Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (2) : 278-288     DOI: 10.3724/SP.J.1042.2019.00278
Regular Articles |
Brain plasticity under early auditory deprivation: Evidence from congenital hearing-impaired people
ZHANG Changxin()
Department of Education and Rehabilitation, Faculty of Education, East China Normal University, Shanghai 200062, China
Download: PDF(567 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The development of cerebral cortical depends on the input of external sensory stimuli. Due to early auditory deprivation, congenital hearing-impaired people often have disorders in cortical function. The function of their primary auditory cortex is degraded, the functional connectivity between the primary and the secondary auditory cortex is weakened, and the secondary auditory cortex experience cross-modal reorganization. After hearing restoration, the cross-modal function reorganization remains in the secondary auditory cortex, and speech processing requires complementary higher cognitive resource. Future studies are needed on the long-term plasticity of cortex, the mechanism of speech processing under complex auditory environment, and the uniqueness of Chinese language processing after hearing reconstruction.

Keywords early auditory deprivation      brain plasticity      auditory cortex      cross-modal reorganization     
ZTFLH:  B845  
Corresponding Authors: Changxin ZHANG     E-mail: changxin_zhang@126.com
Issue Date: 25 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Changxin ZHANG
Cite this article:   
Changxin ZHANG. Brain plasticity under early auditory deprivation: Evidence from congenital hearing-impaired people[J]. Advances in Psychological Science, 2019, 27(2): 278-288.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.00278     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I2/278
1 张明, 陈骐 . ( 2003). 听觉障碍人群的皮层可塑性.中国特殊教育, 40( 4), 43-48.
url: http://www.cnki.com.cn/Article/CJFDTotal-ZDTJ200304008.htm
2 郑菁婧, 李舒婧, 于翔 ( 2014). 自然感觉刺激对脑发育的影响.生命科学, 26( 11), 1103-1106.
url: http://www.cnki.com.cn/Article/CJFDTotal-SMKX201411001.htm
3 Anderson C. A., Lazard D. S., &Hartley D. E. H .( 2017). Plasticity in bilateral superior temporal cortex: Effects of deafness and cochlear implantation on auditory and visual speech processing.Hearing Research, 343, 138-149.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595516301174
4 Barone P., Strelnikov K., & Déguine O. ( 2013). Role of audiovisual plasticity in speech recovery after adult cochlear implantation. In Auditory-Visual Speech Processing (AVSP) 2013 .
url: http://avsp2013.loria.fr/proceedings/papers/ paper_26.pdf
5 Bayat A., Farhadi M., Emamdjomeh H., Saki N., Mirmomeni G., & Rahim F . ( 2017). Effect of conductive hearing loss on central auditory function.Brazilian Journal of Otorhinolaryngology, 83( 2), 137-141.
url: https://linkinghub.elsevier.com/retrieve/pii/S1808869416300465
6 Bellis T. J. ( 2011). Assessment & Management of Central Auditory Processing Disorders in the Educational Setting: From Science to Practice. Plural Publishing.
7 Birchwood M., Todd P., & Jackson C . ( 1998). Early intervention in psychosis. The critical period hypothesis.The British Journal of Psychiatry. Supplement, 172( 33), 53-59.
8 Bola L., Zimmermann M., Mostowski P., Jednoróg K., Marchewka A., Rutkowski P., & Szwed M . ( 2017). Task-specific reorganization of the auditory cortex in deaf humans.Proceedings of the National Academy of Sciences, 114( 4), E600-E609.
url: http://www.pnas.org/lookup/doi/10.1073/pnas.1609000114
9 Brenneman L., Cash E., Chermak G. D., Guenette L., Masters G., Musiek F. E., .. Weihing J . ( 2017). The relationship between central auditory processing, language, and cognition in children being evaluated for central auditory processing disorder.Journal of the American Academy of Audiology, 28( 8), 758-769.
url: http://www.ingentaconnect.com/content/10.3766/jaaa.16119
10 Butler B. E., Chabot N., Kral A., & Lomber S. G . ( 2017). Origins of thalamic and cortical projections to the posterior auditory field in congenitally deaf cats.Hearing Research, 343, 118-127.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595516301319
11 Campbell J. & Sharma, A. ( 2014). Cross-modal re-organization in adults with early stage hearing loss.PloS One, 9( 2), e90594.
url: https://dx.plos.org/10.1371/journal.pone.0090594
12 Campbell J. & Sharma, A. ( 2016). Visual cross-modal re- organization in children with cochlear implants.PloS One, 11( 1), e0147793.
url: http://dx.plos.org/10.1371/journal.pone.0147793
13 Cardin V., Orfanidou E., Rönnberg J., Capek C. M., Rudner M., & Woll B . ( 2013). Dissociating cognitive and sensory neural plasticity in human superior temporal cortex.Nature Communications, 4, 1473.
url: http://www.nature.com/articles/ncomms2463
14 Carey S., &Gelman R. ( 2014) The Epigenesis of Mind: Essays on Biology and Cognition Psychology Press Essays on Biology and Cognition. Psychology Press.
15 Chang Y-P., Chang R. Y., Lin C-Y., & Luo X . ( 2016). Mandarin tone and vowel recognition in cochlear implant users: Effects of talker variability and bimodal hearing.Ear and Hearing, 37( 3), 271-281.
url: http://Insights.ovid.com/crossref?an=00003446-201605000-00004
16 Chen L-C., Sandmann P., Thorne J. D., Bleichner M. G., & Debener S . ( 2016). Cross-modal functional reorganization of visual and auditory cortex in adult cochlear implant users identified with fNIRS.Neural Plasticity, 2016, 13.
17 Clemo H. R., Lomber S. G., & Meredith M. A . ( 2014). Synaptic basis for cross-modal plasticity: enhanced supragranular dendritic spine density in anterior ectosylvian auditory cortex of the early deaf cat.Cerebral Cortex, 26( 4), 1365-1376.
18 de Ribaupierre F . ( 1997). Acoustical information processing in the auditory thalamus and cerebral cortex. In Ehret, G. & Romand, R. (Eds.) The Central Auditory System (pp. 317-397). New York, Oxford University Press.
19 de Schonen S., Bertoncini J., Petroff N., Couloigner V。, & Van Den Abbeele T . ( 2018). Visual cortical activity before and after cochlear implantation: A follow up ERP prospective study in deaf children.International Journal of Psychophysiology, 123, 88-102.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876016307280
20 Deniz B., Jeanne C., Carina P., Benard M. R., Pranesh B., Jefta S., … Etienne G . ( 2016). Cognitive compensation of speech perception with hearing impairment, cochlear implants, and aging: How and to what degree can it be achieved?.Trends in Hearing, 20.
21 Dewey R.S., & Hartley, D. E.H . ( 2015). Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy.Hearing Research, 325, 55-63.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595515000726
22 Du Y., He Y., Arnott S. R., Ross B., Wu X., Li L., & Alain C . ( 2015). Rapid tuning of auditory “what” and “where” pathways by training.Cerebral Cortex, 25( 2), 496-506.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bht251
23 Feng G., Ingvalson E. M., Grieco-Calub T. M., Roberts M. Y., Ryan M. E., Birmingham P。, Wong P. C. M . ( 2018). Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients.Proceedings of the National Academy of Sciences of the United States of America, 115( 5), E1022-E1031.
24 Ferrari M. & Quaresima, V. ( 2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.Neurolmage, 63( 2), 921-935.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811912003308
25 Fine I., Finney E. M., Boynton G. M., & Dobkins K. R . ( 2005). Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex.Journal of Cognitive Neuroscience, 17( 10), 1621-1637.
url: http://www.mitpressjournals.org/doi/10.1162/089892905774597173
26 Hauthal N., Thorne J. D., Debener S., & Sandmann P . ( 2014). Source localisation of visual evoked potentials in congenitally deaf individuals.Brain Topography, 27( 3), 412-424.
url: http://link.springer.com/10.1007/s10548-013-0341-7
27 Hensch T.K . ( 2005). Critical period plasticity in local cortical circuits.Nature Reviews Neuroscience, 6( 11), 877-888.
28 Hirshorn E. A., Dye M. W. G., Hauser P. C., Supalla T. R., & Bavelier D . ( 2014). Neural networks mediating sentence reading in the deaf.Frontiers in Human Neuroscience, 8, 394.
29 Hopkins K. & Moore, B.C . ( 2010). The importance of temporal fine structure information in speech at different spectral regions for normal-hearing and hearing-impaired subjects.Journal of the Acoustical Society of America, 127( 3), 1595-1608.
url: http://asa.scitation.org/doi/10.1121/1.3293003
30 Hossain M. D., Raghunandhan S., Kameswaran M., & Ranjith R . ( 2013). A clinical study of cortical auditory evoked potentials in cochlear implantees.Indian Journal of Otolaryngology and Head & Neck Surgery, 65( 3), 587-593.
url: http://dx.doi.org/dian Journal of Otolaryngology and Head
31 Houston D.M., & Miyamoto, R.T . ( 2010). Effects of early auditory experience on word learning and speech perception in deaf children with cochlear implants: implications for sensitive periods of language development.Otology and Neurotology, 31( 8), 1248-1253.
url: https://insights.ovid.com/crossref?an=00129492-201010000-00014
32 Huttenlocher P.R . ( 1999). Dendritic and synaptic development in human cerebral cortex: time course and critical periods.Developmental Neuropsychology, 16( 3), 347-349.
url: http://www.tandfonline.com/doi/abs/10.1207/S15326942DN1603_12
33 Gilley P.M., & Sharma, A. ( 2010). Functional brain dynamics of evoked and event-related potentials from the central auditory system.Perspectives on Hearing and Hearing Disorders: Research and Diagnostics, 14( 1), 12-20.
url: http://sig6perspectives.pubs.asha.org/article.aspx?doi=10.1044/hhd14.1.12
34 Gori M., Chilosi A., Forli F., & Burr D . ( 2017). Audio-visual temporal perception in children with restored hearing.Neuropsychologia, 99, 350-359.
url: https://linkinghub.elsevier.com/retrieve/pii/S0028393217301057
35 Hickok G. & Poeppel, D. ( 2015). Neural basis of speech perception.Handbook of Clinical Neurology, 129, 149-160.
url: https://linkinghub.elsevier.com/retrieve/pii/B9780444626301000081
36 Kim B. G., Kim J. W., Park J. J., Kim S. H., Kim H. N., & Choi J. Y . ( 2015). Adverse events and discomfort during magnetic resonance imaging in cochlear implant recipients.JAMA Otolaryngology-Head & Neck Surgery, 141( 1), 45-52.
url: http://dx.doi.org/Otolaryngology-Head
37 Kok M.A., & Lomber, S.G . ( 2017). Origin of the thalamic projection to dorsal auditory cortex in hearing and deafness.Hearing Research, 343, 108-117.
url: https://linkinghub.elsevier.com/retrieve/pii/S037859551630123X
38 Koravand A., Jutras B., & Lassonde M . ( 2017). Abnormalities in cortical auditory responses in children with central auditory processing disorder.Neuroscience, 346, 135-148.
url: https://linkinghub.elsevier.com/retrieve/pii/S0306452217300179
39 Kral A. & Eggermont, J.J . ( 2007). What's to lose and what's to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity.Brain Research Reviews, 56( 1), 259-269.
url: https://linkinghub.elsevier.com/retrieve/pii/S0165017307001877
40 Kral A., Tillein J., Heid S., Hartmann R., & Klinke R . ( 2004). Postnatal cortical development in congenital auditory deprivation.Cerebral Cortex, 15( 5), 552-562.
41 Lambertz N., Gizewski E. R., de Greiff A., & Forsting M . ( 2005). Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss.Cognitive Brain Research, 25( 3), 884-890.
url: https://linkinghub.elsevier.com/retrieve/pii/S0926641005002715
42 Lazard D. S., Innes-Brown H., & Barone P . ( 2014). Adaptation of the communicative brain to post-lingual deafness. Evidence from functional imaging.Hearing Research, 307, 136-143.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595513001974
43 Li J-N., Chen S., Zhai L., Han D-Y., Eshraghi A. A., Feng Y., .. Liu X-Z . ( 2017). The advances in hearing rehabilitation and cochlear implants in China.Ear and Hearing, 38( 6), 647-652.
url: http://Insights.ovid.com/crossref?an=00003446-201711000-00001
44 Lin F. R., Ferrucci L., An Y., Goh J. O., Doshi J., Metter E. J., .. Resnick S. M . ( 2014). Association of hearing impairment with brain volume changes in older adults.Neurolmage, 90, 84-92.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811914000032
45 Lomber S.G . ( 2017). What is the function of auditory cortex when it develops in the absence of acoustic input?.Cognitive Development, 42, 49-61.
url: https://linkinghub.elsevier.com/retrieve/pii/S0885201416300880
46 Lomber S. G., Meredith M. A., & Kral A . ( 2011). Adaptive crossmodal plasticity in deaf auditory cortex: Areal and laminar contributions to supranormal vision in the deaf.Progress in Brain Research, 191, 251-270.
url: http://dx.doi.org/10.1016/B978-0-444-53752-2.00001-1
47 Mistrík P., Jolly C., Sieber D., & Hochmair I . ( 2018). Challenging aspects of contemporary cochlear implant electrode array design.World Journal of Otorhinolaryngology- Head and Neck Surgery, 3( 4), 192-199.
48 Moon I.J., & Hong, S.H . ( 2014). What is temporal fine structure and why is it important?.Korean Journal of Audiology, 18( 1), 1-7.
url: http://ejao.org/journal/view.php?doi=10.7874/kja.2014.18.1.1
49 Morosan P., Rademacher J., Schleicher A., Amunts K., Schormann T., & Zilles K . ( 2001). Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system.Neurolmage, 13( 4), 684-701.
50 Mortensen M. V., Mirz F., & Gjedde A . ( 2006). Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness.Neurolmage,31( 2), 842-852.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811905025589
51 Näätänen R. & Picton, T. ( 1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure.Psychophysiology, 24( 4), 375-425.
url: http://www.blackwell-synergy.com/toc/psyp/24/4
52 Narain C., Scott S. K., Wise R. J. S., Rosen S., Leff A., Iversen S. D., & Matthews P. M . ( 2003). Defining a left-lateralized response specific to intelligible speech using fMRI.Cerebral Cortex, 13( 12), 1362-1368.
53 Neville H. J., Bavelier D., Corina D., Rauschecker J., Karni A., Lalwani A., .. Turner R . ( 1998). Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience.Proceedings of the National Academy of Sciences of the United States of America, 95( 3), 922-929.
54 Olds C., Pollonini L., Abaya H., Larky J., Loy M., Bortfeld H., .. Oghalai J. S . ( 2016). Cortical activation patterns correlate with speech understanding after cochlear implantation.Ear and Hearing, 37( 3), e160-e172.
url: http://Insights.ovid.com/crossref?an=00003446-201605000-00017
55 Papagno C., Minniti G., Mattavelli G. C., Mantovan L., & Cecchetto C . ( 2017). Tactile short-term memory in sensory-deprived individuals.Experimental Brain Research, 235( 2), 471-480.
url: http://link.springer.com/10.1007/s00221-016-4808-0
56 Petersen B., Gjedde A., Wallentin M., & Vuust P. ( 2013). Cortical plasticity after cochlear implantation. Neural Plasticity, 2013,
url: http://dx.doi.org/10.1155/2013/318521
57 Ponton C.W., & Eggermont, J.J . ( 2001). Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use.Audiology and Neurotology, 6( 6), 363-380.
58 Ponton C., Eggermont J. J., Khosla D., Kwong B., & Don M . ( 2002). Maturation of human central auditory system activity: Separating auditory evoked potentials by dipole source modeling.Clinical Neurophysiology, 113( 3), 407-420.
url: http://linkinghub.elsevier.com/retrieve/pii/S1388245701007337
59 Peelle J. E., Johnsrude I. S., & Davis M. H . ( 2010). Hierarchical processing for speech in human auditory cortex and beyond.Frontiers in Human Neuroscience, 4, 51.
60 Peelle J. E., Troiani V., Grossman M., & Wingfield A . ( 2011). Hearing loss in older adults affects neural systems supporting speech comprehension.Journal of Neuroscience, 31( 35), 12638-12643.
61 Penfield W., & Roberts L. .( 1959) . Speech and Brain MechanismsL. Princeton, NJ, US: Princeton University Press.
62 Rauschecker J.P . ( 2017). Where, when, and how: Are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition.Cortex, 98, 262-268
63 Rouger J., Lagleyre S., Démonet J. F., Fraysse B., Deguine O., & Barone P ., ( 2012). Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients.Human. Brain Mapping. 33( 8), 1929-1940.
64 Sandmann P., Dillier N., Eichele T., Meyer M., Kegel A., Pascual-Marqui R. D., … Debener S . ( 2012). Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users.Brain, 135( 2), 555-568.
url: https://academic.oup.com/brain/article/135/2/555/262965
65 Sandmann P., Eichele T., Buechler M., Debener S., Jancke L., Dillier N., … Meyer M . ( 2009). Evaluation of evoked potentials to dyadic tones after cochlear implantation.Brain, 132( 7), 1967-1979.
url: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awp034
66 Schorr E. A., Roth F. P., & Fox N. A . ( 2008). A comparison of the speech and language skills of children with cochlear implants and children with normal hearing.Communication Disorders Quarterly, 29( 4), 195-210.
url: http://journals.sagepub.com/doi/10.1177/1525740108321217
67 Schreiner C.E., Read H. L., &Sutter, M.L . ( 2000). Modular organization of frequency integration in primary auditory cortex.Annual Review of Neuroscience, 23, 501-529.
url: http://www.annualreviews.org/doi/10.1146/annurev.neuro.23.1.501
68 Scott G. D., Karns C. M., Dow M. W., Stevens C., & Neville H. J . ( 2014). Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.Frontiers in Human Neuroscience, 8, 177.
69 Sharma A., Campbell J., & Cardon G . ( 2015). Developmental and cross-modal plasticity in deafness: Evidence from the P1 and N1 event related potentials in cochlear implanted children.International Journal of Psychophysiology, 95( 2), 135-144.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876014000968
70 Sharma A., Dorman M. F., & Kral A . ( 2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants.Hearing Research, 203( 1-2), 134-143.
71 Sharma A., Dorman M. F., & Spahr A. J . ( 2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation.Ear and Hearing, 23( 6), 532-539.
72 Sharma A., Nash A. A., & Dorman M . ( 2009). Cortical development, plasticity and re-organization in children with cochlear implants.Journal of communication disorders, 42( 4), 272-279.
url: https://linkinghub.elsevier.com/retrieve/pii/S0021992409000306
73 Sharp A., Landry S. P., Maheu M., & Champoux F . ( 2018). Deafness alters the spatial mapping of touch.PloS one, 13( 3), e0192993.
url: https://dx.plos.org/10.1371/journal.pone.0192993
74 Shiell M. M., Champoux F., & Zatorre R. J . ( 2014). Enhancement of visual motion detection thresholds in early deaf people.PLoS One, 9( 2), e90498.
url: https://dx.plos.org/10.1371/journal.pone.0090498
75 Shinn-Cunningham B.G., & Best, V. ( 2008). Selective attention in normal and impaired hearing.Trends in Amplification, 12( 4), 283-299.
url: http://journals.sagepub.com/doi/10.1177/1084713808325306
76 Silva L. A., Couto M. I., Tsuji R. K., Bento R. F., Matas C. G., & Carvalho A. C . ( 2014). Auditory pathways' maturation after cochlear implant via cortical auditory evoked potentials.Brazilian Journal of Otorhinolaryngology, 80( 2), 131-137.
url: https://linkinghub.elsevier.com/retrieve/pii/S1808869414500389
77 Stephen J. M., Hill D. E., Peters A., Flynn L., Zhang T., & Okada Y . ( 2017). Development of auditory evoked responses in normally developing preschool children and children with autism spectrum disorder.Developmental Neuroscience, 39( 5), 430-441.
url: https://www.karger.com/Article/FullText/477614
78 Strelnikov K., Marx M., Lagleyre S., Fraysse B., Deguine O., & Barone P . ( 2015 a). PET-imaging of brain plasticity after cochlear implantation.Hearing Research, 322, 180-187.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595514001658
79 Strelnikov K., Rouger J., Lagleyre S., Fraysse B., Démonet J-F., Déguine O., & Barone P . ( 2015 b). Increased audiovisual integration in cochlear-implanted deaf patients: Independent components analysis of longitudinal positron emission tomography data.European Journal of Neuroscience, 41( 5), 677-685.
url: http://doi.wiley.com/10.1111/ejn.12827
80 Stuart G., Spruston N., &Häusser M.(Eds.). ( 2016). Dendrites. Oxford University Press.
81 Tao D., Deng R., Jiang Y., Galvin III J. J., Fu Q-J., & Chen B . ( 2015). Melodic pitch perception and lexical tone perception in Mandarin-speaking cochlear implant users.Ear and Hearing, 36( 1), 102-110.
url: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003446-201501000-00011
82 Tomlin D. & Rance, G. ( 2016). Maturation of the central auditory nervous system in children with auditory processing disorder.In Seminars in Hearing, 37( 1), 74-83.
url: http://www.thieme-connect.de/products/ejournals/journal/10.1055/s-00000067
83 Viola F. C., De Vos M., Hine J., Sandmann P., Bleeck S., Eyles J., & Debener S . ( 2012). Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials.Hearing Research, 284( 1-2), 6-15.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595511003030
84 Wagner L., Maurits N., Maat B., Başkent D., & Wagner A. E . ( 2018). The cochlear implant EEG artifact recorded from an artificial brain for complex acoustic stimuli.IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26( 2), 392-399.
url: https://ieeexplore.ieee.org/document/8246537/
85 Wiggins I. M., Anderson C. A., Kitterick P. T., &Hartley D. E. H . ( 2016). Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?.Hearing Research, 339, 142-154.
url: https://linkinghub.elsevier.com/retrieve/pii/S0378595516300570
86 Wiggins I. M., Hartley D. E. H ., ( 2015). A synchrony- dependent influence of sounds on activity in visual cortex measured using functional near-infrared spectroscopy (fNIRS).PLoS One 10( 3), e0122862.
87 Woldorff M. G., Gallen C. C., Hampson S. A., Hillyard S. A., Pantev C., Sobel D., & Bloom F. E . ( 1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention.Proceedings of the National Academy of Sciences of the United States of America, 90( 18), 8722-8726.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.90.18.8722
88 Xu Y. Y., Chen M., Lafaire P., Tan X. D., & Richter C. P . ( 2017). Distorting temporal fine structure by phase shifting and its effects on speech intelligibility and neural phase locking.Scientific Report, 7(1).
89 Zeng F.G . ( 2017). Challenges in improving cochlear implant performance and accessibility.IEEE Transactions on Biomedical Engineering, 64( 8), 1662-1664.
url: http://ieeexplore.ieee.org/document/7955074/
90 Zeng F.G., & Fay, R.R . Eds.( 2013). Cochlear Implants: Auditory Prostheses and Electric Hearing. Springer Science & Business Media.
url: http://dx.doi.org/ger Science
91 Zeng F-G., Tang Q., & Lu T . ( 2014). Abnormal pitch perception produced by cochlear implant stimulation.Plos One, 9( 2), e88662.
url: https://dx.plos.org/10.1371/journal.pone.0088662
[1] CHENG Kai-Wen,DENG Yan-Hui,YAN Hong-Mei. Second language learning and brain plasticity[J]. Advances in Psychological Science, 2019, 27(2): 209-220.
[2] HUO Lijuan, ZHENG Zhiwei, LI Jin, LI Juan.  The plasticity of aging brain: Evidence from cognitive training[J]. Advances in Psychological Science, 2018, 26(5): 846-858.
[3] DING Guo-Sheng;LI Yan-Yan. The Role of Early Sign-language Experience in Shaping the Structure and Function of the Deaf Brain[J]. , 2012, 20(3): 328-337.
[4] TAO Wei-Dong;SUN Hong-Jin;ZHANG Xu-Dong;ZHENG Jian-Hong. The Neural-mechanisms of the Formation of Inversion Effect in Non-face Object Recognition[J]. , 2011, 19(8): 1104-1114.
[5] LI Yan-Wei;LI Yan-Fang. The Relationship Between Cognitive and Brain Development in Children and Adolescents
[J]. , 2010, 18(11): 1700-1706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech