Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (9): 1048-1056.doi: 10.3724/SP.J.1041.2020.01048
• Reports of Empirical Studies • Previous Articles Next Articles
HUA Yan, LI Mingxia, WANG Qiaoting, FENG Caixia, ZHANG Jing()
Received:
2019-07-25
Published:
2020-09-25
Online:
2020-07-24
Contact:
ZHANG Jing
E-mail:psymoon@126.com
Supported by:
HUA Yan, LI Mingxia, WANG Qiaoting, FENG Caixia, ZHANG Jing. (2020). The role of left orbitofrontal cortex in selective attention during automatic emotion regulation: Evidence from transcranial direct current stimulation. Acta Psychologica Sinica, 52(9), 1048-1056.
Figure 2. A single trial flow of a point detection task initiated under the threshold of an emotion control goal (A); a start word identification flow (B). 控制=control, 展开=open.
Stimulus type | Pre-test reaction time | Post-test reaction time | ||
---|---|---|---|---|
Consistent condition | Inconsistent condition | Consistent condition | Inconsistent condition | |
Sham stimulation | 429.52 ± 49.27 | 422.58 ± 49.49 | 412.30 ± 46.69 | 402.30 ± 38.08 |
Cathode stimulation | 436.11 ± 44.71 | 428.87 ± 42.63 | 405.07 ± 30.43 | 411.93 ± 36.85 |
Table 1 Reaction time under various experimental conditions (ms, M ± SD)
Stimulus type | Pre-test reaction time | Post-test reaction time | ||
---|---|---|---|---|
Consistent condition | Inconsistent condition | Consistent condition | Inconsistent condition | |
Sham stimulation | 429.52 ± 49.27 | 422.58 ± 49.49 | 412.30 ± 46.69 | 402.30 ± 38.08 |
Cathode stimulation | 436.11 ± 44.71 | 428.87 ± 42.63 | 405.07 ± 30.43 | 411.93 ± 36.85 |
Figure 3. The response time of tDCS stimulation (cathode stimulation, sham stimulation) × before and after stimulation (before and after stimulation) × the location of the probe (* ps < 0.05).
[1] |
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303-312.
doi: 10.1093/scan/nsm029 URL pmid: 18985136 |
[2] | Bargh, J. A., & Williams, L. E. (2007). The nonconscious regulation of emotion. Journal of Asthma Research, 9(4), 429-445. |
[3] |
Blakemore, R. L., Neveu, R., & Vuilleumier, P. (2017). How emotion context modulates unconscious goal activation during motor force exertion. NeuroImage, 146, 904-917.
doi: 10.1016/j.neuroimage.2016.11.017 URL pmid: 27864083 |
[4] |
Boggio, P. S., Zaghi, S., & Fregni, F. (2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212-217.
doi: 10.1016/j.neuropsychologia.2008.07.022 URL pmid: 18725237 |
[5] | Brasel, S. A., & Gips, J. (2011). Media multitasking behavior: Concurrent television and computer usage. Cyberpsychology Behavior & Social Networking, 14(9), 527-534. |
[6] |
Brody, A. L., Saxena, S., Mandelkern, M. A., Fairbanks, L. A., Ho, M. L., & Baxter, L. R. (2001). Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biological Psychiatry, 50(3), 171-178.
doi: 10.1016/s0006-3223(01)01117-9 URL pmid: 11513815 |
[7] |
Brooks, S. J., O’daly, O. G., Uher, R., Schioth, H. B., Treasure, J., & Campbell, I. C. (2012). Subliminal food images compromise superior working memory performance in women with restricting anorexia nervosa. Consciousness and Cognition, 21(2), 751-763.
doi: 10.1016/j.concog.2012.02.006 URL pmid: 22414738 |
[8] |
Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An Integrative review. Clinical Psychology Review, 30(2), 203-216.
doi: 10.1016/j.cpr.2010.06.002 URL pmid: 20598790 |
[9] |
Civai, C., Miniussi, C., & Rumiati, R. I. (2015). Medial prefrontal cortex reacts to unfairness if this damages the self: A tDCS study. Social Cognitive and Affective Neuroscience, 10(8), 1054-1060.
doi: 10.1093/scan/nsu154 URL pmid: 25552567 |
[10] |
Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85(2), 895-908.
doi: 10.1016/j.neuroimage.2013.07.083 URL |
[11] | Cooch, N. K., Stalnaker, T. A., Wied, H. M., Bali-Chaudhary, S., Mcdannald, M. A., Liu, T. L., & Schoenbaum, G. (2015). Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons. Nature Communications, 6(1), 7195. |
[12] |
de Almeida, J. R. C., Versace, A., Mechelli, A., Hassel, S., Quevedo, K., Kupfer, D. J., & Phillips, M. L. (2009). Abnormal amygdala- prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biological Psychiatry, 66(5), 451-459.
doi: 10.1016/j.biopsych.2009.03.024 URL pmid: 19450794 |
[13] |
Fettes, P., Schulze, L., & Downar, J. (2017). Cortico- striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Frontiers in Systems Neuroscience, 11, 25.
doi: 10.3389/fnsys.2017.00025 URL pmid: 28496402 |
[14] |
Gan, T., Li, W. Q., Tang, H. H., Lu, X. P., Li, X. L., Liu, C., & Luo, Y. J. (2013). Exciting the right temporo-parietal junction with transcranial direct current stimulation influences moral intention processing. Acta Psychologica Sinica, 45(9), 1004-1014.
doi: 10.3724/SP.J.1041.2013.01004 URL |
[15] | Guan, J., L, W. R., & Zhao, X. D. (2018). The competition between inhibition of return and emotional attention bias: Evidence from eye movements. Journal of Psychological Science. 41(6), 1353-1358. |
[16] |
Guillory, S. A.., & Bujarski, K. A. (2014). Exploring emotions using invasive methods: Review of 60 years of human intracranial electrophysiology. Social Cognitive & Affective Neuroscience, 9(12), 1880-1889.
doi: 10.1093/scan/nsu002 URL pmid: 24509492 |
[17] |
Hartikainen, K. M., Ogawa, K. H., & Knight, R. T. (2012). Orbitofrontal cortex biases attention to emotional events. Journal of Clinical and Experimental Neuropsychology, 34(6), 588-597.
doi: 10.1080/13803395.2012.666231 URL pmid: 22413757 |
[18] |
Homan, R.W., Herman, J., Purdy, P. (1987). Cerebral location of international 10-20 system electrode placement, Localisation cérébrale des électrodes placées selon le système international 10-20. Electroencephalography and Clinical Neurophysiology, 66(4), 376-382.
doi: 10.1016/0013-4694(87)90206-9 URL pmid: 2435517 |
[19] |
Jacobson, L., Koslowsky, M & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta- analytical review. Experimental Brain Research, 216(1), 1-10.
doi: 10.1007/s00221-011-2891-9 URL pmid: 21989847 |
[20] | Karremans, J. C., Stroebe, W., & Claus, J. (2006). Beyond Vicary's fantasies: The impact of subliminal priming and brand choice. Journal of Experimental Social Psychology, 42(6), 792-798. |
[21] |
Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., ... Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. Journal of Neuroscience, 31(43), 15284-15293.
doi: 10.1523/JNEUROSCI.0542-11.2011 URL pmid: 22031874 |
[22] |
Klorman, R., Weerts, T. C., Hastings, J. E., Melamed, B. G., & Lang, P. J. (1974). Psychometric description of some specific- fear questionnaires. Behavior Therapy, 5(3), 401-409.
doi: 10.1016/S0005-7894(74)80008-0 URL |
[23] |
Légal, J.-B., Chappé, J., Coiffard, V., & Villard-Forest, A. (2012). Don't you know that you want to trust me? Subliminal goal priming and persuasion. Journal of Experimental Social Psychology, 48(1), 358-360.
doi: 10.1016/j.jesp.2011.06.006 URL |
[24] | Li, W., & Qian, M. (1995). Revision of the state-trait anxiety inventory with sample of Chinese college students. Acta Scientiarum Naturalium Universitatis Pekinensis, 30(1), 108-115. |
[25] |
Li, Y., Sescousse, G., Amiez, C., & Dreher, J. (2015). Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. Journal of Neuroscience, 35 (4), 1648-1658.
doi: 10.1523/JNEUROSCI.3058-14.2015 URL pmid: 25632140 |
[26] | Liu, K., Zhang, J., & Zhao, Y. J. (2016). Effect of subliminal emotion control target on attention distribution of fear stimulation. Journal of Psychological Science, 39(6), 1339-1345. |
[27] |
Mäki-Marttunen, V., Kuusinen, V., Peräkylä, J., Ogawa, K. H., Brause, M., Brander, A., & Hartikainen, K. M. (2017). Greater attention to task-relevant threat due to orbitofrontal lesion. Journal of Neurotrauma, 34(2), 400-413.
doi: 10.1089/neu.2015.4390 URL pmid: 27502875 |
[28] | Mauss, I. B., Bunge, S. A., & Gross, J. J. (2010). Automatic emotion regulation. Social & Personality Psychology Compass, 1(1), 146-167. |
[29] | Mauss, I. B., Cook, C. L., & Gross, J. J. (2007). Automatic emotion regulation during anger provocation. Journal of Experimental Social Psychology, 43(5), 698-711. |
[30] |
Mauss, I. B., Evers, C., Wilhelm, F. H., & Gross, J. J. (2006). How to bite your tongue without blowing your top: Implicit evaluation of emotion regulation predicts affective responding to anger provocation. Personality and Social Psychology Bulletin, 32(5), 589-602.
doi: 10.1177/0146167205283841 URL pmid: 16702153 |
[31] |
Mayberg, H. S., Lozano, A. M., Voon, V., Mcneely, H. E., Seminowicz, D. A., Hamani, C., ... Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651-660.
doi: 10.1016/j.neuron.2005.02.014 URL pmid: 15748841 |
[32] | Moskowitz, G. B., Li, P. Z., & Kirk, E. R. (2004). The implicit volition model: On the preconscious regulation of temporarily adopted goals. Advances in Experimental Social Psychology, 36(4), 317-413. |
[33] |
Nejati, V., Salehinejad, M. A., & Nitsche, M. A. (2017). Interaction of the left dorsolateral prefrontal cortex (L-dlPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: Evidence from transcranial direct current stimulation (tDCS). Neuroscience, 369, 109-123.
doi: 10.1016/j.neuroscience.2017.10.042 URL pmid: 29113929 |
[34] | Nejati, V., Salehinejad, M. A., Nitsche, M. A., Najian, A., & Javadi, A. H. (2017). Transcranial direct current stimulation improves executive dysfunctions in ADHD: Implications for inhibitory control, interference control, working memory, and cognitive flexibility. Journal of Attention Disorders, 108705471773061. |
[35] |
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633-639.
doi: 10.1111/tjp.2000.527.issue-3 URL |
[36] |
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
doi: 10.1212/wnl.57.10.1899 URL pmid: 11723286 |
[37] |
Nogueira, R., Abolafia, J. M., Drugowitsch, J., Balaguer- Ballester, E., Sanchez-Vives, M. V., & Moreno-Bote, R. (2017). Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nature Communications, 8, 14823.
doi: 10.1038/ncomms14823 URL pmid: 28337990 |
[38] |
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 833-857.
doi: 10.1038/mp.2008.65 URL |
[39] |
Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., & Vuilleumier, P. (2006). Neural systems for orienting attention to the location of threat signals: An event-related fMRI study. Neuroimage, 31(2), 920-933.
doi: 10.1016/j.neuroimage.2005.12.034 URL pmid: 16487729 |
[40] | Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A., & Phelps, E. A. (2013). Cognitive emotion regulation fails the stress test. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 151391-5144. |
[41] | Rao, V. R., Sellers, K. K., Wallace, D. L., Lee, M. B., Bijanzadeh, M., Sani, O. G., ... Chang, E. F. (2018). Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Current Biology, 28(24), 3893-3902.e4. |
[42] |
Rich, E. L., & Wallis, J. D. (2016). Decoding subjective decisions from orbitofrontal cortex. Nature Neuroscience, 19(7), 973-980.
doi: 10.1038/nn.4320 URL pmid: 27273768 |
[43] | Rolls, E. T. (2000). On the brain and emotion. Behavioral & Brain Sciences, 23(2), 219-228. |
[44] |
Rolls, E. T., & Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 86(3), 216-244.
doi: 10.1016/j.pneurobio.2008.09.001 URL pmid: 18824074 |
[45] | Rudebeck, P. H., & Murray, E. A. (2011). Balkanizing the primate orbitofrontal cortex: Distinct subregions for comparing and contrasting values. Annals of the New York Academy of Sciences, 1239(1), 1-13. |
[46] |
Schutter, D. J. L. G., & van Honk, J. (2006). An electrophysiological link between the cerebellum, cognition and emotion: Frontal theta EEG activity to single-pulse cerebellar TMS. Neuroimage, 33(4), 1227-1231.
doi: 10.1016/j.neuroimage.2006.06.055 URL pmid: 17023183 |
[47] |
Schwager, S., & Rothermund. (2013). Counter-regulation triggered by emotions: Positive/negative affective states elicit opposite valence biases in affective processing. Cognition & Emotion, 27(5), 839-855.
doi: 10.1080/02699931.2012.750599 URL pmid: 23237331 |
[48] |
Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist, 17( 1), 37-53.
doi: 10.1177/1073858410386614 URL pmid: 21343407 |
[49] |
Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., & Meyer-Lindenberg, A. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36(3), 736-745.
doi: 10.1016/j.neuroimage.2007.03.022 URL pmid: 17475514 |
[50] |
Tong, E. M., Tan, D., & Tan, Y. L. (2013). Can implicit appraisal concepts produce emotion-specific effects? A focus on unfairness and anger. Consciousness and Cognition, 22(2), 449-460.
doi: 10.1016/j.concog.2013.02.003 URL pmid: 23474701 |
[51] |
Utz, K. S., Dimova, V., Oppenländer, K., & Kerkhoff, G. (2010). Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology - A review of current data and future implications. Neuropsychologia, 48(10), 2789-2810.
doi: 10.1016/j.neuropsychologia.2010.06.002 URL pmid: 20542047 |
[52] |
Vogt, J., Lozo, L., Koster, E. H. W., & de Houwer, J. (2011). On the role of goal relevance in emotional attention: Disgust evokes early attention to cleanliness. Cognition and Emotion, 25(3), 466-477.
doi: 10.1080/02699931.2010.532613 URL pmid: 21432687 |
[53] | Wang, J. Y., Jiao, R. K., & Zhang, M. (2016). The mechanism of the effect of task setting on negative compatibility effect: The effect of top-down cognition control on subliminal prime processing. Acta Psychologica Sinica, 48(11), 1370-1378. |
[54] |
Waters, A. M., Nitz, A. B., Craske, M. G., & Johnson, C. (2007). The effects of anxiety upon attention allocation to affective stimuli. Behaviour Research and Therapy, 45(4), 763-774.
doi: 10.1016/j.brat.2007.07.015 URL pmid: 17825248 |
[55] |
Waugh, C. E., Wager, T. D., Fredrickson, B. L., Noll, D. C., & Taylor, S. F. (2008). The neural correlates of trait resilience when anticipating and recovering from threat. Social Cognitive and Affective Neuroscience, 3(4), 322-332.
doi: 10.1093/scan/nsn024 URL pmid: 19015078 |
[56] |
Williams, L. E., Bargh, J. A., Nocera, C. C., & Gray, J. R. (2009). The unconscious regulation of emotion: Nonconscious reappraisal goals modulate emotional reactivity. Emotion, 9(6), 847-854.
doi: 10.1037/a0017745 URL pmid: 20001127 |
[57] |
Willis, M. L., Murphy, J. M., Ridley, N. J., & Vercammen, A. (2015). Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition. Social Cognitive & Affective Neuroscience, 10(12), 1677-1683.
doi: 10.1093/scan/nsv057 URL pmid: 25971602 |
[58] |
Yang, X. L., Gao, M., Shi, J. C., Ye, H., & Chen, S. (2017). Modulating the activity of the DLPFC and OFC has distinct effects on risk and ambiguity decision-making: A tDCS study. Frontiers in Psychology, 8, 1417.
doi: 10.3389/fpsyg.2017.01417 URL pmid: 28878714 |
[59] |
Zhang, J., Lipp, O. V., & Hu, P. (2017). Individual differences in automatic emotion regulation interact with primed emotion regulation during an anger provocation. Frontiers in Psychology, 8, 614.
doi: 10.3389/fpsyg.2017.00614 URL pmid: 28484412 |
[60] |
Zhang, W. H., & Lu, J. M. (2012). Time course of automatic emotion regulation during a facial Go/ Nogo task. Biological Psychology, 89(2), 444-449.
doi: 10.1016/j.biopsycho.2011.12.011 URL pmid: 22200654 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||