Please wait a minute...
心理学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于作答数据的模型参数和Q矩阵联合估计
喻晓锋1,2;罗照盛1;秦春影2;高椿雷1;李喻骏1
(1江西师范大学心理学院, 南昌 330022) (2亳州师范高等专科学校, 亳州 236800)
Joint Estimation of Model Parameters and Q-Matrix Based on Response Data
YU Xiaofeng1,2; LUO Zhaosheng1; QIN Chunying2; GAO Chunlei1; LI Yujun1
(1 School of Psychology, Jiangxi Normal University, Nanchang 330022, China) (2 Computer Department, Bozhou Normal College, Bozhou 236800, China)
全文: PDF(470 KB)   评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

Q矩阵在认知诊断的模型参数估计和诊断分类中起着重要作用。本文通过研究Liu等人的方法, 设计了同时估计项目参数和Q矩阵的联合估计算法。在DINA模型下, 对项目参数未知时开展模拟研究。研究假设项目为20个, 考察的属性个数分别是3、4和5, 初始Q矩阵中分别存在3、4和5个属性界定错误的项目。结果表明, 联合估计算法能在错误的初始Q矩阵基础上以很高的概率得到正确的Q矩阵。另外, 当专家认定测验的属性个数存在错误时, 该方法推导的Q矩阵和模型参数能提供很好的鉴别Q矩阵错误的信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
喻晓锋
罗照盛
秦春影
高椿雷
李喻骏
关键词 认知诊断评价 Q矩阵T矩阵 联合估计 DINA模型    
Abstract

Q-matrix is an important component of cognitive diagnostic assessment, which represents the item-attribute relationships. Cognitive diagnostic assessment infers attribute mastery patterns of respondents in the testing field based on item responses. Item responses in the assessment are observable, but respondents attribute mastery patterns are potential, not observable. Q-matrix plays the role of a bridge in cognitive diagnostic assessment. Therefore, Q-matrix impact the accuracy of cognitive diagnostic assessment greatly. Research on the effect of parameter estimation and classification accuracy caused by the error in Q-matrix already existed, and it turned out that Q-matrix gotten from expert definition or experience was more easily subject to be affected by subjective factors, lead to a misspecified Q-matrix. Under this circumstance, it’s urgently needed to find more objective Q-matrix inference methods. This paper started from this consideration, carried out further research on the Q-matrix inference from response data based on the research of Liu, Xu and Ying (2012), and modified the Liu et al. algorithm, designed a joint estimate item parameters and Q-matrix algorithm. The joint estimate algorithm can estimate item parameters and the Q-matrix simultaneously. In simulations, considered different Q-matrix (attribute-number is 3,4 and 5), different sample size (500, 1000, 2000 and 4000), different number of error items (3,4 and 5), the attribute mastery pattern of the sample followed an uniform distribution, and the item parameters followed an uniform distribution with interval [0.05,0.25]. When item parameters were unknown, item number was 20, and item attributes was 3, 4 or 5, based on the initial Q-matrix, and the joint estimate algorithm can get the true Q-matrix with a high probability and item parameters with small deviation, even the sample size is relatively small (such as 300), and the misspecified-item number is relatively large (such as 6). Furthermore, when the number of item attribute was misspecified by experts, in other words, the Q-matrix lacked a required attribute or added a redundant attribute, this would lead to incorrectness of all items, and the joint estimate algorithm will provide reliable information to infer the true Q-matrix. The results indicated that: (1) The joint estimate algorithm had a good performance and suitable for practical application when some item attribute vectors misspecified. (2) The joint estimate algorithm could provide useful information when added a redundant attribute or lacked a required attribute in Q-matrix, and then amended and estimated the Q-matrix.

Key wordscognitive diagnostic assessment    Q-matrix    T-matrix    joint estimate    DINA model
收稿日期: 2014-09-22      出版日期: 2015-02-25
基金资助:

国家自然科学基金(31160203, 31100756, 31360237)、国家社会科学基金(12BYY055)、教育部人文社会科学研究青年基金项目(13YJC880060)、安徽省高校省级优秀青年人才基金重点项目(2013SQRL127ZD)、安徽省自然科学研究项目(KJ2010B123, KJ2013B151)、高等学校博士学科点专项科研基金(20113604110001)、江西省研究生创新专项基金(YC2013-B024)和安徽省哲学社会科学规划项目(AHSKY2014D102)资助。

通讯作者: 罗照盛, E-mail: luozs@126.com   
引用本文:   
喻晓锋;罗照盛;秦春影;高椿雷;李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 10.3724/SP.J.1041.2015.00273.
YU Xiaofeng; LUO Zhaosheng; QIN Chunying; GAO Chunlei; LI Yujun. Joint Estimation of Model Parameters and Q-Matrix Based on Response Data. Acta Psychologica Sinica, 2015, 47(2): 273-282.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2015.00273      或      http://journal.psych.ac.cn/xlxb/CN/Y2015/V47/I2/273
[1] 高椿雷;罗照盛;喻晓锋; 彭亚风;郑蝉金. CD-MST初始阶段模块组建方法比较[J]. 心理学报, 2016, 48(8): 1037-1046.
[2] 康春花; 任平; 曾平飞. 多级评分聚类诊断法的影响因素[J]. 心理学报, 2016, 48(7): 891-902.
[3] 詹沛达;边玉芳;王立君. 重参数化的多分属性诊断分类模型及其判准率影响因素[J]. 心理学报, 2016, 48(3): 318-330.
[4] 彭亚风;罗照盛;喻晓锋;高椿雷;李喻骏. 认知诊断评价中测验结构的优化设计[J]. 心理学报, 2016, 48(12): 1600-1611.
[5] 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356.
[6] 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346.
[7] 喻晓锋;罗照盛;高椿雷;李喻骏;王 睿;王钰彤. 使用似然比D2统计量的题目属性定义方法[J]. 心理学报, 2015, 47(3): 417-426.
[8] 罗照盛;李喻骏;喻晓锋;高椿雷;彭亚风. 一种基于Q矩阵理论朴素的认知诊断方法[J]. 心理学报, 2015, 47(2): 264-272.
[9] 郭磊;郑蝉金;边玉芳. 变长CD-CAT中的曝光控制与终止规则[J]. 心理学报, 2015, 47(1): 129-140.
[10] 涂冬波,蔡艳,戴海琦. 基于DINA模型的Q矩阵修正方法[J]. , 2012, 44(4): 558-568.
[11] 涂冬波;蔡艳;戴海琦;丁树良. 一种多策略认知诊断方法:MSCD方法的开发[J]. 心理学报, 2012, 44(11): 1547-1553.
[12] 孙佳楠,张淑梅,辛涛,包钰. 基于Q矩阵和广义距离的认知诊断方法[J]. , 2011, 43(09): 1095-1102.
[13] 汪文义,丁树良, 游晓锋. 计算机化自适应诊断测验中原始题的属性标定[J]. , 2011, 43(08): 964-976.
[14] 涂冬波,蔡艳,戴海琦,丁树良. 一种多级评分的认知诊断模型:P-DINA模型的开发[J]. , 2010, 42(10): 1011-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn