972(61.32) | 1002(64.23) | 170(67.19) | ||||||||
Drinking Habit | ||||||||||||
Yes | 3579(35.71) | 522(32.93) | 479(30.71) | 84(33.20) | ||||||||
No | 6443(64.29) | 1063(67.07) | 1081(69.29) | 169(66.80) | ||||||||
Depression Score | [10, 40] | 17.41 ± 6.19 | [10, 40] | 18.29 ± 6.65 | [10, 40] | 19.11 ± 6.96 | [10, 37] | 20.89 ± 6.84 | ||||
C-Reactive Protein (mg/l) | [0.10, 132.90] | 2.66 ± 5.66 | [0.10, 104.20] | 2.75 ± 5.81 | [0.10, 150.20] | 3.13 ± 7.77 | [0.10, 44.90] | 2.84 ± 4.80 | ||||
Per Capita GDP (10,000 RMB) | [1.61, 15.80] | 4.92 ± 2.61 | [2.02, 7.43] | 4.34 ± 1.71 | [1.10, 10.15] | 3.35 ± 2.11 | [2.07, 2.65] | 2.40 ± 0.27 | ||||
Hospital Beds per 10,000 People | [23.27, 91.69] | 46.05 ± 14.84 | [34.23, 88.44] | 52.64 ± 14.08 | [32.73, 92.48] | 53.20 ± 16.22 | [31.07, 44.00] | 35.08 ± 4.53 | ||||
Average Annual Temperature (℃) | [4.00, 24.00] | 15.98 ± 3.83 | [8.00, 18.10] | 13.92 ± 2.92 | [1.50, 18.10] | 12.71 ± 4.50 | [6.70, 14.20] | 10.03 ± 3.21 | ||||
Average Annual Rainfall (mm) | [328.40, 2471.90] | 1122.86 ± 587.07 | [350.00, 1648.20] | 649.47 ± 304.17 | [98.50, 1217.00] | 715.68 ± 390.84 | [298.80, 897.30] | 579.43 ± 292.10 | ||||
Average Annual Sunshine Duration (hours) | [971.10, 2898.80] | 1789.36 ± 444.71 | [840.20, 2949.90] | 1848.89 ± 683.82 | [1645.30, 3201.60] | 2453.32 ± 434.87 | [2475.20, 2559.70] | 2518.90 ± 33.88 | ||||
PM 2.5(μg/m3) | [18.07, 87.35] | 50.27 ± 17.81 | [9.38, 60.50] | 31.31 ± 16.04 | [10.00, 41.38] | 21.87 ± 7.65 | [10.98, 46.00] | 32.44 ± 16.50 |
Variable | Altitude < 500 meters (n = 23 258) | Altitude 500~1000 meters (n = 2 449) | Altitude 1000~2000 meters (n = 6 076) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 96] | 47.04 ± 16.59 | [18, 90] | 46.35 ± 16.34 | [18, 98] | 44.85 ± 15.89 | |||
Gender | |||||||||
Male | 11590(49.83) | 1215(49.61) | 3083(50.74) | ||||||
Female | 11668(50.17) | 1234(50.39) | 2993(49.26) | ||||||
Years of Education | [0, 22] | 8.21 ± 4.71 | [0, 21] | 7.50 ± 4.75 | [0, 19] | 6.47 ± 5.11 | |||
Marital Status | |||||||||
Married | 18715(80.47) | 1982(80.93) | 4809(79.15) | ||||||
Unmarried/Divorced/Widowed | 4543(19.53) | 467(19.07) | 1267(20.85) | ||||||
Urban/Rural | |||||||||
Urban | 13040(56.07) | 988(40.34) | 1823(30.00) | ||||||
Rural | 10218(43.93) | 1461(59.66) | 4253(70.00) | ||||||
Employment Status | |||||||||
Employed | 16328(70.20) | 1797(73.38) | 4708(77.49) | ||||||
Unemployed | 6930(29.80) | 652(26.62) | 1368(22.51) | ||||||
Chronic Illness | |||||||||
Yes | 3804(16.36) | 374(15.27) | 1079(17.76) | ||||||
No | 19454(83.64) | 2075(84.73) | 4997(8224) | ||||||
Depression Score | [0, 24] | 4.95 ± 3.96 | [0, 24] | 5.84 ± 4.34 | [0, 24] | 5.97 ± 4.17 |
Supplementary Table 3-1. Basic Information of the CFPS2016 Analysis Database for Study 3 (N = 31 783)
Variable | Altitude < 500 meters (n = 23 258) | Altitude 500~1000 meters (n = 2 449) | Altitude 1000~2000 meters (n = 6 076) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 96] | 47.04 ± 16.59 | [18, 90] | 46.35 ± 16.34 | [18, 98] | 44.85 ± 15.89 | |||
Gender | |||||||||
Male | 11590(49.83) | 1215(49.61) | 3083(50.74) | ||||||
Female | 11668(50.17) | 1234(50.39) | 2993(49.26) | ||||||
Years of Education | [0, 22] | 8.21 ± 4.71 | [0, 21] | 7.50 ± 4.75 | [0, 19] | 6.47 ± 5.11 | |||
Marital Status | |||||||||
Married | 18715(80.47) | 1982(80.93) | 4809(79.15) | ||||||
Unmarried/Divorced/Widowed | 4543(19.53) | 467(19.07) | 1267(20.85) | ||||||
Urban/Rural | |||||||||
Urban | 13040(56.07) | 988(40.34) | 1823(30.00) | ||||||
Rural | 10218(43.93) | 1461(59.66) | 4253(70.00) | ||||||
Employment Status | |||||||||
Employed | 16328(70.20) | 1797(73.38) | 4708(77.49) | ||||||
Unemployed | 6930(29.80) | 652(26.62) | 1368(22.51) | ||||||
Chronic Illness | |||||||||
Yes | 3804(16.36) | 374(15.27) | 1079(17.76) | ||||||
No | 19454(83.64) | 2075(84.73) | 4997(8224) | ||||||
Depression Score | [0, 24] | 4.95 ± 3.96 | [0, 24] | 5.84 ± 4.34 | [0, 24] | 5.97 ± 4.17 |
Variable | Altitude < 500 meters (n = 20 841) | Altitude 500~1000 meters (n = 2 372) | Altitude 1000~2000 meters (n = 5 757) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 96] | 48.05 ± 16.55 | [18, 92] | 47.51 ± 16.40 | [18, 87] | 45.34 ± 15.77 | |||
Gender | |||||||||
Male | 10268(49.27) | 1185(49.96) | 2914(50.62) | ||||||
Female | 10573(50.73) | 1187(50.04) | 2843(49.38) | ||||||
Years of Education | [0, 23] | 8.43 ± 4.72 | [0, 21] | 7.63 ± 4.83 | [0, 22] | 6.70 ± 5.16 | |||
Marital Status | |||||||||
Married | 16794(80.58) | 1923(81.07) | 4571(79.40) | ||||||
Unmarried/Divorced/Widowed | 4047(19.42) | 449(18.93) | 1186(20.60) | ||||||
Urban/Rural | |||||||||
Urban | 12023(57.69) | 947(39.92) | 1909(33.16) | ||||||
Rural | 8818(42.31) | 1425(60.08) | 3848(66.84) | ||||||
Employment Status | |||||||||
Employed | 14822(71.12) | 1765(74.41) | 4494(78.06) | ||||||
Unemployed | 6019(28.88) | 607(25.59) | 1263(21.94) | ||||||
Chronic Illness | |||||||||
Yes | 3519(16.89) | 367(15.48) | 1048(18.20) | ||||||
No | 17320(83.11) | 2004(84.52) | 4709(81.80) | ||||||
Depression Score | [0, 24] | 5.31 ± 3.94 | [0, 23] | 6.07 ± 4.07 | [0, 24] | 6.44 ± 4.14 |
Supplementary Table 3-2. Basic Information of the CFPS2018 Analysis Database for Study 3 (N = 28 970)
Variable | Altitude < 500 meters (n = 20 841) | Altitude 500~1000 meters (n = 2 372) | Altitude 1000~2000 meters (n = 5 757) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 96] | 48.05 ± 16.55 | [18, 92] | 47.51 ± 16.40 | [18, 87] | 45.34 ± 15.77 | |||
Gender | |||||||||
Male | 10268(49.27) | 1185(49.96) | 2914(50.62) | ||||||
Female | 10573(50.73) | 1187(50.04) | 2843(49.38) | ||||||
Years of Education | [0, 23] | 8.43 ± 4.72 | [0, 21] | 7.63 ± 4.83 | [0, 22] | 6.70 ± 5.16 | |||
Marital Status | |||||||||
Married | 16794(80.58) | 1923(81.07) | 4571(79.40) | ||||||
Unmarried/Divorced/Widowed | 4047(19.42) | 449(18.93) | 1186(20.60) | ||||||
Urban/Rural | |||||||||
Urban | 12023(57.69) | 947(39.92) | 1909(33.16) | ||||||
Rural | 8818(42.31) | 1425(60.08) | 3848(66.84) | ||||||
Employment Status | |||||||||
Employed | 14822(71.12) | 1765(74.41) | 4494(78.06) | ||||||
Unemployed | 6019(28.88) | 607(25.59) | 1263(21.94) | ||||||
Chronic Illness | |||||||||
Yes | 3519(16.89) | 367(15.48) | 1048(18.20) | ||||||
No | 17320(83.11) | 2004(84.52) | 4709(81.80) | ||||||
Depression Score | [0, 24] | 5.31 ± 3.94 | [0, 23] | 6.07 ± 4.07 | [0, 24] | 6.44 ± 4.14 |
Variable | Altitude < 500meters (n = 15 191) | Altitude500~1000meters (n = 1 764) | Altitude1000~2000meters (n = 4 631) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 95] | 46.45 ± 16.26 | [18, 92] | 46.43 ± 16.02 | [18, 93] | 44.21 ± 15.53 | |||
Gender | |||||||||
Male | 7592(49.98) | 866(49.09) | 2397(51.76) | ||||||
Female | 7599(50.02) | 898(50.91) | 2234(48.24) | ||||||
Years of Education | [0, 24] | 9.35 ± 4.62 | [0, 23] | 8.83 ± 4.78 | [0, 22] | 7.85 ± 5.22 | |||
Marital Status | |||||||||
Married | 11974(78.82) | 1384(78.46) | 3635(78.49) | ||||||
Unmarried/Divorced/Widowed | 3217(21.18) | 380(21.54) | 996(21.51) | ||||||
Urban/Rural | |||||||||
Urban | 8777(57.78) | 741(42.01) | 1725(37.25) | ||||||
Rural | 6414(42.22) | 1023(57.99) | 2906(62.75) | ||||||
Employment Status | |||||||||
Employed | 10957(72.12) | 1311(74.32) | 3600(77.74) | ||||||
Unemployed | 4234(27.87) | 453(25.68) | 1031(22.26) | ||||||
Chronic Illness | |||||||||
Yes | 2280(15.01) | 215(12.19) | 714(15.42) | ||||||
No | 12911(84.99) | 1549(87.81) | 3917(84.58) | ||||||
Depression Score | [0, 24] | 5.35 ± 4.02 | [0, 24] | 6.00 ± 4.21 | [0, 24] | 6.10 ± 4.19 |
Supplementary Table 3-3. Basic Information of the CFPS2020 Analysis Database for Study 3 (N = 21 586)
Variable | Altitude < 500meters (n = 15 191) | Altitude500~1000meters (n = 1 764) | Altitude1000~2000meters (n = 4 631) | ||||||
---|---|---|---|---|---|---|---|---|---|
[min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | [min, max] | M ± SD | n (%) | |
Age | [18, 95] | 46.45 ± 16.26 | [18, 92] | 46.43 ± 16.02 | [18, 93] | 44.21 ± 15.53 | |||
Gender | |||||||||
Male | 7592(49.98) | 866(49.09) | 2397(51.76) | ||||||
Female | 7599(50.02) | 898(50.91) | 2234(48.24) | ||||||
Years of Education | [0, 24] | 9.35 ± 4.62 | [0, 23] | 8.83 ± 4.78 | [0, 22] | 7.85 ± 5.22 | |||
Marital Status | |||||||||
Married | 11974(78.82) | 1384(78.46) | 3635(78.49) | ||||||
Unmarried/Divorced/Widowed | 3217(21.18) | 380(21.54) | 996(21.51) | ||||||
Urban/Rural | |||||||||
Urban | 8777(57.78) | 741(42.01) | 1725(37.25) | ||||||
Rural | 6414(42.22) | 1023(57.99) | 2906(62.75) | ||||||
Employment Status | |||||||||
Employed | 10957(72.12) | 1311(74.32) | 3600(77.74) | ||||||
Unemployed | 4234(27.87) | 453(25.68) | 1031(22.26) | ||||||
Chronic Illness | |||||||||
Yes | 2280(15.01) | 215(12.19) | 714(15.42) | ||||||
No | 12911(84.99) | 1549(87.81) | 3917(84.58) | ||||||
Depression Score | [0, 24] | 5.35 ± 4.02 | [0, 24] | 6.00 ± 4.21 | [0, 24] | 6.10 ± 4.19 |
[1] | Aboouf, M. A., Thiersch, M., Soliz, J., Gassmann, M., & Gasser, E. M. S. (2023). The brain at high altitude: From molecular signaling to cognitive performance. International Journal of Molecular Sciences, 24(12), 1-25. |
[2] |
Andresen, E. M., Malmgren, J. A., Carter, W. B., & Patrick, D. L. (1994). Screening for depression in well older adults: Evaluation of a short-form of the CES-D. American Journal of Preventive Medicine, 10(2), 77-84.
pmid: 8037935 |
[3] | Aretz, B. (2022). The short- and long-term effects of the Great Recession on late-life depression in Europe: The role of area deprivation. Social Science & Medicine, 294, 1-10. |
[4] | Arnau-Soler, A., Adams, M. J., Clarke, T. K., MacIntyre, D. J., Navrady, L., Generation Scotland,... Thomson, P. A. (2019). A validation of the diathesis-stress model for depression in Generation Scotland. Translational Psychiatry, 9(1), 1-10. |
[5] |
Arregui, A., Cabrera, J., Leon-Velarde, F., Paredes, S., Viscarra, D., & Arbaiza, D. (1991). High prevalence of migraine in a high-altitude population. Neurology, 41(10), 1668-1669.
pmid: 1922814 |
[6] | Ascone, L., Mascherek, A., Weber, S., Fischer, D., Augustin, J., Cheng, B. S.,... Kühn, S. (2024). Subjective evaluation of home environment and levels of self-reported depression in middle to old age: Results from the HCHS study. Journal of Clinical Psychology, 80(5), 1115-1129. |
[7] | Austin, P. C. (2009). Some methods of propensity-score matching had superior performance to others: Results of an empirical investigation and monte carlo simulations. Biometrical Journal, 51(1), 171-184. |
[8] | Bailey, D. M., Brugniaux, J. V., Filipponi, T., Marley, C. J., Stacey, B., Soria, R.,... Sartori, C. (2019). Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. Journal of Physiology, 597(2), 611-629. |
[9] |
Barnes, J., Mondelli, V., & Pariante, C. M. (2017). Genetic contributions of inflammation to depression. Neuropsychopharmacology, 42(1), 81-98.
doi: 10.1038/npp.2016.169 pmid: 27555379 |
[10] | Baygutalp, F., Buzdağlı, Y., Ozan, M., Koz, M., Kılıç Baygutalp, N., & Atasever, G. (2021). Impacts of different intensities of exercise on inflammation and hypoxia markers in low altitude. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1-9. |
[11] | Berry, H. L., Bowen, K., & Kjellstrom, T. (2010). Climate change and mental health: A causal pathways framework. International Journal of Public Health, 55(2), 123-132. |
[12] | Bian, S. Z., Zhang, L. P., Jin, J., Zhang, J. H., Li, Q. N., Yu, J.,... Huang, L. (2019). The onset of sleep disturbances and their associations with anxiety after acute high-altitude exposure at 3700 m. Translational Psychiatry, 9(1), 1-10. |
[13] | Briggs, R., Carey, D., O'Halloran, A. M., Kenny, R. A., & Kennelly, S. P. (2018). Validation of the 8-item Centre for Epidemiological Studies Depression Scale in a cohort of community-dwelling older people: Data from The Irish Longitudinal Study on Ageing (TILDA). European Geriatric Medicine, 9(1), 121-126. |
[14] | Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University Press. |
[15] |
Cao, Y., Li, G. F., Xue, J. S., Zhang, G. J., Gao, S. S., Huang, Y. L., & Zhu, A. Q. (2021). Depression and related factors in patients with Parkinson's disease at high altitude. Neuropsychiatric Disease and Treatment, 17, 1353-1362.
doi: 10.2147/NDT.S300596 pmid: 33986595 |
[16] | Cheng, Y., & Zhao, J. (2019). Empirical study on the relevance between employment stress and social adaptation ability of ethnic youth of in northwest China. Journal of North Minzu University (Philosophy and Social Science), (3), 139-143. |
[17] |
Colodro-Conde, L., Couvy-Duchesne, B., Zhu, G., Coventry, W. L., Byrne, E. M., Gordon, S.,... Martin, N. G. (2018). A direct test of the diathesis-stress model for depression. Molecular psychiatry, 23(7), 1590-1596.
doi: 10.1038/mp.2017.130 pmid: 28696435 |
[18] |
Copeland, W. E., Shanahan, L., Worthman, C., Angold, A., & Costello, E. J. (2012). Cumulative depression episodes predict later C-reactive protein levels: A prospective analysis. Biological Psychiatry, 71(1), 15-21.
doi: 10.1016/j.biopsych.2011.09.023 pmid: 22047718 |
[19] | Correll, C. U., Detraux, J., De Lepeleire, J., & De Hert, M. (2015). Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry, 14(2), 119-136. |
[20] |
Dantzer, R., O'connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46-56.
doi: 10.1038/nrn2297 pmid: 18073775 |
[21] |
de Aquino Lemos, V., Antunes, H. K. M., dos Santos, R. V. T., Lira, F. S., Tufik, S., & de Mello, M. T. (2012). High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology, 49(9), 1298-1306.
doi: 10.1111/j.1469-8986.2012.01411.x pmid: 22803634 |
[22] | DelMastro, K., Hellem, T., Kim, N., Kondo, D., Sung, Y. H., & Renshaw, P. F. (2011). Incidence of major depressive episode correlates with elevation of substate region of residence. Journal of Affective Disorders, 129(1), 376-379. |
[23] | Department of Urban Society and Economic Statistics National Bureau of Statistics of China. (2020). China City Statistical Yearbook. Beijing: China Statistics Press. |
[24] |
Dijkstra-Kersten, S. M. A., Biesheuvel-Leliefeld, K. E. M., van der Wouden, J. C., Penninx, B. W. J. H., & van Marwijk, H. W. J. (2015). Associations of financial strain and income with depressive and anxiety disorders. Journal of Epidemiology and Community Health, 69(7), 660-665.
doi: 10.1136/jech-2014-205088 pmid: 25636322 |
[25] |
Domènech-Abella, J., Mundó, J., Leonardi, M., Chatterji, S., Tobiasz-Adamczyk, B., Koskinen, S.,... Haro, J. M. (2018). The association between socioeconomic status and depression among older adults in Finland, Poland and Spain: A comparative cross-sectional study of distinct measures and pathways. Journal of Affective Disorders, 241, 311-318.
doi: S0165-0327(18)30703-1 pmid: 30142590 |
[26] | Du, X. R., & Tang, J. J. (2012). Zhongguo dituji. Beijing, China: SinoMaps Press. |
[27] |
Dudek, K. A., Dion-Albert, L., Lebel, M., LeClair, K., Labrecque, S., Tuck, E.,... Menard, C. (2020). Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 3326-3336.
doi: 10.1073/pnas.1914655117 pmid: 31974313 |
[28] | Dunn, E. C., Uddin, M., Subramanian, S. V., Smoller, J. W., Galea, S., & Koenen, K. C. (2011). Research review: Gene-environment interaction research in youth depression-a systematic review with recommendations for future research. Journal of Child Psychology and Psychiatry, 52(12), 1223-1238. |
[29] |
Finkel, D., Zavala, C., Franz, C. E., Pahlen, S., Gatz, M., Pedersen, N. L.,... Whitfield, K. E. (2022). Financial strain moderates genetic influences on self-rated health: Support for diathesis-stress model of gene-environment interplay. Biodemography and Social Biology, 67(1), 58-70.
doi: 10.1080/19485565.2022.2037069 pmid: 35156881 |
[30] | Frank, P., Jokela, M., Batty, D., Cadar, D., Steptoe, A., & Kivimäki, M. (2021). Association between systemic inflammation and individual symptoms of depression: A pooled analysis of 15 population-based cohort studies. American Journal of Psychiatry, 178(12), 1107-1118. |
[31] |
Freedland, K. E., Skala, J. A., Steinmeyer, B. C., Carney, R. M., & Rich, M. W. (2021). Effects of depression on heart failure self-Care. Journal of Cardiac Failure, 27(5), 522-532.
doi: 10.1016/j.cardfail.2020.12.015 pmid: 33358958 |
[32] | Gao, C., Ciren, J., Wang, D., Zhang, Z., Ge, R., & Yan, L. (2023). Assessment of psychological and social fitness in healthy adults permanently living at very high altitude. International Journal of Environmental Research and Public Health, 20(3), 1-10. |
[33] |
Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11(9), 607-615.
doi: 10.1038/nri3041 pmid: 21818123 |
[34] | Hu, S. L., Xiong, W., Dai, Z. Q., Zhao, H. L., & Feng, H. (2016). Cognitive changes during prolonged stay at high altitude and Its correlation with C-reactive protein. Plos One, 11(1), 1-12. |
[35] | Huerta-Sánchez, E., Jin, X., Asan, Bianba, Z., Peter, B. M., Vinckenbosch, N., … Nielsen, R. (2014). Altitude adaptation in Tibetans caused by introgression of denisovan-like DNA. Nature, 512(7513), 194-197. |
[36] | Hüfner, K., Sperner-Unterweger, B., & Brugger, H. (2019). Going to altitude with a preexisting psychiatric condition. High Altitude Medicine & Biology, 20(3), 207-214. |
[37] | Institute of Health Metrics and Evaluation. (2021). Global Health Data Exchange (GHDx). Available online at: https://vizhub.healthdata.org/gbd-results/?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b |
[38] | Ishikawa, M., Yamanaka, G., Takaoka, M., Ogasawara, T., & Sakura, H. (2019). Depression among elderly residents in the high-altitude himalayan regions. Japanese Journal of Psychosomatic Medicine, 59(4), 315-320. |
[39] | Jin, Y. Z., Zhu, D. W., & He, P. (2020). Social causation or social selection? The longitudinal interrelationship between poverty and depressive symptoms in China. Social Science & Medicine, 249, 1-28. |
[40] |
Jorgensen, D., White, G. E., Sekikawa, A., & Gianaros, P. (2018). Higher dietary inflammation is associated with increased odds of depression independent of framingham risk score in the National Health and Nutrition Examination Survey. Nutrition Research, 54, 23-32.
doi: S0271-5317(17)31117-X pmid: 29914664 |
[41] | Julian, C. G., & Moore, L. G. (2019). Human genetic adaptation to high altitude: Evidence from the Andes. Genes, 10(2), 1-21. |
[42] | Kessler, R. C. (2012). The costs of depression. Psychiatric Clinics of North America, 35(1), 1-14. |
[43] |
Keyes, K. M., Cheslack-Postava, K., Westhoff, C., Heim, C. M., Haloossim, M., Walsh, K., & Koenen, K. (2013). Association of hormonal contraceptive use with reduced levels of depressive symptoms: A national study of sexually active women in the United States. American Journal of Epidemiology, 178(9), 1378-1388.
doi: 10.1093/aje/kwt188 pmid: 24043440 |
[44] |
Kim, H. J., Kim, C. J., Ahn, J. A., & Juon, H. S. (2022). Prevalence and correlates of depression among South Korean older adults living in relative poverty. Archives of Psychiatric Nursing, 38, 1-5.
doi: 10.1016/j.apnu.2022.01.002 pmid: 35461641 |
[45] |
Kious, B. M., Bakian, A., Zhao, J., Mickey, B., Guille, C., Renshaw, P., & Sen, S. (2019). Altitude and risk of depression and anxiety: Findings from the intern health study. International Review of Psychiatry, 31(7-8), 637-645.
doi: 10.1080/09540261.2019.1586324 pmid: 31084447 |
[46] | Kwong, A. S. F., López-López, J. A., Hammerton, G., Manley, D., Timpson, N. J., Leckie, G., & Pearson, R. M. (2019). Genetic and environmental risk factors associated with trajectories of depression symptoms from adolescence to young adulthood. JAMA Network Open, 2(6), 1-14. |
[47] |
Lawrance, E. L., Thompson, R., Newberry Le Vay, J., Page, L., & Jennings, N. (2022). The impact of climate change on mental health and emotional wellbeing: A narrative review of current evidence, and its implications. International Review of Psychiatry, 34(5), 443-498.
doi: 10.1080/09540261.2022.2128725 pmid: 36165756 |
[48] | Li, B. Y., Pan, B. T., & Han, J. F. (2008). Basic terrestrial geomorphological types in China and their circum scriptions. Quaternary Sciences, 28(4), 535-543. |
[49] | Li, Z. Y., Wei, A. N., Palanivel, V., & Jackson, J. C. (2021). A data-driven analysis of sociocultural, ecological, and economic correlates of depression across nations. Journal of Cross-Cultural Psychology, 52(8-9), 822-843. |
[50] | Lieberman, P., Protopapas, A., Reed, E., Youngs, J. W., & Kanki, B. G. (1994). Cognitive defects at altitude. Nature, 372(6504), 325-325. |
[51] |
Liu, Q. Q., He, H. R., Yang, J., Feng, X. J., Zhao, F. F., & Lyu, J. (2020). Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. Journal of Psychiatric Research, 126, 134-140.
doi: S0022-3956(19)30738-1 pmid: 31439359 |
[52] |
Lu, J., Xu, X. F., Huang, Y. Q., Li, T., Ma, C., Xu, G. M.,... Zhang, N. (2021). Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. Lancet Psychiatry, 8(11), 981-990.
doi: 10.1016/S2215-0366(21)00251-0 pmid: 34559991 |
[53] |
Lund, C., & Cois, A. (2018). Simultaneous social causation and social drift: Longitudinal analysis of depression and poverty in South Africa. Journal of Affective Disorders, 229, 396-402.
doi: S0165-0327(17)32023-2 pmid: 29331699 |
[54] |
Ma, G. C., Tian, Y., Zi, J., Hu, Y. F., Li, H. Q., Zeng, Y. X., Luo, H., & Xiong, J. Y. (2024). Systemic inflammation mediates the association between environmental tobacco smoke and depressive symptoms: A cross-sectional study of NHANES 2009-2018. Journal of Affective Disorders, 348, 152-159.
doi: 10.1016/j.jad.2023.12.060 pmid: 38158048 |
[55] | Ma, H. J. (2011). The analysis of the low-income youth groups in ethnic regions - Taking Xining for example. Qinghai Journal of Ethnology, (3), 42-48. |
[56] |
Maes, M., Bosmans, E., De Jongh, R., Kenis, G., Vandoolaeghe, E., & Neels, H. (1997). Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine, 9(11), 853-858.
doi: 10.1006/cyto.1997.0238 pmid: 9367546 |
[57] | Mairbäurl, H., Gassmann, M., & Muckenthaler, M. U. (2020). Geographical ancestry affects normal hemoglobin values in high-altitude residents. Journal of Applied Physiology, 129(6), 1451-1459. |
[58] |
Malhi, G. S., & Mann, J. J. (2018). Depression. Lancet, 392(10161), 2299-2312.
doi: S0140-6736(18)31948-2 pmid: 30396512 |
[59] |
Matosin, N., Halldorsdottir, T., & Binder, E. B. (2018). Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 model. Biological Psychiatry, 83(10), 821-830.
doi: S0006-3223(18)30069-6 pmid: 29573791 |
[60] | Monroe, S. M., & Harkness, K. L. (2022). Major depression and its recurrences: Life course matters. Annual Review of Clinical Psychology, 18, 329-357. |
[61] |
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110(3), 406-425.
doi: 10.1037/0033-2909.110.3.406 pmid: 1758917 |
[62] |
Mulinari, S. (2012). Monoamine theories of depression: Historical impact on biomedical research. Journal of the History of the Neurosciences, 21(4), 366-392.
doi: 10.1080/0964704X.2011.623917 pmid: 22947380 |
[63] | National Bureau of Statistics of China. (2020). China Statistical Yearbook. Available online at: https://www.stats.gov.cn/sj/ndsj/2020/indexch.htm |
[64] |
Nelson, M. (1982). Psychological-testing at high-altitudes. Aviation Space and Environmental Medicine, 53(2), 122-126.
pmid: 7059327 |
[65] |
Ng, F., Berk, M., Dean, O., & Bush, A. I. (2008). Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. International Journal of Neuropsychopharmacology, 11(6), 851-876.
doi: 10.1017/S1461145707008401 pmid: 18205981 |
[66] | Nielsen, J. D., Mennies, R. J., & Olino, T. M. (2020). Application of a diathesis-stress model to the interplay of cortical structural development and emerging depression in youth. Clinical Psychology Review, 82, 1-14. |
[67] |
Osimo, E. F., Baxter, L. J., Lewis, G., Jones, P. B., & Khandaker, G. M. (2019). Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychological Medicine, 49(12), 1958-1970.
doi: 10.1017/S0033291719001454 pmid: 31258105 |
[68] | Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M.,... Schatzberg, A. F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2(1), 1-20. |
[69] | Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385-401. |
[70] |
Ray, K., Dutta, A., Panjwani, U., Thakur, L., Anand, J. P., & Kumar, S. (2011). Hypobaric hypoxia modulates brain biogenic amines and disturbs sleep architecture. Neurochemistry International, 58(1), 112-118.
doi: 10.1016/j.neuint.2010.11.003 pmid: 21075155 |
[71] | Ridley, M., Rao, G., Schilbach, F., & Patel, V. (2020). Poverty, depression, and anxiety: Causal evidence and mechanisms. Science, 370(6522), 1-14. |
[72] |
Ringwald, K. G., Pfarr, J. K., Schmitt, S., Stein, F., Brosch, K., Meller, T.,... Kircher, T. (2022). Interaction of recent stressful life events and childhood abuse on orbitofrontal grey matter volume in adults with depression. Journal of Affective Disorders, 312, 122-127.
doi: 10.1016/j.jad.2022.06.050 pmid: 35753498 |
[73] |
Risal, A., Manandhar, K., Linde, M., Steiner, T. J., & Holen, A. (2016). Anxiety and depression in Nepal: Prevalence, comorbidity and associations. BMC Psychiatry, 16, 102.
doi: 10.1186/s12888-016-0810-0 pmid: 27075664 |
[74] | Salim, S. (2014). Oxidative stress and psychological disorders. Current Neuropharmacology, 12(2), 140-147. |
[75] |
Scott, K. M., Lim, C., Al-Hamzawi, A., Alonso, J., Bruffaerts, R., Caldas-de-Almeida, J. M.,... Kessler, R. C. (2016). Association of mental disorders with subsequent chronic physical conditions: World Mental Health Surveys from 17 countries. JAMA Psychiatry, 73(2), 150-158.
doi: 10.1001/jamapsychiatry.2015.2688 pmid: 26719969 |
[76] | Semenza, G. L. (2023). Regulation of erythropoiesis by the hypoxia-inducible factor pathway: Effects of genetic and pharmacological perturbations. Annual Review of Medicine, 74, 307-319. |
[77] | Shi, Z. L., & Yang, Y. Z. (2020). Are people with higher education more likely to get depression? The effect of education on adults’ depressive symptoms. Journal of Beijing Normal University (Social Sciences), (2), 148-160. |
[78] | Sun, S. Y., Qiu, J., Ren, J. F., Zhao, X. C., Jiang, Y. C., Wang, R.,... Su, C. J. (2021). Association between leg motor restlessness and depression among Chinese males living at high-altitude: The mediating role of insomnia. Sleep and Breathing, 25(2), 979-987. |
[79] |
Tabatabaeizadeh, S. A., Abdizadeh, M. F., Meshkat, Z., Khodashenas, E., Darroudi, S., Fazeli, M.,... Ghayour-Mobarhan, M. (2018). There is an association between serum high-sensitivity C-reactive protein (hs-CRP) concentrations and depression score in adolescent girls. Psychoneuroendocrinology, 88, 102-104.
doi: S0306-4530(17)31254-4 pmid: 29197794 |
[80] | Tang, J. H., Gao, D. P., & Zou, P. F. (2018). Comparison of serum PCT and CRP levels in patients infected by different pathogenic microorganisms: A systematic review and meta-analysis. Brazilian Journal of Medical and Biological Research, 51(7), 1-8. |
[81] |
Thompson, R., Hornigold, R., Page, L., & Waite, T. (2018). Associations between high ambient temperatures and heat waves with mental health outcomes: A systematic review. Public Health, 161, 171-191.
doi: S0033-3506(18)30213-0 pmid: 30007545 |
[82] | Wang, R., Lifelines, Cohort Study, Hartman, C. A., & Snieder, H. (2023). Stress-related exposures amplify the effects of genetic susceptibility on depression and anxiety. Translational Psychiatry, 13(1), 1-10. |
[83] |
Wang, W. Z., Bian, Q., Zhao, Y., Li, X., Wang, W. W., Du, J.,... Zhao, M. (2014). Reliability and validity of the Chinese version of the Patient Health Questionnaire (PHQ-9) in the general population. General Hospital Psychiatry, 36(5), 539-544.
doi: 10.1016/j.genhosppsych.2014.05.021 pmid: 25023953 |
[84] |
Wen, Z. L., & Ye, B. J. (2014). Analyses of mediating effects: The development of methods and models. Advances in Psychological Science, 22(5), 731-745.
doi: 10.3724/SP.J.1042.2014.00731 |
[85] |
Wickham, S., Whitehead, M., Taylor-Robinson, D., & Barr, B. (2017). The effect of a transition into poverty on child and maternal mental health: A longitudinal analysis of the UK Millennium Cohort Study. Lancet Public Health, 2(3), 141-148.
doi: S2468-2667(17)30011-7 pmid: 29253387 |
[86] |
Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z. X., Pool, J. E.,... Wang, J. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329(5987), 75-78.
doi: 10.1126/science.1190371 pmid: 20595611 |
[87] |
Zaeh, S., Miele, C. H., Putcha, N., Gilman, R. H., Miranda, J. J., Bernabe-Ortiz, A.,... Checkley, W. (2016). Chronic respiratory disease and high altitude are associated with depressive symptoms in four diverse settings. International Journal of Tuberculosis and Lung Disease, 20(9), 1263-1269.
doi: 10.5588/ijtld.15.0794 pmid: 27510256 |
[88] | Zhai, S. X., & Sun, A. C. (2012). On the relationship between altitude and economy: The inspiration of altitude effects to the economic development of the Qinghai-Tibet plateau region. Qinghai Journal of Ethnology, 23(2), 152-159. |
[89] |
Zhang, X., Duan, J. P., & Ma, Z. G. (2023). A daily drought index-based dry and wet variation analyses over the Qinghai-Xizang plateau from 1979 to 2020. Plateau Meteorology, 42(4), 870-886.
doi: 10.7522/j.issn.1000-0534.2022.00093 |
[90] |
Zhang, Y. L., Zhang, J. G., Li, H. X., & Jiang, Y. Z. (2022). The relationship between socioeconomic status and depression: A systematic review and meta-analysis. Advances in Psychological Science, 30(12), 2650-2665.
doi: 10.3724/SP.J.1042.2022.02650 |
[91] | Zhao, Y. A., Liu, Q. C., Chen, Y. F., Kwok, T. C. Y., Leung, J. C. S., Feng, H., & Wong, S. Y. S. (2024). Trajectories of depressive symptom and its association with air pollution: Evidence from the Mr. OS and Ms. OS Hong Kong cohort study. BMC Geriatrics, 24(1), 1-14. |
[1] | ZHANG Xuan, LIU Ping-Ping. Familiarity promotes resident cooperation with volunteers in waste separation [J]. Acta Psychologica Sinica, 2023, 55(8): 1358-1371. |
[2] | CAO Yanmiao, FANG Huici, ZHU Xinyue, JI Linqin, ZHANG Wenxin. Associations among brain-derived neurotrophic factor gene, peer relationships, and depression across early adolescence: Dynamic genetic effects [J]. Acta Psychologica Sinica, 2023, 55(10): 1620-1636. |
[3] | ZHAO Mengxue; FENG Zhengzhi; WANG Yichao; LAI Wei; HU Feng; LIU Keyu; XIA Fan; JIANG Juan; WANG Jia; XIA Lei. Chinese military mental health at high altitude, 1993-2013: A cross-temporal meta-analysis of SCL-90 [J]. Acta Psychologica Sinica, 2017, 49(5): 653-662. |
[4] | WANG Zhongjun; LONG Lirong; LIU Lidan; HUANG Xiaohua; JIA Wenwen; LI Lu; MA Hongyu. The Career Plateau of Chinese Public Servants: Construct, #br# Measurement and Its Psychological and Behavioral Influence [J]. Acta Psychologica Sinica, 2015, 47(11): 1379-1394. |
[5] | CHEN Si-Yi,ZHOU Ren-Lai. Age-related Declines in Prospective Memory: Modulation of the Prospective and Retrospective Components [J]. , 2010, 42(06): 640-650. |
[6] | XIE Bao-Guo,LONG Li-Rong. The Effects of Career Plateau on Job Satisfaction, Organizational Commitment and Turnover Intentions [J]. , 2008, 40(08): 927-938. |
[7] | Wang-Qing,Jiao-Shulan,Yang-Yufang. AGE DIFFERENCE OF EVENT-BASED PROSPECTIVE MEMORY [J]. , 2003, 35(04): 476-482. |
[8] | Chen Tianyong,Han Buxin (Institute of Psychology, the Chinese Academy of Sciences, Beijing 100101) Wang Jinfeng (Beijing October First Middle School, Beijing 100039). CENTRAL EXECUTIVE, FLUID INTELLIGENCE, AND AGING: IS CENTRAL EXECUTIVE UNIQUE AND UNITARY? [J]. , 2002, 34(06): 21-27. |
[9] | Sun Changhua, Xu Shulian, Wu Zhenyun, Wu Zhiping(Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101). AGE DIFFERENCES ON PROBLEM SOLVING OF PRACTICAL LIFE IN ADULTS [J]. , 1998, 30(04): 467-473. |
[10] | Xu Shulian,Wu Zhiping,Wu Zhenyun,Sun Changhua Institute of Psychology, Chinese Academy of Sciences. AGE DIFFERENCES ON DIVERGENT THINKING AND THE EFFECT OF MEMORY TRAINING BY“THE METHOD OF LOCI” [J]. , 1993, 25(03): 28-35. |
[11] | Xu Shulian,Wu Zhiping Institute of Psychology, Chinese Academy of Sciences. AGE DIFFERENCES ON THE INFLUENCE OF DIVIDED ATTENTION ON MEMORY PERFORMANCE [J]. , 1993, 25(01): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||