Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (11) : 1901-1914     DOI: 10.3724/SP.J.1042.2018.01901
Editor-In-Chief Invited |
Research debate: Does spatial attention modulate C1 component?
Shimin FU(),Xiaowen CHEN,Yuqi LIU
Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
Download: PDF(880 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

In the event-related potential (ERP) studies of visual attention, there is a debate regarding whether the C1 component, originated in V1, is modulated by spatial attention. The majority view suggests that C1 is not directly modulated by spatial attention; however, there is a delayed-feedback in V1. The minority view, on the other hand, implies that the C1 component can be directly modulated by spatial attention at the early feed-forward processing stage. Recently there was a debate regarding this issue. In this review, we first summarize the main points and evidence for each side. Second, we listed the factors that may affect the C1 attentional effects. Third, we review and comments on the recent discussions on three aspects, including the repeatability of C1 attentional effect, the role of perceptual and attentional load in eliciting this effect, and the relationship between C1 polarity reversal and its V1-origin. Finally we proposed two points of view: the first is that we should be open and cautious towards the minority view, and the second, there are some techniques and methods that may help to reveal the potential C1 attentional effect. In conclusion, the majority view has been supported by many previous studies and the minority view needs more decisive evidence, and this debate will continue.

Keywords attention      C1      event-related potential (ERP)     
ZTFLH:  B842.2  
Corresponding Authors: Shimin FU     E-mail: fusm@gzhu.edu.cn
Issue Date: 26 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shimin FU
Xiaowen CHEN
Yuqi LIU
Cite this article:   
Shimin FU,Xiaowen CHEN,Yuqi LIU. Research debate: Does spatial attention modulate C1 component?[J]. Advances in Psychological Science, 2018, 26(11): 1901-1914.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01901     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I11/1901
[1] 陈建, 袁杰, 汪海玲, 王妍, 傅世敏 . ( 2013). C1 调制效应的理论评述及影响因素. 心理科学进展, 21( 3), 407-417
url: http://d.wanfangdata.com.cn/Periodical/xlxdt201303004
[2] Ales, J. M., Yates, J. L., & Norcia, A. M. ( 2010). V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage, 52( 4), 1401-1409.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811910007226
[3] Ales, J. M., Yates, J. L., & Norcia, A. M. ( 2013). On determining the intercranial sources of visual evoked potentials from scalp topography: A reply to Kelly et al. (this issue). Neuroimage, 64, 703-711.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811912009184
[4] Bahrami, B., Carmel, D., Walsh, V., Rees, G., & Lavie, N. ( 2008). Spatial attention can modulate unconscious orientation processing. Perception, 37( 10), 1520-1528.
pmid: 19065856 url: http://journals.sagepub.com/doi/10.1068/p5999
[5] Baumgartner, H. M., Graulty, C. J., Hillyard, S. A., & Pitts, M. A. ( 2018). Does spatial attention modulate the C1 component? The jury continues to deliberate. Cognitive Neuroscience, 9( 1-2), 34-37.
pmid: 28956499 url: https://www.tandfonline.com/doi/full/10.1080/17588928.2017.1386169
[6] Bayer, M., Rossi, V., Vanlessen, N., Grass, A., Schacht, A., & Pourtois, G. ( 2017). Independent effects of motivation and spatial attention in the human visual cortex. Social Cognitive and Affective Neuroscience, 12( 1), 146-156.
[7] Clark, V.P., & Hillyard, S.A . ( 1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of Cognitive Neuroscience, 8( 5), 387-402.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.1996.8.5.387
[8] Dassanayake, T. L., Michie, P. T., & Fulham, R. ( 2016). Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex. International Journal of Psychophysiology, 105, 9-16.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876016300496
[9] Desimone, R., & Duncan, J.( 1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.
url: http://www.annualreviews.org/doi/10.1146/annurev.ne.18.030195.001205
[10] Di Russo, F., Martinez, A., & Hillyard, S. A. ( 2003). Source analysis of event-related cortical activity during visuo- spatial attention. Cerebral Cortex, 13( 5), 486-499.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/13.5.486
[11] Ding, Y. L., Martinez, A., Qu, Z., & Hillyard, S. A. ( 2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35( 7), 3008-3024.
url: http://doi.wiley.com/10.1002/hbm.22381
[12] Fu, S.M. ( 2018a). Open and cautious towards the “minority view”. Cognitive Neuroscience, 9( 1-2), 28-30.
[13] Fu, S.M. ( 2018b). ‘Tricks’ for revealing potential attentional modulations on the C1 component. Cognitive Neuroscience, 9( 1-2), 63-64.
pmid: 28944720 url: http://europepmc.org/abstract/MED/28944720
[14] Fu, S. M., Caggiano, D. M., Greenwood, P. M., & Parasuraman, R. ( 2005b). Event-related potentials reveal dissociable mechanisms for orienting and focusing visuospatial attention. Cognitive Brain Research, 23( 2-3), 341-353.
url: http://linkinghub.elsevier.com/retrieve/pii/S092664100400312X
[15] Fu, S. M.,Fan, S. L.,Chen, L., & Zhuo, Y. ( 2001). The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clinical Neurophysiology, 112( 1), 172-185.
pmid: 11137676 url: http://linkinghub.elsevier.com/retrieve/pii/S1388245700005009
[16] Fu, S. M., Fedota, J., Greenwood, P. M., & Parasuraman, R. ( 2010a). Early interaction between perceptual load and involuntary attention: An event-related potential study. Neuroscience Letters, 468( 1), 68-71.
url: http://linkinghub.elsevier.com/retrieve/pii/S0304394009014098
[17] Fu, S. M., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. ( 2010b). Dissociation of visual C1 and P1 components as a function of attentional load: an event-related potential study. Biological Psychology, 85( 1), 171-178.
url: http://linkinghub.elsevier.com/retrieve/pii/S0301051110001808
[18] Fu, S. M., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. ( 2012). Attentional load is not a critical factor for eliciting C1 attentional effect - A reply to Rauss, Pourtois, Vuillenumier, and Schwartz. Biological Psychology, 91( 2), 321-324.
url: http://linkinghub.elsevier.com/retrieve/pii/S0301051112000749
[19] Fu, S.M.,Greenwood, P.M., & Parasuraman, R.( 2005a). Brain mechanisms of involuntary visuospatial attention: An event-related potential study. Human Brain Mapping, 25( 4), 378-390.
url: http://doi.wiley.com/10.1002/%28ISSN%291097-0193
[20] Fu, S. M., Huang, Y. X., Luo, Y. J., Wang, Y., Fedota, J., Greenwood, P. M., & Parasuraman, R. ( 2009). Perceptual load interacts with involuntary attention at early processing stages: Event-related potential studies. Neuroimage, 48( 1), 191-199.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811909006636
[21] Fu, S. M., Zinni, M., Squire, P. N., Kumar, R., Caggiano, D. M., & Parasuraman, R. ( 2008). When and where perceptual load interacts with voluntary visuospatial attention: An event-related potential and dipole modeling study. Neuroimage, 39( 3), 1345-1355.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811907008968
[22] Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., ... Hillyard, S. A. ( 1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543-546.
url: http://www.nature.com/articles/372543a0
[23] Herde, L., Rossi, V., Pourtois, G., & Rauss, K. ( 2018). Early retinotopic responses to violations of emotion-location associations may depend on conscious awareness. Cognitive Neuroscience, 9( 1-2), 38-55.
url: https://www.tandfonline.com/doi/full/10.1080/17588928.2017.1338250
[24] Hillyard, S. A., Vogel, E. K., & Luck, S. J. ( 1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353( 1373), 1257-1270.
url: http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.1998.0281
[25] Hopfinger, J.B., & Mangun, G.R . ( 1998). Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychological Science, 9( 6), 441-447.
pmid: 4552358 url: http://journals.sagepub.com/doi/10.1111/1467-9280.00083
[26] Jeffreys, D.A., & Axford, J.G . ( 1972a). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research, 16( 1), 1-21.
[27] Jeffreys, D.A., & Axford, J.G . ( 1972b). Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Experimental Brain Research, 16( 1), 22-40.
[28] Jin, H., Xu, G. P., Zhang, J. X., Ye, Z., Wang, S. F., Zhao, L., ... Mo, L. ( 2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 78( 3), 308-314.
url: http://linkinghub.elsevier.com/retrieve/pii/S016787601000694X
[29] Karns, C.M., & Knight, R.T . ( 2009). Intermodal auditory, visual, and tactile attention modulates early stages of neural processing. Journal of Cognitive Neuroscience, 21( 4), 669-683.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.2009.21037
[30] Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. ( 2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cerebral Cortex, 18( 11), 2629-2636.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhn022
[31] Kelly, S. P., Vanegas, M. I., Schroeder, C. E., & Lalor, E. C. ( 2013). The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: A reply to Ales et al. (2013). Neuroimage, 82, 154-159.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811913006150
[32] Khoe, W., Mitchell, J. F., Reynolds, J. H., & Hillyard, S. A. ( 2005). Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials. Vision Research, 45( 24), 3004-3014.
url: http://linkinghub.elsevier.com/retrieve/pii/S0042698905003706
[33] Kok, P., Rahnev, D., Jehee, J. F. M., Lau, H. C., & De Lange, F. P..( 2012). Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex, 22( 9), 2197-2206.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhr310
[34] Lavie, N.( 1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology Human Perception and Performance, 21( 3), 451-468.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.21.3.451
[35] Lavie, N., & Tsal, Y.( 1994). Perceptual load as a major determinant of the locus of selection in visual-attention. Perception & Psychophysics, 56( 2), 183-197.
pmid: 7971119 url: http://psycnet.apa.org/psycinfo/1995-00283-001
[36] Luck, S. J. ( 2005). The Design and interpretation of ERP experiments. In M. S. Gazzaniga (Eds) An introduction to the event-relatedpotential technique. (51-98). Massachusetts: MIT Press,.
[37] Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., ... Hillyard, S. A. ( 1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364-369.
url: http://www.nature.com/articles/nn0499_364
[38] Martínez, A., DiRusso, F., Anllo-Vento, L., Sereno, M. I., Buxton, R. B., & Hillyard, S. A. ( 2001a). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 41( 10-11), 1437-1457.
url: http://linkinghub.elsevier.com/retrieve/pii/S0042698900002674
[39] Motter, B.C. ( 1993). Focal attention produces spatially seletive processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70( 3), 909-919.
url: http://www.physiology.org/doi/10.1152/jn.1993.70.3.909
[40] Müller, H.J., & Rabbitt, P. M.A . ( 1989). Reflexive and voluntary orienting of visual attention: Timecourse of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception & Performance, 15( 2), 315-330.
[41] Poghosyan, V., & Ioannides, A.A. ( 2008). Attention modulates earliest responses in the primary auditory and visual cortices. Neuron, 58( 5), 802-813.
url: http://linkinghub.elsevier.com/retrieve/pii/S0896627308003395
[42] Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. ( 2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14( 6), 619-633.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhh023
[43] Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30( 5), 1723-1733.
url: http://doi.wiley.com/10.1002/hbm.v30%3A5
[44] Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2012a). Effects of attentional load on early visual processing depend on stimulus timing. Human Brain Mapping, 33( 1), 63-74.
url: http://doi.wiley.com/10.1002/hbm.21193
[45] Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2012b). Voluntary attention reliably influences visual processing at the level of the C1 component: A commentary on Fu, Fedota, Greenwood, and Parasuram (2010). Biological Psychology, 91( 2), 325-327.
url: http://linkinghub.elsevier.com/retrieve/pii/S0301051112000750
[46] Slagter, H. A., Alilovic, J., & Van Gaal, S. ( 2017). How early does attention modulate visual information processing? The importance of experimental protocol and data analysis approach. Cognitive Neuroscience, 9( 1-2), 26-28.
[47] Slotnick, S.D. ( 2013). The nature of attentional modulation in V1. In S. Slotnick (Eds.), Controversies in Cognitive Neuroscience ( pp. 44-69). New York, NY:Palgrave Macmillan.
[48] Slotnick, S.D. ( 2018). The experimental parameters that affect attentional modulation of the ERP C1 component. Cognitive Neuroscience, 9( 1-2), 53-62.
url: https://www.tandfonline.com/doi/full/10.1080/17588928.2017.1369021
[49] St?ni?or, L., Van Der Togt, C., Pennartz, C. M. A., & Roelfsema, P. R. ( 2013). A unified selection signal for attention and reward in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 110( 22), 9136-9141.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.1300117110
[50] Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. ( 2009). Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. The Journal of Neuroscience, 29( 34), 10671-10682.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1141-09.2009
[51] Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & Logothetis, N. ( 2011). Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334( 6057), 829-831.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1203161
[52] Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., ... Jerabek, P. ( 1997). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping, 5( 4), 280-286.
url: http://doi.wiley.com/10.1002/%28SICI%291097-0193%281997%295%3A4%3C%3E1.0.CO%3B2-T
[53] Zani, A., & Proverbio, A.M. ( 2003). Chapter 1 - Cognitive electrophysiology of mind and brain. Cognitive Electrophysiology of Mind & Brain, 3-12.
[54] Zhang, X. L., Zhao, P. L., Zhou, T. G., & Fang, F. ( 2012). Neural activities in V1 create a bottom-up saliency map. Neuron, 73( 1), 183-192.
pmid: 22243756 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627311009998
[55] Zhu, X.R., & Luo, Y.J . ( 2012). Fearful faces evoke a larger C1 than happy faces in executive attention task: An event-related potential study. Neuroscience Letters, 526( 2), 118-121.
url: http://linkinghub.elsevier.com/retrieve/pii/S0304394012010634
[1] Yangzhuo LI, Xucheng YANG, Hong GAO, Xiangping GAO. The role of working memory representation in visual search: The perspective of non-target template[J]. Advances in Psychological Science, 2018, 26(9): 1608-1616.
[2] Huan HUANG,Bo LIU,Chenchen ZHOU,Ming JI. Mechanisms of commission errors in aftereffects of completed intentions[J]. Advances in Psychological Science, 2018, 26(9): 1600-1607.
[3] Heping XIE,Ji PENG,Zongkui ZHOU. Attention guidance and cognitive processing: The educational effects of eye movement modeling examples[J]. Advances in Psychological Science, 2018, 26(8): 1404-1416.
[4] Yiqi KANG,Xia CHONG,Nan WU. Autism Spectrum Disorders early warning: Occurrence, development and influencing factors of joint attention and empathy[J]. Advances in Psychological Science, 2018, 26(7): 1223-1231.
[5] ZHANG Kaili, ZHOU Pei, WANG Pei. The affects of facial expression and gaze direction on face processing: Based on perceptual load theory[J]. Advances in Psychological Science, 2018, 26(6): 984-993.
[6] LI Zhenghan, YANG Guochun, NAN Weizhi, LI Qi, LIU Xun. Attentional regulation mechanisms of cognitive control in conflict resolution[J]. Advances in Psychological Science, 2018, 26(6): 966-974.
[7] CHENG Mei, YANG Yan, YIN Huazhan.  Application of transcranial direct current stimulation in the treatment of attention deficit hyperactivity disorder[J]. Advances in Psychological Science, 2018, 26(4): 657-666.
[8] LIANG Tengfei, WU Haiyan, ZHANG Yin, LONG Fangfang, CHEN Jiangtao, HU Zhonghua, LIU Qiang.  Attentional selection in the perceptual scenes and internal working memory representations: A unitized perspective[J]. Advances in Psychological Science, 2018, 26(4): 625-635.
[9] SU Yi (ESTHER).  Acquisition of core Chinese grammar in preschool children with autism spectrum disorders[J]. Advances in Psychological Science, 2018, 26(3): 391-399.
[10] SHANG Junchen, CHEN Wenfeng, JI Luyan.  The role of facial attractiveness in cognitive process and its neural mechanism[J]. Advances in Psychological Science, 2018, 26(2): 241-253.
[11] MENG Yingfang, LIN Huiru.  Attentional Boost Effect: New insights on relationship between attention and memory[J]. Advances in Psychological Science, 2018, 26(2): 221-228.
[12] PENG Xing, CHANG Ruosong, REN Guiqin, WANG Aijun, TANG Xiaoyu. The interaction between exogenous attention and multisensory integration[J]. Advances in Psychological Science, 2018, 26(12): 2129-2140.
[13] LI Mengqi, CHEN Zhimin, ZHENG Yuanjie, REN Yanju.  Scene gist processing and its mechanisms[J]. Advances in Psychological Science, 2018, 26(1): 81-97.
[14] HUANG Chen, ZHAO Jing.  Visual-spatial attention processing in developmental dyslexia[J]. Advances in Psychological Science, 2018, 26(1): 72-80.
[15] ZHANG Xiao-rong, ZHANG Chao, YAN Jie, WU Duo-duo, QIN Xiao-fei, HAN Juan.  The impact of Internet Dependence on College Student's attention networks[J]. Advances in Psychological Science, 2017, 25(suppl.): 31-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech