Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (6) : 1031-1040     DOI: 10.3724/SP.J.1042.2018.01031
Regular Articles |
Audiovisual temporal integration in autism spectrum disorders
Taotao LI1,Jinsheng HU1(),Qi WANG1,Chengshi LI1,Songze LI1,Jianqing HE1,Chenyang LI1,Shuqing LIU2
1 Department of Psychology, Liaoning Normal University, Dalian 116029, China
2 College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
Download: PDF(421 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Audiovisual temporal integration is the fact that the relative timing of audio-visual stimulation should be bound into a unified percept. The audiovisual temporal integration of autism spectrum disorders (ASD) was confirmed to be impaired mainly in four aspects. First, the temporal binding window is wider and more symmetrical. Second, ASD got weaker ability of rapid audiovisual temporal recalibration. Third, the effect that visual target search can be improved by a synchronous sound decreased has been found to be missing in ASD in some studies. Last, ASD showed impaired audiovisual temporal acuity for speech stimuli. Various methods are used to probe for temporal aspects of audiovisual integration, such as sound-induced flash illusion task and "pip-pop" task. The simultaneity judgment task, temporal order judgment task and preferential-looking task are mainly used to measure intersensory synchrony. Relevant theories from abnormal neural processing, the internal priors and the interaction between multiple sensory modals explain those defects. In future, researchers should improve the ecological validity of study, further integrate different theoretical explanations and accurate quantitative diagnostic indicators, as well as exploit the effective intervention strategies.

Keywords autism spectrum disorders      audiovisual temporal integration      temporal binding window      temporal synchrony     
ZTFLH:  B842  
  R395  
Fund: 
Corresponding Authors: Jinsheng HU     E-mail: hu_jinsheng@126.com
Issue Date: 28 April 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Taotao LI
Jinsheng HU
Qi WANG
Chengshi LI
Songze LI
Jianqing HE
Chenyang LI
Shuqing LIU
Cite this article:   
Taotao LI,Jinsheng HU,Qi WANG, et al. Audiovisual temporal integration in autism spectrum disorders[J]. Advances in Psychological Science, 2018, 26(6): 1031-1040.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01031     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I6/1031
  
[1] Altieri, N. (2014). Multisensory integration, learning, and the predictive coding hypothesis. Frontiers in Psychology, 5( 2), 257.
pmid: 2471588424715884 url: http://europepmc.org/articles/pmc3970030/
[2] American Psychiatric Association.(2013). Diagnostic and statistical manual of mental disorders (DSM-5?) (5th ed.). Washington, DC: American Psychiatric Publishing.
[3] Baum S. H., Stevenson R. A., & Wallace M. T . ( 2015). Testing sensory and multisensory function in children with autism spectrum disorder. Journal of Visualized Experiments, ( 98), e52677.
pmid: 25938209 url: http://europepmc.org/abstract/MED/25938209
[4] Beauchamp M. S., Nath A. R., & Pasalar S . ( 2010). fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the Mcgurk effect. Journal of Neuroscience, 30( 7), 2414-2417.
pmid: 20164324 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4865-09.2010
[5] Bebko J. M., Weiss J. A., Demark J. L., & Gomez P . ( 2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47( 1), 88-98.
pmid: 16405645 url: http://www.blackwell-synergy.com/toc/jcpp/47/1
[6] Binder, M. (2015). Neural correlates of audiovisual temporal processing-Comparison of temporal order and simultaneity judgments. Neuroscience, 300, 432-447.
pmid: 25982561 url: http://linkinghub.elsevier.com/retrieve/pii/S0306452215004431
[7] Brock J., Brown C. C., Boucher J., & Rippon G . ( 2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14( 2), 209-224.
[8] Collignon O., Charbonneau G., Peters F., Nassim M., Lassonde M., Lepore F., .. Bertone A . ( 2013). Reduced multisensory facilitation in persons with autism. Cortex, 49( 6), 1704-1710.
pmid: 22818902 url: http://linkinghub.elsevier.com/retrieve/pii/S0010945212001815
[9] Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window- of-integration model. Journal of Cognitive Neuroscience, 16( 6), 1000-1009.
pmid: 15298787 url: http://www.mitpressjournals.org/doi/10.1162/0898929041502733
[10] Cuppini C., Ursino M., Magosso E., Ross L. A., Foxe J. F., & Molholm S . ( 2017). A computational analysis of neural mechanisms underlying the maturation of multisensory speech integration in neurotypical children and those on the autism spectrum. Frontiers in Human Neuroscience, 11, 518.
pmid: 5670153 url: http://journal.frontiersin.org/article/10.3389/fnhum.2017.00518/full
[11] de Boer-Schellekens L., Eussen M., & Vroomen J . ( 2013). Diminished sensitivity of audiovisual temporal order in autism spectrum disorder. Frontiers in Integrative Neuroscience, 7, 8.
pmid: 23450453 url: http://europepmc.org/articles/PMC3583106/
[12] de Boer-Schellekens L., Keetels M., Eussen M., & Vroomen J . ( 2013). No evidence for impaired multisensory integration of low-level audiovisual stimuli in adolescents and young adults with autism spectrum disorders. Neuropsychologia, 51( 14), 3004-3013.
pmid: 24157536 url: http://linkinghub.elsevier.com/retrieve/pii/S0028393213003497
[13] Dinstein I., Heeger D. J., Lorenzi L., Minshew N. J., Malach R., & Behrmann M . ( 2012). Unreliable evoked responses in autism. Neuron, 75( 6), 981-991.
pmid: 22998867 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627312007088
[14] Donohue S. E., Woldorff M. G., & Mitroff S. R . ( 2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72( 4), 1120-1129.
pmid: 20436205 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3314265/
[15] Doyle-Thomas K. A. R., Goldberg J., Szatmari P., & Hall, G. B. C. (2013). Neurofunctional underpinnings of audiovisual emotion processing in teens with autism spectrum disorders. Frontiers in Psychiatry, 4, 48.
pmid: 23750139 url: http://europepmc.org/articles/PMC3667547/
[16] Foss-Feig J. H., Kwakye L. D., Cascio C. J., Burnette C. P., Kadivar H., Stone W. L., & Wallace M. T . ( 2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203( 2), 381-389.
url: http://link.springer.com/10.1007/s00221-010-2240-4
[17] Fujisaki W., Shimojo S., Kashino M., & Nishida S. Y . ( 2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7( 7), 773-778.
pmid: 15195098 url: http://www.nature.com/articles/nn1268
[18] Glessner J. T., Wang K., Cai G. Q., Korvatska O., Kim C. E., Wood S., .. Hakonarson H . ( 2009). Autism genome- wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459( 7246), 569-573.
pmid: 19404257 url: http://www.nature.com/articles/nature07953
[19] Greenfield K., Ropar D., Smith A. D., Carey M., & Newport R . ( 2015). Visuo-tactile integration in autism: Atypical temporal binding may underlie greater reliance on proprioceptive information. Molecular Autism, 6( 1), 51.
pmid: 4570750 url: http://www.molecularautism.com/content/6/1/51
[20] Grossman R. B., Steinhart E., Mitchell T., & McIlvane W . ( 2015). “Look who's talking!” Gaze patterns for implicit and explicit audio-visual speech synchrony detection in children with high-functioning autism. Autism Research, 8( 3), 307-316.
pmid: 25620208 url: http://doi.wiley.com/10.1002/aur.1447
[21] Hairston W. D., Burdette J. H., Flowers D. L., Wood F. B., & Wallace M. T . ( 2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166( 3-4), 474-480.
pmid: 16028030 url: http://link.springer.com/10.1007/s00221-005-2387-6
[22] Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36( 1), 5-25.
pmid: 16450045 url: http://link.springer.com/10.1007/s10803-005-0039-0
[23] Hillock A. R., Powers A. R., & Wallace M. T . ( 2011). Binding of sights and sounds: Age-related changes in multisensory temporal processing. Neuropsychologia, 49( 3), 461-467.
pmid: 21134385 url: http://linkinghub.elsevier.com/retrieve/pii/S002839321000521X
[24] Hillock-Dunn, A., & Wallace, M. T . ( 2012). Developmental changes in the multisensory temporal binding window persist into adolescence. Developmental Science, 15( 5), 688-696.
pmid: 4013750 url: http://doi.wiley.com/10.1111/j.1467-7687.2012.01171.x
[25] Hocking, J., & Price, C. J . ( 2008). The role of the posterior superior temporal sulcus in audiovisual processing. Cerebral Cortex, 18( 10), 2439-2449.
pmid: 2536697 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhn007
[26] Kwakye L. D., Foss-Feig J. H., Cascio C. J., Stone W. L., & Wallace M. T . ( 2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129.
pmid: 3024004 url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024004/
[27] Laasonen M., Service E., & Virsu V. J . ( 2001). Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cognitive, Affective, & Behavioral Neuroscience, 1( 4), 394-410.
pmid: 12467091 url: http://www.ncbi.nlm.nih.gov/pubmed/12467091
[28] Lewkowicz, D. J., & Flom, R. (2014). The audiovisual temporal binding window narrows in early childhood. Child Development, 85( 2), 685-694.
pmid: 23888869 url: http://doi.wiley.com/10.1111/cdev.12142
[29] Megnin O., Flitton A., Jones C. R. G., de Haan M., Baldeweg T., & Charman T . ( 2012). Audiovisual speech integration in autism spectrum disorders: ERP evidence for atypicalities in lexical-semantic processing. Autism Research, 5( 1), 39-48.
pmid: 3586407 url: http://doi.wiley.com/10.1002/aur.2012.5.issue-1
[30] Noel J. P., De Niear M. A., Stevenson R., Alais D., & Wallace M. T . ( 2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10( 1), 121-129.
pmid: 27156926 url: http://doi.wiley.com/10.1002/aur.1633
[31] O’Connor, K. (2012). Auditory processing in autism spectrum disorder: A review. Neuroscience & Biobehavioral Reviews, 36( 2), 836-854.
pmid: 22155284 url: http://www.sciencedirect.com/science/article/pii/S0149763411002065
[32] Patten E., Watson L. R., & Baranek G. T . ( 2014). Temporal synchrony detection and associations with language in young children with ASD. Autism Research and Treatment, 2014, Article ID 678346.
pmid: 4295130 url: http://www.ncbi.nlm.nih.gov/pubmed/25614835
[33] Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16( 10), 504-510.
pmid: 22959875 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661312002008
[34] Powers A. R., Hevey M. A., & Wallace M. T . ( 2012). Neural correlates of multisensory perceptual learning. Journal of Neuroscience, 32( 18), 6263-6274.
pmid: 3366559 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6138-11.2012
[35] Powers A. R., Hillock A. R., & Wallace M. T . ( 2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29( 39), 12265-12274.
pmid: 2771316 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3501-09.2009
[36] Rippon G., Brock J., Brown C., & Boucher J . ( 2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63( 2), 164-172.
pmid: 16820239 url: http://linkinghub.elsevier.com/retrieve/pii/S0167876006001024
[37] Rubenstein, J. L. R., & Merzenich, M. M . ( 2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2( 5), 255-267.
pmid: 14606691 url: http://doi.wiley.com/10.1034/j.1601-183X.2003.00037.x
[38] Russo N., Foxe J. J., Brandwein A. B., Altschuler T., Gomes H., & Molholm S . ( 2010). Multisensory processing in children with autism: High-density electrical mapping of auditory-somatosensory integration. Autism Research, 3( 5), 253-267.
pmid: 20730775 url: http://doi.wiley.com/10.1002/aur.v3%3A5
[39] Russo N., Zecker S., Trommer B., Chen J. L., & Kraus N . ( 2009). Effects of background noise on cortical encoding of speech in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39( 8), 1185-1196.
pmid: 19353261 url: http://link.springer.com/10.1007/s10803-009-0737-0
[40] Shams L., Kamitani Y., & Shimojo S . ( 2002). Visual illusion induced by sound. Cognitive Brain Research, 14( 1), 147-152.
pmid: 12063138 url: http://linkinghub.elsevier.com/retrieve/pii/S0926641002000691
[41] Shi Z. H., Chen L. H., & Müller H. J . ( 2010). Auditory temporal modulation of the visual Ternus effect: The influence of time interval. Experimental Brain Research, 203( 4), 723-735.
pmid: 20473749 url: http://link.springer.com/10.1007/s00221-010-2286-3
[42] Stevenson R. A., Fister J. K., Barnett Z. P., Nidiffer A. R., & Wallace M. T . ( 2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219( 1), 121-137.
pmid: 3526341 url: http://link.springer.com/10.1007/s00221-012-3072-1
[43] Stevenson R. A., Segers M., Ferber S., Barense M. D., Camarata S., & Wallace M. T . ( 2016). Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Research, 9( 7), 720-738.
pmid: 26402725 url: http://doi.wiley.com/10.1002/aur.1566
[44] Stevenson R. A., Siemann J. K., Brown S. T., Woynaroski T. G., Segers M., Bebko J., & Wallace M . ( 2013). Atypical multisensory integration in Autism Spectrum Disorders: Cascading impacts of altered temporal processing. Multisensory Research, 26, 25.
url: http://booksandjournals.brillonline.com/content/journals/10.1163/22134808-000s0015
[45] Stevenson R. A., Siemann J. K., Schneider B. C., Eberly H. E., Woynaroski T. G., Camarata S. M., & Wallace M. T . ( 2014). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience, 34( 3), 691-697.
pmid: 3891950 url: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.3615-13.2014
[46] Stevenson R. A., Siemann J. K., Woynaroski T. G., Schneider B. C., Eberly H. E., Camarata S. M., & Wallace M. T . ( 2014). Evidence for diminished multisensory integration in autism spectrum disorders. Journal of Autism and Developmental Disorders, 44( 12), 3161-3167.
pmid: 25022248 url: http://link.springer.com/10.1007/s10803-014-2179-6
[47] Stevenson R. A., VanDerKlok R. M., Pisoni D. B., & James T. W . ( 2011). Discrete neural substrates underlie complementary audiovisual speech integration processes. NeuroImage, 55( 3), 1339-1345.
pmid: 3057325 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811910016642
[48] Stevenson, R. A., & Wallace, M. T . ( 2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227( 2), 249-261.
url: http://link.springer.com/10.1007/s00221-013-3507-3
[49] Stevenson R. A., Zemtsov R. K., & Wallace M. T . ( 2012). Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. Journal of Experimental Psychology: Human Perception and Performance, 38( 6), 1517-1529.
pmid: 3795069 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0027339
[50] Turi M., Karaminis T., Pellicano E., & Burr D . ( 2016). No rapid audiovisual recalibration in adults on the autism spectrum. Scientific Reports, 6, 21756.
pmid: 4761981 url: http://www.nature.com/articles/srep21756
[51] van der Burg E., Alais D., & Cass J . ( 2013). Rapid recalibration to audiovisual asynchrony. Journal of Neuroscience, 33( 37), 14633-14637.
pmid: 24027264 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1182-13.2013
[52] van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065.
pmid: 18823194 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.34.5.1053
[53] Vatakis, A., & Spence, C. (2006). Audiovisual synchrony perception for music, speech, and object actions. Brain Research, 1111( 1), 134-142.
pmid: 16876772 url: http://linkinghub.elsevier.com/retrieve/pii/S0006899306015903
[54] Vroomen J., Keetels M., De Gelder B., & Bertelson P . ( 2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cognitive Brain Research, 22( 1), 32-35.
pmid: 15561498 url: http://linkinghub.elsevier.com/retrieve/pii/S0926641004001946
[55] Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, & Psychophysics, 72( 4), 871-884.
pmid: 20436185 url: http://link.springer.com/article/10.3758/APP.72.4.871
[56] Wallace, M. T., & Stevenson, R. A . ( 2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123.
pmid: 25128432 url: http://linkinghub.elsevier.com/retrieve/pii/S0028393214002681
[57] Williams, E. L., & Casanova, M. F . ( 2010). Autism and dyslexia: A spectrum of cognitive styles as defined by minicolumnar morphometry. Medical Hypotheses, 74( 1), 59-62.
pmid: 19713047 url: http://linkinghub.elsevier.com/retrieve/pii/S0306987709005490
[1] LIN Yiqi, WANG Xi, PENG Kaiping, NI Shiguang.  Virtual reality technology in the psychological treatment for autism spectrum disorders: An systematic review[J]. Advances in Psychological Science, 2018, 26(3): 518-526.
[2] SU Yi (ESTHER).  Acquisition of core Chinese grammar in preschool children with autism spectrum disorders[J]. Advances in Psychological Science, 2018, 26(3): 391-399.
[3] WANG Fenfen, ZHU Zhuohong.  Relational frame theory: It’s application in children with autism spectrum disorders[J]. Advances in Psychological Science, 2017, 25(8): 1321-1326.
[4] MENG Jing; SHEN Lin. Empathy in individuals with autism spectrum disorder: Symptoms, theories and neural mechanisms[J]. Advances in Psychological Science, 2017, 25(1): 59-66.
[5] WANG Qi; HU Jinsheng; LI Chengshi; LI Songze; . The emotional prosody recognition in autism spectrum disorders[J]. Advances in Psychological Science, 2016, 24(9): 1377-1390.
[6] WU Wen-Jiao; ZHANG Peng. Biological basis of autism spectrum disorders[J]. Advances in Psychological Science, 2016, 24(5): 739-752.
[7] ZHANG Fen; WANG Suiping; YANG Juanhua; FENG Gangyi. Atypical Brain Functional Connectivity in Autism Spectrum Disorders[J]. Advances in Psychological Science, 2015, 23(7): 1196-1204.
[8] YUAN Xiang-Yong;HUANG Xi-Ting. Temporal Recalibration in Multisensory Integration[J]. , 2011, 19(5): 692-700.
[9] CHEN Shun-Sen;BAI Xue-Jun;ZHANG Ri-Sheng. The Symptom, Diagnosis and Treatment for Autism Spectrum Disorder[J]. , 2011, 19(1): 60-72.
[10] WANG Li-Juan;LUO Hong-Ge;YAO Xue. The Neural Mechanisms of Face Recognition in Autism Spectrum Disorders[J]. , 2009, 17(06): 1177-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech