Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (12) : 2019-2033     DOI: 10.3724/SP.J.1042.2019.02019
Regular Articles |
Measurement of spatial navigation and application research in cognitive aging
ZHANG Jiaxin,HAI Lagan,LI Huijie()
Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(9348 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Spatial navigation is an essential high-level cognitive function in daily life. However, the involved brain regions such as hippocampus and entorhinal cortex are vulnerable to aging and result in structural atrophy and functional alterations. Using the experimental paradigms like animal experiments, pencil-paper tests, and real-world navigation, early studies explored the behavioral performance of spatial navigation in older adults. By virtue of having similar scenes with realistic environment, compatible with magnetic resonance imaging scanning, and navigator could have interactions with scenes, virtual reality is increasingly applied in the age-related spatial navigation research, revealing the important role of medial temporal cortex such as hippocampus in age-related spatial navigation studies.

Keywords spatial navigation      aging      virtual reality      hippocampus      neural mechanism     
ZTFLH:  B842  
Corresponding Authors: Huijie LI     E-mail: lihj@psych.ac.cn
Issue Date: 21 October 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiaxin ZHANG
Lagan HAI
Huijie LI
Cite this article:   
Jiaxin ZHANG,Lagan HAI,Huijie LI. Measurement of spatial navigation and application research in cognitive aging[J]. Advances in Psychological Science, 2019, 27(12): 2019-2033.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.02019     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I12/2019
  
  
  
  
[1] 胡镜清, 温泽淮, 赖世隆 . ( 2000). Morris水迷宫检测的记忆属性与方法学初探. 广州中医药大学学报, 17( 2), 117-119.
[2] 胡志红, 闫君宝, 杨东伟 . ( 2016). 游泳训练次数对大鼠Morris水迷宫成绩的影响. 山西医科大学学报, 47( 1), 18-21.
[3] 李丹, 杨昭宁 . ( 2015). 空间导航:路标学习和路径整合的关系. 心理科学进展, 23( 10), 1755-1762. doi: 10.3724/ sp.j.1042.2015.01755
doi: 10.3724/ sp.j.1042.2015.01755
[4] 罗小泉, 骆利平, 陈海芳, 涂明珠, 黎艳刚, 袁金斌, 杨武亮 . ( 2010). Morris水迷宫检测大鼠记忆力方法的探讨. 时珍国医国药, 21( 10), 2667-2669.
[5] 王芳芳 . ( 2017). APOE风险基因和性别差异对空间导航能力相关脑结构的影响. (硕士), 南京大学
[6] 武文博 . ( 2015). 年龄和认知状态对空间导航能力影响的行为学研究及其脑网络基础. (硕士), 南京医科大学
[7] 武文博, 张冰, 徐运 . ( 2015). 空间导航——阿尔兹海默病早期诊断的新指标. 中国实用内科杂志, 35( 02), 168-170.
[8] Allard, S., Gosein, V., Cuello, A. C., & Ribeiro-da-Silva, A . ( 2011). Changes with aging in the dopaminergic and noradrenergic innervation of rat neocortex. Neurobiology of Aging, 32( 12), 2244-2253. doi: 10.1016/j.neurobiolaging. 2009.12.023
doi: 10.1016/j.neurobiolaging. 2009.12.023
[9] Allison, S. L., Fagan, A. M., Morris, J. C., & Head, D . ( 2016). Spatial navigation in preclinical Alzheimer's disease. Journal of Alzheimers Dissease, 52( 1), 77-90. doi: 10.3233/JAD-150855
doi: 10.3233/JAD-150855
[10] Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G . ( 2009). Age-related neural activity during allocentric spatial memory. Memory, 17( 2), 125-143. doi: 10.1080/09658210802077348
doi: 10.1080/09658210802077348
[11] Bai, F., Zhang, Z., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., .. Qian, Y . ( 2009). Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biological Psychiatry, 65( 11), 951-958. doi: 10.1016/j.biopsych.2008. 10.017
doi: 10.1016/j.biopsych.2008. 10.017
[12] Banta Lavenex, P. A., Colombo, F., Ribordy Lambert, F., & Lavenex, P . ( 2014). The human hippocampus beyond the cognitive map: Evidence from a densely amnesic patient. Frontiers in Human Neuroscience, 8, 711. doi: 10.3389/ fnhum.2014.00711
doi: 10.3389/ fnhum.2014.00711
[13] Barnes, C. A., Nadel, L., & Honig, W. K . ( 1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychologyl, 34( 1), 29-39.
[14] Barrash, J. (1994). Age-related decline in route learning ability. Developmental Neuropsychology, 10( 3), 189-201.
[15] Bellassen, V., Igloi, K., de Souza, L. C., Dubois, B., & Rondi-Reig, L . ( 2012). Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer's disease diagnosis. Journal of Neuroscience, 32( 6), 1942-1952. doi: 10.1523/ JNEUROSCI.4556-11.2012
doi: 10.1523/ JNEUROSCI.4556-11.2012
[16] Besnard, S., Machado, M. L., Vignaux, G., Boulouard, M., Coquerel, A., Bouet, V., .. Lelong-Boulouard, V . ( 2012). Influence of vestibular input on spatial and nonspatial memory and on hippocampal NMDA receptors. Hippocampus, 22( 4), 814-826. doi: 10.1002/hipo.20942
doi: 10.1002/hipo.20942
[17] Boccia, M., Nemmi, F., & Guariglia, C . ( 2014). Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24( 2), 236-251. doi: 10.1007/s11065-014-9247-8
doi: 10.1007/s11065-014-9247-8
[18] Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P . ( 2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27( 38), 10078-10083. doi: 10.1523/JNEUROSCI.1763-07.2007
doi: 10.1523/JNEUROSCI.1763-07.2007
[19] Bohil, C. J., Alicea, B., & Biocca, F. A . ( 2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12( 12), 752-762. doi: 10.1038/nrn3122
doi: 10.1038/nrn3122
[20] Bullens, J., Igloi, K., Berthoz, A., Postma, A., & Rondi-Reig, L . ( 2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107( 3), 337-350. doi: 10.1016/j.jecp.2010.05.010
doi: 10.1016/j.jecp.2010.05.010
[21] Burgdorf, J., Zhang, X. L., Weiss, C., Matthews, E., Disterhoft, J. F., Stanton, P. K., & Moskal, J. R . ( 2011). The N-methyl-D-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiology of Aging, 32( 4), 698-706. doi: 10.1016/j.neurobiolaging.2009.04.012
doi: 10.1016/j.neurobiolaging.2009.04.012
[22] Burgess, N., Maguire, E. A., & O'Keefe, J . ( 2002). The human hippocampus and spatial and episodic memory. Neuron, 35( 4), 625-641.
[23] Byrne, P., Becker, S., & Burgess, N . ( 2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114( 2), 340-375. doi: 10.1037/0033-295X.114.2.340
doi: 10.1037/0033-295X.114.2.340
[24] Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R . ( 2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17( 3), 1394-1402. doi: 10.1006/nimg.2002.1280
doi: 10.1006/nimg.2002.1280
[25] Chersi, F., & Burgess, N. (2015). The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, 88( 1), 64-77. doi: 10.1016/j.neuron.2015.09.021
doi: 10.1016/j.neuron.2015.09.021
[26] Cogne, M., Taillade, M., N'Kaoua, B., Tarruella, A., Klinger, E., Larrue, F., .. Sorita, E . ( 2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Annals of Physical and Rehabilitation Medicine, 60( 3), 164-176. doi: 10.1016/ j.rehab.2015.12.004
doi: 10.1016/ j.rehab.2015.12.004
[27] Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G . ( 2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 80, 605-621. doi: 10.1016/j.neubiorev.2017.07.012
doi: 10.1016/j.neubiorev.2017.07.012
[28] Cong, S., Risacher, S. L., West, J. D., Wu, Y. C., Apostolova, L. G., Tallman, E., .. Shen, L . ( 2018). Volumetric comparison of hippocampal subfields extracted from 4- minute accelerated vs. 8-minute high-resolution T2-weighted 3T MRI scans. Brain Imaging and Behavior, 12( 6), 1583-1595. doi: 10.1007/s11682-017-9819-3
doi: 10.1007/s11682-017-9819-3
[29] Coughlan, G., Laczo, J., Hort, J., Minihane, A. M., & Hornberger, M . ( 2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14( 8), 496-506. doi: 10.1038/s41582-018-0031-x
doi: 10.1038/s41582-018-0031-x
[30] Coutureau, E., & Di Scala, G. (2009). Entorhinal cortex and cognition. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33( 5), 753-761. doi: 10.1016/j. pnpbp.2009.03.038
doi: 10.1016/j. pnpbp.2009.03.038
[31] Cushman, L. A., Stein, K., & Duffy, C. J . ( 2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71( 12), 888-895. doi: 10.1212/01.wnl.0000326262.67613.fe
doi: 10.1212/01.wnl.0000326262.67613.fe
[32] Dahmani, L., & Bohbot, V. D . ( 2015). Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies. Neurobiology of Learning and Memory, 117, 42-50. doi: 10.1016/j.nlm.2014.07.002
doi: 10.1016/j.nlm.2014.07.002
[33] Daugherty, A. M., Yuan, P., Dahle, C. L., Bender, A. R., Yang, Y., & Raz, N . ( 2015). Path complexity in virtual water maze navigation: Differential associations with age, sex, and regional brain volume. Cerebral Cortex, 25( 9), 3122-3131. doi: 10.1093/cercor/bhu107
doi: 10.1093/cercor/bhu107
[34] Davis, R. L., & Weisbeck, C. (2015). Search strategies used by older adults in a virtual reality place learning task. Gerontologist, 55 Suppl 1, S118-127. doi: 10.1093/geront/ gnv020
doi: 10.1093/geront/ gnv020
[35] de Bruin, J. P. C., Sànchez-Santed, F., Heinsbroek, R. P. W., Donker, A., & Postmes, P . ( 1994). A behavioural analysis of rats with damage to the medial prefrontal cortex using the morris water maze: Evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Research, 652( 2), 323-333. doi: https://doi.org/10.1016/0006-8993 (94)90243-7
doi: https://doi.org/10.1016/0006-8993 (94)90243-7
[36] Doeller, C. F., Barry, C., & Burgess, N . ( 2010). Evidence for grid cells in a human memory network. Nature, 463( 7281), 657-661. doi: 10.1038/nature08704
doi: 10.1038/nature08704
[37] Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J . ( 2005). Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones and Behavior, 47( 3), 326-335. doi: 10.1016/j. yhbeh.2004.11.013
doi: 10.1016/j. yhbeh.2004.11.013
[38] Duffy, C. J . ( 2009). Visual motion processing in aging and Alzheimer's disease: neuronal mechanisms and behavior from monkeys to man. Annals of the New York Academy of Sciences, 1170( 1), 736-744. doi: 10.1111/j.1749-6632. 2009.04021.x
doi: 10.1111/j.1749-6632. 2009.04021.x
[39] Duvernoy, H.M . ( 2005). The human hippocampus: functional anatomy, vascularization and serial sections with MRI: Springer Science & Business Media.
[40] Fouquet, C., Tobin, C., & Rondi-Reig, L . ( 2010). A new approach for modeling episodic memory from rodents to humans: the temporal order memory. Behavioural Brain Research, 215( 2), 172-179. doi: 10.1016/j.bbr.2010.05.054
doi: 10.1016/j.bbr.2010.05.054
[41] Fu, H., Rodriguez, G. A., Herman, M., Emrani, S., Nahmani, E., Barrett, G., .. Duff, K. E . ( 2017). Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer's disease. Neuron, 93( 3), 533- 541 e535. doi: 10.1016/j. neuron.2016.12.023
doi: 10.1016/j. neuron.2016.12.023
[42] Garcia-Betances, R. I., Arredondo Waldmeyer, M. T., Fico, G., & Cabrera-Umpierrez, M. F . ( 2015). A succinct overview of virtual reality technology use in Alzheimer's disease. Frontiers in Aging Neuroscience, 7, 80. doi: 10.3389/fnagi.2015.00080
doi: 10.3389/fnagi.2015.00080
[43] Gazova, I., Laczo, J., Rubinova, E., Mokrisova, I., Hyncicova, E., Andel, R., .. Hort, J . ( 2013). Spatial navigation in young versus older adults. Frontiers in Aging Neuroscience, 5, 94. doi: 10.3389/fnagi.2013.00094
doi: 10.3389/fnagi.2013.00094
[44] Gramann, K., Muller, H. J., Eick, E. M., & Schonebeck, B . ( 2005). Evidence of separable spatial representations in a virtual navigation task. Journal of Experimental Psychology-Human Perception and Performance, 31( 6), 1199-1223. doi: 10.1037/0096-1523.31.6.1199
doi: 10.1037/0096-1523.31.6.1199
[45] Groth-Marnat, G., & Teal, M. (2000). Block design as a measure of everyday spatial ability: A study of ecological validity. Perceptual and motor skills, 90( 2), 522-526. doi: Doi 10.2466/Pms.90.2.522-526
doi: 10.2466/Pms.90.2.522-526
[46] Guzowski, J. F., Knierim, J. J., & Moser, E. I . ( 2004). Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron, 44( 4), 581-584. doi: 10.1016/j.neuron.2004.11.003
doi: 10.1016/j.neuron.2004.11.003
[47] Harris, M. A., Wiener, J. M., & Wolbers, T . ( 2012). Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in Aging Neuroscience, 4, 29. doi: 10.3389/fnagi.2012.00029
doi: 10.3389/fnagi.2012.00029
[48] Harris, M. A., & Wolbers, T. (2012). Ageing effects on path integration and landmark navigation. Hippocampus, 22( 8), 1770-1780. doi: 10.1002/hipo.22011
doi: 10.1002/hipo.22011
[49] Harris, M. A., & Wolbers, T. (2014). How age-related strategy switching deficits affect wayfinding in complex environments. Neurobiology of Aging, 35( 5), 1095-1102. doi: 10.1016/j.neurobiolaging.2013.10.086
doi: 10.1016/j.neurobiolaging.2013.10.086
[50] Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N . ( 2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37( 5), 877-888.
[51] Horner, A. J., Bisby, J. A., Zotow, E., Bush, D., & Burgess, N . ( 2016). Grid-like processing of imagined navigation. Current Biology, 26( 6), 842-847. doi: 10.1016/j.cub.2016. 01.042
doi: 10.1016/j.cub.2016. 01.042
[52] Hort, J., Laczo, J., Vyhnalek, M., Bojar, M., Bures, J., & Vlcek, K . ( 2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America, 104( 10), 4042-4047. doi: 10.1073/pnas.0611314104
doi: 10.1073/pnas.0611314104
[53] Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., .. Spiers, H. J . ( 2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Current Biology, 24( 12), 1331-1340. doi: 10.1016/j.cub.2014.05.001
doi: 10.1016/j.cub.2014.05.001
[54] Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., .. Tsai, L. H . ( 2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540( 7632), 230-235. doi: 10.1038/ nature20587
doi: 10.1038/ nature20587
[55] Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D . ( 2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23( 13), 5945-5952.
[56] Igloi, K., Doeller, C. F., Paradis, A. L., Benchenane, K., Berthoz, A., Burgess, N., & Rondi-Reig, L . ( 2015). Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cerebral Cortex, 25( 11), 4146-4154. doi: 10.1093/cercor/bhu132
doi: 10.1093/cercor/bhu132
[57] Igloi, K., Zaoui, M., Berthoz, A., & Rondi-Reig, L . ( 2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19( 12), 1199-1211. doi: 10.1002/hipo.20595
doi: 10.1002/hipo.20595
[58] Joy, S., Fein, D., Kaplan, E., & Freedman, M . ( 2001). Quantifying qualitative features of Block Design performance among healthy older adults. Archives of Clinical Neuropsychology, 16( 2), 157-170.
[59] Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A . ( 2016). The occipital place area is causally involved in representing environmental boundaries during navigation. Current Biology, 26( 8), 1104-1109. doi: 10.1016/j.cub.2016. 02.066
doi: 10.1016/j.cub.2016. 02.066
[60] Kirasic, K. C . ( 1991). Spatial cognition and behavior in young and elderly adults: Implications for learning new environments. Psychology and Aging, 6( 1), 10-18.
[61] Klencklen, G., Despres, O., & Dufour, A . ( 2012). What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Research Reviews, 11( 1), 123-135. doi: 10.1016/j.arr.2011.10.001
doi: 10.1016/j.arr.2011.10.001
[62] Knierim, J. J., & Neunuebel, J. P . ( 2016). Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiology of Learning and Memory, 129, 38-49. doi: 10.1016/j.nlm. 2015.10.008
doi: 10.1016/j.nlm. 2015.10.008
[63] Konishi, K., Bhat, V., Banner, H., Poirier, J., Joober, R., & Bohbot, V. D . ( 2016). APOE2 Is Associated with spatial navigational strategies and increased gray matter in the hippocampus. Frontiers in Human Neuroscience, 10, 349. doi: 10.3389/fnhum.2016.00349
doi: 10.3389/fnhum.2016.00349
[64] Konishi, K., & Bohbot, V. D . ( 2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5, 1. doi: 10.3389/fnagi.2013.00001
doi: 10.3389/fnagi.2013.00001
[65] Kunz, L., Schroder, T. N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., .. Axmacher, N . ( 2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer's disease. Science, 350( 6259), 430-433. doi: 10.1126/science.aac8128
doi: 10.1126/science.aac8128
[66] Lavenex, P. B., Amaral, D. G., & Lavenex, P . ( 2006). Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. Journal of Neuroscience, 26( 17), 4546-4558. doi: 10.1523/JNEUROSCI.5412-05.2006
doi: 10.1523/JNEUROSCI.5412-05.2006
[67] Leal, S.L., & Yassa, M. A . ( 2015). Neurocognitive aging and the hippocampus across species. Trends in Neurosciences, 38( 12), 800-812. doi: 10.1016/j.tins.2015.10.003
doi: 10.1016/j.tins.2015.10.003
[68] Lemay, M., Bertram, C. P., & Stelmach, G. E . ( 2004). Pointing to an allocentric and egocentric remembered target in younger and older adults. Experimental Aging Research, 30( 4), 391-406. doi: 10.1080/03610730490484443
doi: 10.1080/03610730490484443
[69] Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T . ( 2017). The aging navigational system. Neuron, 95( 5), 1019-1035. doi: 10.1016/j.neuron.2017.06.037
doi: 10.1016/j.neuron.2017.06.037
[70] Liang, Z., Yang, Y., Li, G., Zhang, J., Wang, Y., Zhou, Y., & Leventhal, A. G . ( 2010). Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiology of Aging, 31( 5), 863-873. doi: 10.1016/j.neurobiolaging. 2008.06.013
doi: 10.1016/j.neurobiolaging. 2008.06.013
[71] Lithfous, S., Dufour, A., Blanc, F., & Despres, O . ( 2014). Allocentric but not egocentric orientation is impaired during normal aging: An ERP study. Neuropsychology, 28( 5), 761-771. doi: 10.1037/neu0000084
doi: 10.1037/neu0000084
[72] Lovden, M., Schaefer, S., Noack, H., Bodammer, N. C., Kuhn, S., Heinze, H. J., .. Lindenberger, U . ( 2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33( 3), 620 e629-620 e622. doi: 10.1016/j.neurobiolaging.2011.02.013
doi: 10.1016/j.neurobiolaging.2011.02.013
[73] Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D . ( 2009). Age differences in visual path integration. Behavioural Brain Research, 205( 1), 88-95. doi: 10.1016/j. bbr.2009.08.001
doi: 10.1016/j. bbr.2009.08.001
[74] Marquez, D. X., Hunter, R. H., Griffith, M. H., Bryant, L. L., Janicek, S. J., & Atherly, A. J . ( 2017). Older adult strategies for community wayfinding. Journal of Applied Gerontology, 36( 2), 213-233. doi: 10.1177/ 0733464815581481
doi: 10.1177/ 0733464815581481
[75] McHail, D. G., Valibeigi, N., & Dumas, T. C . ( 2018). A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem, 25( 3), 138-146. doi: 10.1101/lm.046300.117
doi: 10.1101/lm.046300.117
[76] Migo, E. M., O'Daly, O., Mitterschiffthaler, M., Antonova, E., Dawson, G. R., Dourish, C. T., .. Morris, R. G . ( 2016). Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI. Neuropsychol, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 23( 2), 196-217. doi: 10.1080/13825585.2015.1073218
doi: 10.1080/13825585.2015.1073218
[77] Moffat, S. D . ( 2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19( 4), 478-489. doi: 10.1007/s11065-009-9120-3
doi: 10.1007/s11065-009-9120-3
[78] Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N . ( 2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17( 6), 1274-1282. doi: 10.1093/cercor/bhl036
doi: 10.1093/cercor/bhl036
[79] Monahan, J. B., Handelmann, G. E., Hood, W. F., & Cordi, A. A . ( 1989). D-cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, enhances performance of learning tasks in rats. Pharmacology Biochemistry and Behavior, 34( 3), 649-653.
[80] Morganti, F., Stefanini, S., & Riva, G . ( 2013). From allo- to egocentric spatial ability in early Alzheimer's disease: A study with virtual reality spatial tasks. Cognitive Neuroscience, 4( 3-4), 171-180. doi: 10.1080/17588928. 2013.854762
doi: 10.1080/17588928. 2013.854762
[81] Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11( 1), 47-60.
[82] Mueller, S. G., Yushkevich, P. A., Das, S., Wang, L., van Leemput, K., Iglesias, J. E., .. Weiner, M. W . ( 2018). Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. NeuroImage: Clinical, 17, 1006-1018. doi: 10.1016/j.nicl.2017.12.036
doi: 10.1016/j.nicl.2017.12.036
[83] Muffato, V., Meneghetti, C., & de Beni, R . ( 2016). Not all is lost in older adults' route learning: The role of visuo-spatial abilities and type of task. Journal of Environmental Psychology, 47, 230-241. doi: 10.1016/j.jenvp. 2016.07.003
doi: 10.1016/j.jenvp. 2016.07.003
[84] Nemmi, F., Boccia, M., & Guariglia, C . ( 2017). Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training. Neuropsychol, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 24( 1), 29-44. doi: 10.1080/ 13825585.2016.1167162
doi: 10.1080/ 13825585.2016.1167162
[85] Nori, R., Grandicelli, S., & Giusberti, F . ( 2006). Visuo- spatial ability and wayfinding performance in real-world. Cognitive Processing, 7( S1), 135-137. doi: 10.1007/ s10339-006-0104-4
doi: 10.1007/ s10339-006-0104-4
[86] O'Keefe, J., & Burgess, N. (2005). Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells. Hippocampus, 15( 7), 853-866. doi: 10.1002/hipo.20115
doi: 10.1002/hipo.20115
[87] O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34( 1), 171-175.
[88] Packard, M. G., & McGaugh, J.L . ( 1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65( 1), 65-72. doi: 10.1006/nlme.1996.0007
doi: 10.1006/nlme.1996.0007
[89] Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., .. Bilder, R. M . ( 2002). Neurodevelopmental aspects of spatial navigation: A virtual reality fMRI study. NeuroImage, 15( 2), 396-406. doi: 10.1006/nimg.2001.0988
doi: 10.1006/nimg.2001.0988
[90] Ranjbar Pouya, O., Byagowi, A., Kelly, D. M., & Moussavi, Z . ( 2017). Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task. Quarterly journal of experimental psychology (Hove), 70( 7), 1406-1419. doi: 10.1080/17470218.2016.1187181
doi: 10.1080/17470218.2016.1187181
[91] Reisberg, B., Franssen, E. H., Hasan, S. M., Monteiro, I., Boksay, I., Souren, L. E., .. Kluger, A . ( 1999). Retrogenesis: Clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer's and other dementing processes. European Archives of Psychiatry and Clinical Neuroscience, 249( S3), 28-36.
[92] Rodgers, M. K., Sindone, J. A., 3rd, & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33( 1), 202 e215-222. doi: 10.1016/j.neurobiolaging. 2010.07.021
doi: 10.1016/j.neurobiolaging. 2010.07.021
[93] Ruggiero, G., D'Errico, O., & Iachini, T . ( 2016). Development of egocentric and allocentric spatial representations from childhood to elderly age. Psychological Research, 80( 2), 259-272. doi: 10.1007/s00426-015-0658-9
doi: 10.1007/s00426-015-0658-9
[94] Salthouse, T. A . ( 1979). Adult age and the speed-accuracy trade-off. Ergonomics, 22( 7), 811-821. doi: 10.1080/ 00140137908924659
doi: 10.1080/ 00140137908924659
[95] Sanders, A. E., Holtzer, R., Lipton, R. B., Hall, C., & Verghese, J . ( 2008). Egocentric and exocentric navigation skills in older adults. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63( 12), 1356-1363.
[96] Spiers, H. J., & Gilbert, S. J . ( 2015). Solving the detour problem in navigation: A model of prefrontal and hippocampal interactions. Frontiers in Human Neuroscience, 9, 125. doi: 10.3389/fnhum.2015.00125
doi: 10.3389/fnhum.2015.00125
[97] Stangl, M., Achtzehn, J., Huber, K., Dietrich, C., Tempelmann, C., & Wolbers, T . ( 2018). Compromised grid-cell-like representations in old age as a key mechanism to explain age-related navigational deficits. Current Biology, 28( 7), 1108- 1115 e1106. doi: 10.1016/j. cub.2018.02.038
doi: 10.1016/j. cub.2018.02.038
[98] Stark, S. M., & Stark, C. E. L . ( 2017). Age-related deficits in the mnemonic similarity task for objects and scenes. Behavioural Brain Research, 333, 109-117. doi: 10.1016/ j.bbr.2017.06.049
doi: 10.1016/ j.bbr.2017.06.049
[99] Tangen, G. G., Engedal, K., Bergland, A., Moger, T. A., Hansson, O., & Mengshoel, A. M . ( 2015). Spatial navigation measured by the Floor Maze Test in patients with subjective cognitive impairment, mild cognitive impairment, and mild Alzheimer's disease. International Psychogeriatrics, 27( 8), 1401-1409. doi: 10.1017/ S1041610215000022
doi: 10.1017/ S1041610215000022
[100] Tascon, L., Castillo, J., Leon, I., & Cimadevilla, J. M . ( 2018). Walking and non-walking space in an equivalent virtual reality task: Sexual dimorphism and aging decline of spatial abilities. Behavioural Brain Research, 347, 201-208. doi: 10.1016/j.bbr.2018.03.022
doi: 10.1016/j.bbr.2018.03.022
[101] Techentin, C., Voyer, D., & Voyer, S. D . ( 2014). Spatial abilities and aging: A meta-analysis. Experimental Aging Research, 40( 4), 395-425. doi: 10.1080/0361073X.2014.926773
doi: 10.1080/0361073X.2014.926773
[102] Topic, B., Willuhn, I., Palomero-Gallagher, N., Zilles, K., Huston, J. P., & Hasenohrl, R. U . ( 2007). Impaired maze performance in aged rats is accompanied by increased density of NMDA, 5-HT1A, and alpha-adrenoceptor binding in hippocampus. Hippocampus, 17( 1), 68-77. doi: 10.1002/hipo.20246
doi: 10.1002/hipo.20246
[103] Tu, S., Spiers, H. J., Hodges, J. R., Piguet, O., & Hornberger, M . ( 2017). Egocentric versus allocentric spatial memory in behavioral variant frontotemporal dementia and Alzheimer's Disease. Journal of Alzheimers Dissease, 59( 3), 883-892. doi: 10.3233/jad-160592
doi: 10.3233/jad-160592
[104] Tu, S., Wong, S., Hodges, J. R., Irish, M., Piguet, O., & Hornberger, M . ( 2015). Lost in spatial translation - a novel tool to objectively assess spatial disorientation in Alzheimer's disease and frontotemporal dementia. Cortex, 67, 83-94. doi: 10.1016/j.cortex.2015.03.016
doi: 10.1016/j.cortex.2015.03.016
[105] van Meer, P., & Raber, J. (2005). Mouse behavioural analysis in systems biology. Biochemical Journal, 389(Pt 3), 593-610. doi: 10.1042/BJ20042023
doi: 10.1042/BJ20042023
[106] Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., .. Li, K . ( 2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI. NeuroImage, 31( 2), 496-504. doi: 10.1016/j. neuroimage.2005.12.033
doi: 10.1016/j. neuroimage.2005.12.033
[107] Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T . ( 2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. Journal of Neuroscience, 33( 14), 6012-6017. doi: 10.1523/JNEUROSCI.0717-12.2013
doi: 10.1523/JNEUROSCI.0717-12.2013
[108] Wilson, I. A., Gallagher, M., Eichenbaum, H., & Tanila, H . ( 2006). Neurocognitive aging: Prior memories hinder new hippocampal encoding. Trends in Neurosciences, 29( 12), 662-670. doi: 10.1016/j.tins.2006.10.002
doi: 10.1016/j.tins.2006.10.002
[109] Wilson, K. D., Woldorff, M. G., & Mangun, G. R . ( 2005). Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames. NeuroImage, 25( 3), 668-683. doi: 10. 1016/j.neuroimage.2004.07.075
doi: 10. 1016/j.neuroimage.2004.07.075
[110] Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14( 3), 138-146. doi: 10.1016/j.tics.2010.01.001
doi: 10.1016/j.tics.2010.01.001
[111] Wolbers, T., Wiener, J. M., Mallot, H. A., & Buchel, C . ( 2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. Journal of Neuroscience, 27( 35), 9408-9416. doi: 10.1523/JNEUROSCI.2146-07.2007
doi: 10.1523/JNEUROSCI.2146-07.2007
[112] Wood, R. A., Bauza, M., Krupic, J., Burton, S., Delekate, A., Chan, D., & O'Keefe, J . ( 2018). The honeycomb maze provides a novel test to study hippocampal-dependent spatial navigation. Nature, 554( 7690), 102-105. doi: 10.1038/ nature25433
doi: 10.1038/ nature25433
[113] Wu, Z., Gao, Y., Shi, F., Ma, G., Jewells, V., & Shen, D . ( 2018). Segmenting hippocampal subfields from 3T MRI with multi-modality images. Medical Image Analysis, 43, 10-22. doi: 10.1016/j.media.2017.09.006
doi: 10.1016/j.media.2017.09.006
[114] Yassa, M. A., Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E . ( 2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21( 9), 968-979. doi: 10.1002/hipo.20808
doi: 10.1002/hipo.20808
[115] Yin, S., Zhu, X., Huang, X., & Li, J . ( 2015). Visuospatial characteristics of an elderly Chinese population: Results from the WAIS-R block design test. Frontiers in Aging Neuroscience, 7, 17. doi: 10.3389/fnagi.2015.00017
doi: 10.3389/fnagi.2015.00017
[1] CHEN Xiaowen, CAI Wenshu, XIE Tong, FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders[J]. Advances in Psychological Science, 2020, 28(1): 98-110.
[2] WEI Tongqi, CAO Hui, BI Hong-Yan, YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms[J]. Advances in Psychological Science, 2020, 28(1): 75-84.
[3] WANG Xin, HANG Mingli, LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing[J]. Advances in Psychological Science, 2020, 28(1): 62-74.
[4] Zhongjun WANG,Liyao ZHANG,Yinyin YANG,Renhua WANG,Yisheng PENG. Job crafting in late career stage and successful aging at work[J]. Advances in Psychological Science, 2019, 27(9): 1643-1655.
[5] LI Ying,ZHANG Can,WANG Yue. The effect of moral emotions on the metaphorical mapping of morality and its neural mechanism[J]. Advances in Psychological Science, 2019, 27(7): 1224-1231.
[6] ZHU Zhaoxia,LIU Li,CUI Lei,PENG Danling. The influence of writing on reading: Evidence from the contrast between traditional writing and typing[J]. Advances in Psychological Science, 2019, 27(5): 796-803.
[7] LIU Haoran,ZHANG Chenfeng,YANG Li. The neural mechanism underlying resilience[J]. Advances in Psychological Science, 2019, 27(2): 312-321.
[8] ZHANG Liyao,WANG Zhongjun. Research status and localization development of retirement planning[J]. Advances in Psychological Science, 2019, 27(2): 251-267.
[9] ZHANG Aizhen,WANG Yao,LI Jing. The cognitive aging effect of route knowledge acquisition[J]. Advances in Psychological Science, 2019, 27(2): 242-250.
[10] LIU Haining,LIU Xiaoqian,LIU Haihong,LI Feng,HAN Buxin. The mechanism of positivity effect in elderly’s emotional attention[J]. Advances in Psychological Science, 2019, 27(12): 2064-2076.
[11] WEI Liuqing,ZHANG Xuemin. The neural mechanism of multiple object tracking[J]. Advances in Psychological Science, 2019, 27(12): 2007-2018.
[12] XIE Xiaofei,DENG Zhou,LI Mushi,ZHU Minfan. Marching to the rhythm of “quality of life” on elders[J]. Advances in Psychological Science, 2019, 27(11): 1793-1801.
[13] ZHAO Mengyang,GUO Ruoyu,MAO Weibin,ZHAO Cancan. Age-related associative memory deficit and its influential factors[J]. Advances in Psychological Science, 2019, 27(10): 1677-1686.
[14] ZHAO Peiqiong,CHEN Wei,ZHANG Jing,PING Xianjie. The rubber hand illusion (RHI): The experimental paradigm of sense of ownership and its application[J]. Advances in Psychological Science, 2019, 27(1): 37-50.
[15] Wenjing PAN,Fangfang WEN,Bin ZUO. Aging stereotype threat and it’s manipulations in psychological research[J]. Advances in Psychological Science, 2018, 26(9): 1670-1679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech