Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (7): 847-860.doi: 10.3724/SP.J.1041.2020.00847
• Reports of Empirical Studies • Previous Articles Next Articles
ZHANG Zhenghua1,2, HAN Mei1,2, ZHANG Fang3, LI Weijun1,2()
Received:
2019-12-04
Published:
2020-07-25
Online:
2020-05-25
Contact:
LI Weijun
E-mail:li_wj@126.com
Supported by:
ZHANG Zhenghua, HAN Mei, ZHANG Fang, LI Weijun. (2020). Musical training improves rhythm integrative processing of classical Chinese poem. Acta Psychologica Sinica, 52(7), 847-860.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2020.00847
number | Gender | Age (years) | Level of education | Starting Age of training (years) | Duration of training (years) | Musical Instrument | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | N | M | N | M | N | M | N | M | N | M | N | |
1 | male | male | 18 | 18 | undergrad | undergrad | 7 | none | 11 | 0 | bamboo flute | none |
2 | male | male | 18 | 19 | undergrad | undergrad | 7 | none | 11 | 0 | jazz drums, snare drums | none |
3 | male | male | 19 | 19 | undergrad | undergrad | 7 | none | 12 | 0 | piano | none |
4 | male | male | 19 | 20 | undergrad | undergrad | 7 | none | 11 | 0 | piano | none |
5 | male | male | 19 | 20 | undergrad | undergrad | 7 | none | 10 | 0 | Erhu, electone | none |
6 | male | male | 21 | 20 | undergrad | undergrad | 7 | none | 10 | 0 | bamboo flute and cucurbit flute | none |
7 | male | male | 21 | 21 | undergrad | undergrad | 6 | none | 10 | 0 | Erhu, piano | none |
8 | male | male | 22 | 22 | undergrad | undergrad | 7 | none | 15 | 0 | Erhu | none |
9 | male | male | 23 | 23 | undergrad | undergrad | 7 | none | 15 | 0 | piano, guitar | none |
10 | female | female | 19 | 19 | undergrad | undergrad | 7 | none | 11 | 0 | Yangqin | none |
11 | female | female | 19 | 19 | undergrad | undergrad | 6 | none | 12 | 0 | Yangqin | none |
12 | female | female | 19 | 19 | undergrad | undergrad | 6 | none | 13 | 0 | Yangqin | none |
13 | female | female | 19 | 20 | undergrad | undergrad | 6 | none | 13 | 0 | Pipa | none |
14 | female | female | 19 | 20 | undergrad | undergrad | 5 | none | 10 | 0 | Pipa | none |
15 | female | female | 20 | 20 | undergrad | undergrad | 7 | none | 13 | 0 | piano, zither | none |
16 | female | female | 20 | 20 | undergrad | undergrad | 7 | none | 13 | 0 | piano, guitar | none |
17 | female | female | 20 | 20 | undergrad | undergrad | 6 | none | 14 | 0 | piano | none |
18 | female | female | 21 | 21 | undergrad | undergrad | 7 | none | 14 | 0 | piano | none |
19 | female | female | 21 | 21 | undergrad | undergrad | 5 | none | 16 | 0 | piano, cello | none |
20 | female | female | 21 | 22 | undergrad | undergrad | 4 | none | 17 | 0 | piano, zither | none |
21 | female | female | 21 | 22 | undergrad | undergrad | 4 | none | 17 | 0 | piano, trumpet, zither | none |
22 | female | female | 23 | 23 | undergrad | undergrad | 7 | none | 16 | 0 | piano, zither, drum set | none |
23 | female | female | 23 | 23 | undergrad | undergrad | 7 | none | 16 | 0 | piano, electone, Pipa | none |
24 | female | female | 23 | 24 | Graduate | Graduate | 5 | none | 18 | 0 | piano, electone, Pipa | none |
25 | female | female | 26 | 26 | Graduate | Graduate | 7 | none | 12 | 0 | piano, cucurbit flute | none |
Table 1 Background of Participants
number | Gender | Age (years) | Level of education | Starting Age of training (years) | Duration of training (years) | Musical Instrument | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | N | M | N | M | N | M | N | M | N | M | N | |
1 | male | male | 18 | 18 | undergrad | undergrad | 7 | none | 11 | 0 | bamboo flute | none |
2 | male | male | 18 | 19 | undergrad | undergrad | 7 | none | 11 | 0 | jazz drums, snare drums | none |
3 | male | male | 19 | 19 | undergrad | undergrad | 7 | none | 12 | 0 | piano | none |
4 | male | male | 19 | 20 | undergrad | undergrad | 7 | none | 11 | 0 | piano | none |
5 | male | male | 19 | 20 | undergrad | undergrad | 7 | none | 10 | 0 | Erhu, electone | none |
6 | male | male | 21 | 20 | undergrad | undergrad | 7 | none | 10 | 0 | bamboo flute and cucurbit flute | none |
7 | male | male | 21 | 21 | undergrad | undergrad | 6 | none | 10 | 0 | Erhu, piano | none |
8 | male | male | 22 | 22 | undergrad | undergrad | 7 | none | 15 | 0 | Erhu | none |
9 | male | male | 23 | 23 | undergrad | undergrad | 7 | none | 15 | 0 | piano, guitar | none |
10 | female | female | 19 | 19 | undergrad | undergrad | 7 | none | 11 | 0 | Yangqin | none |
11 | female | female | 19 | 19 | undergrad | undergrad | 6 | none | 12 | 0 | Yangqin | none |
12 | female | female | 19 | 19 | undergrad | undergrad | 6 | none | 13 | 0 | Yangqin | none |
13 | female | female | 19 | 20 | undergrad | undergrad | 6 | none | 13 | 0 | Pipa | none |
14 | female | female | 19 | 20 | undergrad | undergrad | 5 | none | 10 | 0 | Pipa | none |
15 | female | female | 20 | 20 | undergrad | undergrad | 7 | none | 13 | 0 | piano, zither | none |
16 | female | female | 20 | 20 | undergrad | undergrad | 7 | none | 13 | 0 | piano, guitar | none |
17 | female | female | 20 | 20 | undergrad | undergrad | 6 | none | 14 | 0 | piano | none |
18 | female | female | 21 | 21 | undergrad | undergrad | 7 | none | 14 | 0 | piano | none |
19 | female | female | 21 | 21 | undergrad | undergrad | 5 | none | 16 | 0 | piano, cello | none |
20 | female | female | 21 | 22 | undergrad | undergrad | 4 | none | 17 | 0 | piano, zither | none |
21 | female | female | 21 | 22 | undergrad | undergrad | 4 | none | 17 | 0 | piano, trumpet, zither | none |
22 | female | female | 23 | 23 | undergrad | undergrad | 7 | none | 16 | 0 | piano, zither, drum set | none |
23 | female | female | 23 | 23 | undergrad | undergrad | 7 | none | 16 | 0 | piano, electone, Pipa | none |
24 | female | female | 23 | 24 | Graduate | Graduate | 5 | none | 18 | 0 | piano, electone, Pipa | none |
25 | female | female | 26 | 26 | Graduate | Graduate | 7 | none | 12 | 0 | piano, cucurbit flute | none |
Figure 1. Examples of experimental materials and procedure. V+ T+ : both the tone and the vowel were appropriate; V+ T-: the tone was inappropriate, the vowel was appropriate; V-T+ : the tone was appropriate, the vowel was inappropriate; V-T-: both the tone and the vowel were inappropriate.
Figure 2. The average accuracy rate (top) and reaction time (bottom) of the vowel (left) and the tone (right) in the appropriate and inappropriate conditions were obtained when musicians (25) and non-musicians (25) completed the rhyming judgment task.
Figure 3. The grand average ERP waveforms (top) and scalp distributions (bottom) for 25 musicians (left) and 25 non-musicians (right) during processing rhythm information of seven-character quatrains. The waveforms were time locked to the onset of the critical stimuli (i.e. the last syllable of the poem). The scalp distributions include correct condition and the difference between each inappropriate and appropriate condition. V+T+: appropriate vowel, appropriate tone; V+T-: appropriate vowel, inappropriate tone; V-T+: inappropriate vowel, appropriate tone; V-T-: inappropriate vowel, inappropriate tone
Figure 4. The average amplitudes of 100~300 ms (top) and 300~750 ms (bottom) evoked by 25 musicians (left) and 25 non-musicians (right) during processing of rhythm information of seven-character quatrains in the lateral area. V+T+: appropriate vowel, appropriate tone; V+T-: appropriate vowel, inappropriate tone; V-T+: inappropriate vowel, appropriate tone; V-T-: inappropriate vowel, inappropriate tone
[1] | Arthur, W., & Day, D. V. (1994). Development of a short form for the raven advanced progressive matrices test. Educational & Psychological Measurement, 54(2), 394-403. |
[2] |
Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). The time course of neural changes underlying auditory perceptual learning. Learning & Memory, 9(3), 138-150.
doi: 10.1101/lm.46502 URL pmid: 12075002 |
[3] |
Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011). Cross- domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23(2), 425-434.
doi: 10.1162/jocn.2009.21362 URL pmid: 19925180 |
[4] |
Bidelman, G. M., Weiss, M. W., Moreno, S., & Alain, C. (2014). Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians. European Journal of Neuroscience, 40(4), 2662-2673.
doi: 10.1111/ejn.12627 URL pmid: 24890664 |
[5] |
Bohan, J., Leuthold, H., Hijikata, Y., & Sanford, A. J. (2012). The processing of good-fit semantic anomalies: An ERP investigation. Neuropsychologia, 50(14), 3174-3184.
doi: 10.1016/j.neuropsychologia.2012.09.008 URL pmid: 22975191 |
[6] |
Camblin, C. C., Gordon, P. C., & Swaab, T. Y. (2007). The interplay of discourse congruence and lexical association during sentence processing: Evidence from ERPs and eye tracking. Journal of Memory and Language, 56(1), 103-128.
doi: 10.1016/j.jml.2006.07.005 URL pmid: 17218992 |
[7] |
Carpenter, M., Cranford, J. L., Hymel, M. R., de Chicchis, A. R., & Holbert, D. (2002). Electrophysiologic signs of attention versus distraction in a binaural listening task. Journal of Clinical Neurophysiology, 19(1), 55-60.
doi: 10.1097/00004691-200201000-00007 URL pmid: 11896353 |
[8] | Chen, J., Liu, L., Wang, R., & Shen, H. Z. (2017). The effect of musical training on executive functions. Advances in Psychological Science, 25(11), 1854-1864. |
[9] |
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844-2854.
doi: 10.1093/cercor/bhn042 URL pmid: 18388350 |
[10] |
Chen, Q. R., Zhang, J. J., Xu, X. D., Scheepers, C., Yang, Y. M., & Tanenhaus, M. K. (2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21.
doi: 10.1016/j.cognition.2016.05.007 URL pmid: 27228392 |
[11] |
Chobert, J., François, C., Velay, J.-L., & Besson, M. (2012). Twelve months of active musical training in 8-to 10-year- old children enhances the preattentive processing of syllabic duration and voice onset time. Cerebral Cortex, 24(4), 956-967.
doi: 10.1093/cercor/bhs377 URL pmid: 23236208 |
[12] |
Clayton, K. K., Swaminathan, J., Yazdanbakhsh, A., Zuk, J., Patel, A. D., & Kidd, G. (2016). Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PloS One, 11(7), e0157638.
doi: 10.1371/journal.pone.0157638 URL pmid: 27384330 |
[13] |
Coch, D., Grossi, G., Skendzel, W., & Neville, H. (2005). ERP nonword rhyming effects in children and adults. Journal of Cognitive Neuroscience, 17(1), 168-182.
doi: 10.1162/0898929052880020 URL pmid: 15701247 |
[14] |
Cooper, A., & Wang, Y. (2012). The influence of linguistic and musical experience on cantonese word learning. The Journal of the Acoustical Society of America, 131(6), 4756-4769.
doi: 10.1121/1.4714355 URL pmid: 22712948 |
[15] |
Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732-744.
doi: 10.1016/j.clinph.2003.11.021 URL pmid: 15003751 |
[16] |
Dahan, D. (2015). Prosody and language comprehension. Wiley Interdisciplinary Reviews Cognitive Science, 6(5), 441-452.
doi: 10.1002/wcs.1355 URL pmid: 26267554 |
[17] |
de Vincenzi, M., Job, R., di Matteo, R., Angrilli, A., Penolazzi, B., Ciccarelli, L., & Vespignani, F. (2003). Differences in the perception and time course of syntactic and semantic violations. Brain and Language, 85(2), 280-296.
doi: 10.1016/s0093-934x(03)00055-5 URL pmid: 12735945 |
[18] |
Delogu, F., Lampis, G., & Belardinelli, M. O. (2010). From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. European Journal of Cognitive Psychology, 22(1), 46-61.
doi: 10.1080/09541440802708136 URL |
[19] |
Dilley, L. C., Mattys, S. L., & Vinke, L. (2010). Potent prosody: Comparing the effects of distal prosody, proximal prosody, and semantic context on word segmentation. Journal of Memory and Language, 63(3), 274-294.
doi: 10.1016/j.jml.2010.06.003 URL |
[20] |
Ditman, T., Holcomb, P. J., & Kuperberg, G. R. (2007). An investigation of concurrent ERP and self-paced reading methodologies. Psychophysiology, 44(6), 927-935.
doi: 10.1111/j.1469-8986.2007.00593.x URL pmid: 17850242 |
[21] |
Fan, W., Zhong, Y. P., Li, J., Yang, Z. L., Zhan, Y. L., Cai, R. H., & Fu, X. L. (2016). Negative emotion weakens the degree of self-reference effect: Evidence from ERPs. Frontiers in Psychology, 7, 1408.
doi: 10.3389/fpsyg.2016.01408 URL pmid: 27733836 |
[22] |
François, C., Chobert, J., Besson, M., & Schön, D. (2012). Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 2038-2043.
doi: 10.1093/cercor/bhs180 URL pmid: 22784606 |
[23] |
Franklin, M. S., Sledge Moore, K., Yip, C.-Y., Jonides, J., Rattray, K., & Moher, J. (2008). The effects of musical training on verbal memory. Psychology of Music, 36(3), 353-365.
doi: 10.1177/0305735607086044 URL |
[24] | Gottfried, T. L., Staby, A. M., & Ziemer, C. J. (2004). Musical experience and mandarin tone discrimination and imitation. The Journal of the Acoustical Society of America, 115(5), 2545-2545. |
[25] |
Hagoort, P. (2003). Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations. Journal of Cognitive Neuroscience, 15(6), 883-899.
doi: 10.1162/089892903322370807 URL pmid: 14511541 |
[26] |
Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical competence of musicians and non-musicians. Psychology of Music, 41(6), 779-793.
doi: 10.1177/0305735612452186 URL |
[27] | Hausen, M., Torppa, R., Salmela, V. R., Vainio, M., & Särkämö, T. (2013). Music and speech prosody: A common rhythm. Frontiers in Psychology, 4(2), 566. |
[28] |
Hu, J., Gao, S., Ma, W., & Yao, D. (2012). Dissociation of tone and vowel processing in Mandarin idioms. Psychophysiology, 49(9), 1179-1190.
doi: 10.1111/j.1469-8986.2012.01406.x URL pmid: 22748083 |
[29] |
Huang, X. J., Yang, J.-C., Zhang, Q., & Guo, C. Y. (2014). The time course of spoken word recognition in mandarin Chinese: A unimodal ERP study. Neuropsychologia, 63, 165-174.
doi: 10.1016/j.neuropsychologia.2014.08.015 URL |
[30] | Huang, X., Liu, X., Yang, J. C., Zhao, Q., & Zhou, J. (2018). Tonal and vowel information processing in Chinese spoken word recognition: An event-related potential study. Neuroreport, 29(5), 1. |
[31] |
James, C. E., Oechslin, M. S., van de Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219(1), 353-366.
doi: 10.1007/s00429-013-0504-z URL pmid: 23408267 |
[32] | Jang, C. M. (2016). Psychology of music. Shanghai, China: East China Normal University Press. |
[33] | Jin, H., Zhong, W. F., Xu, G. P., Cai, M. X., Yang, Y. F., Mo, L. (2009). The time course of world knowledge integration in sentence comprehension. Acta Psychologica Sinica, 41(7), 565-571. |
[34] |
Julia, H., Caroline, W., Caterina, P., Hubert, T., Barbara, H., & Isabell, W. (2013). Brain response to prosodic boundary cues depends on boundary position. Frontiers in Psychology, 4, 421.
doi: 10.3389/fpsyg.2013.00421 URL pmid: 23882234 |
[35] |
Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129(5), 770-814.
doi: 10.1037/0033-2909.129.5.770 URL pmid: 12956543 |
[36] |
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: from eye fixations to comprehension. Psychological Review, 87(4), 329-354.
URL pmid: 7413885 |
[37] |
Just, M. A., Carpenter, P. A., & Woolley, J. D. (1982). Paradigms and processes in reading comprehension. Journal of experimental psychology: General, 111(2), 228-238.
doi: 10.1037/0096-3445.111.2.228 URL |
[38] |
Kotz, S. A., Meyer, M., Alter, K., Besson, M., von Cramon, D. Y., & Friederici, A. D. (2003). On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language, 86(3), 366-376.
doi: 10.1016/S0093-934X(02)00532-1 URL |
[39] |
Kühnis, J., Elmer, S., Meyer, M., & Jäncke, L. (2013). The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 51(8), 1608-1618.
doi: 10.1016/j.neuropsychologia.2013.04.007 URL pmid: 23664833 |
[40] |
Kuperberg, G. R., Kreher, D. A., Goff, D., McGuire, P. K., & David, A. S. (2006). Building up linguistic context in schizophrenia: Evidence from self-paced reading. Neuropsychology, 20(4), 442-452.
doi: 10.1037/0894-4105.20.4.442 URL pmid: 16846262 |
[41] |
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP). Annual review of psychology, 62, 621-647.
doi: 10.1146/annurev.psych.093008.131123 URL |
[42] |
Lee, C.-Y., & Hung, T.-H. (2008). Identification of mandarin tones by English-speaking musicians and nonmusicians. The Journal of the Acoustical Society of America, 124(5), 3235-3248.
doi: 10.1121/1.2990713 URL pmid: 19045807 |
[43] | Li, W. J., Liu, M., Zhang, Z. H., Deng, N. L., & Xing, Y. S. (2018). Neural processing of ambiguous Chinese phrases of stutters. Acta Psychologica Sinica, 50(12), 1323-1335. |
[44] |
Li, W. J., Wang, L., & Yang, Y. F. (2014). Chinese tone and vowel processing exhibits distinctive temporal characteristics: An electrophysiological perspective from classical Chinese poem processing. PLOS ONE, 9(1), e85683.
URL pmid: 24416438 |
[45] | Li, W. J., Yang, Y. F. (2010). The cognitive processing of prosodic boundary and its related brain effect in quatrain. Acta Psychologica Sinica, 42(11), 1021-1032. |
[46] | Liu, F., Patel, A. D., Fourcin, A., & Stewart, L. (2010). Intonation processing in congenital amusia: Discrimination, identification and imitation. Brain, 133(6), 1682-1693. |
[47] |
Magne, C., Astésano, C., Aramaki, M., Ystad, S., Kronland- Martinet, R., & Besson, M. (2007). Influence of syllabic lengthening on semantic processing in spoken French: Behavioral and electrophysiological evidence. Cerebral Cortex, 17(11), 2659-2668.
doi: 10.1093/cercor/bhl174 URL pmid: 17264253 |
[48] |
Magne, C., Schön, D., & Besson, M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: Behavioral and electrophysiological approaches. Journal of Cognitive Neuroscience, 18(2), 199-211.
doi: 10.1162/089892906775783660 URL pmid: 16494681 |
[49] |
Marie, C., Magne, C., & Besson, M. (2011). Musicians and the metric structure of words. Journal of Cognitive Neuroscience, 23(2), 294-305.
URL pmid: 20044890 |
[50] |
Marques, C., Moreno, S., Luís Castro, S., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19(9), 1453-1463.
URL pmid: 17714007 |
[51] |
Milovanov, R., Huotilainen, M., Välimäki, V., Esquef, P. A., & Tervaniemi, M. (2008). Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 1194, 81-89.
URL pmid: 18182165 |
[52] |
Molinaro, N., Vespignani, F., & Job, R. (2008). A deeper reanalysis of a superficial feature: An ERP study on agreement violations. Brain Research, 1228, 161-176.
doi: 10.1016/j.brainres.2008.06.064 URL pmid: 18619420 |
[53] |
Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84-97.
doi: 10.1016/j.heares.2013.09.012 URL pmid: 24079993 |
[54] |
Musacchia, G., Strait, D., & Kraus, N. (2008). Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hearing Research, 241(1-2), 34-42.
URL pmid: 18562137 |
[55] | Nan, Y. (2017). The facilitation effect of music learning on speech processing. Advances in Psychological Science, 25(11), 1844-1853. |
[56] | Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., ... Desimone, R. (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115(28), E6630-E6639. |
[57] |
Nan, Y., Sun, Y. N., & Peretz, I. (2010). Congenital amusia in speakers of a tone language: Association with lexical tone agnosia. Brain, 133(9), 2635-2642.
doi: 10.1093/brain/awq178 URL pmid: 20685803 |
[58] | Nutley, S. B., Darki, F., & Klingberg, T. (2014). Music practice is associated with development of working memory during childhood and adolescence. Frontiers in Human Neuroscience, 7, 926. |
[59] | Osterhout, L., & Holcomb, P. J. (1993). Event-related potentials and syntactic anomaly: Evidence of anomaly detection during the perception of continuous speech. Language and Cognitive Processes, 8(4), 413-437. |
[60] | Osterhout, L., & Mobley, L. A. (1995). Event-related brain potentials elicited by failure to agree. Journal of Memory and Language, 34(6), 739-773. |
[61] | Osterhout, L., & Nicol, J. (1999). On the distinctiveness, independence, and time course of the brain responses to syntactic and semantic anomalies. Language and Cognitive Processes, 14(3), 283-317. |
[62] |
Partanen, E., Vainio, M., Kujala, T., & Huotilainen, M. (2011). Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology, 48(10), 1372-1380.
doi: 10.1111/j.1469-8986.2011.01214.x URL pmid: 21564122 |
[63] |
Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674-681.
URL pmid: 12830158 |
[64] |
Patel, A. D. (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research. 308, 98-108.
URL pmid: 24055761 |
[65] |
Patel, A. D., & Daniele, J. R. (2003). An empirical comparison of rhythm in language and music. Cognition, 87(1), B35-B45.
doi: 10.1016/s0010-0277(02)00187-7 URL pmid: 12499110 |
[66] | Patel, A. D., Iversen, J. R., & Rosenberg, J. C. (2006). Comparing the rhythm and melody of speech and music: The case of British English and French. The Journal of the Acoustical Society of America, 119(5), 3034-3047. |
[67] |
Patel, A. D., Peretz, I., Tramo, M., & Labreque, R. (1998). Processing prosodic and musical patterns: A neuropsychological investigation. Brain and Language, 61(1), 123-144.
URL pmid: 9448936 |
[68] |
Perrin, F., & García-Larrea, L. (2003). Modulation of the N400 potential during auditory phonological/semantic interaction. Cognitive Brain Research, 17(1), 36-47.
doi: 10.1016/s0926-6410(03)00078-8 URL pmid: 12763190 |
[69] |
Praamstra, P., & Stegeman, D. F. (1993). Phonological effects on the auditory N400 event-related brain potential. Cognitive Brain Research, 1(2), 73-86.
doi: 10.1016/0926-6410(93)90013-u URL pmid: 8513242 |
[70] | Rayner, K., Kambe, G., & Duffy, S. A. (2000). The effect of clause wrap-up on eye movements during reading. The Quarterly Journal of Experimental Psychology: Section A, 53(4), 1061-1080. |
[71] |
Reinke, K. S., He, Y., Wang, C. H., & Alain, C. (2003). Perceptual learning modulates sensory evoked response during vowel segregation. Cognitive Brain Research, 17(3), 781-791.
URL pmid: 14561463 |
[72] | Roden, I., Kreutz, G., & Bongard, S. (2012). Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study. Frontiers in Neuroscience, 3, 572. |
[73] |
Schirmer, A., Tang, S. L., Penney, T. B., Gunter, T. C., & Chen, H. C. (2005). Brain responses to segmentally and tonally induced semantic violations in Cantonese. Journal of Cognitive Neuroscience, 17(1), 1-12.
doi: 10.1162/0898929052880057 URL pmid: 15701235 |
[74] |
Schön, D., Besson, M., & Magne, C. L. (2004). The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341-349.
URL pmid: 15102118 |
[75] |
Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23(13), 5545-5552.
URL pmid: 12843255 |
[76] |
Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B. (2005). Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport, 16(16), 1781-1785.
doi: 10.1097/01.wnr.0000185017.29316.63 URL pmid: 16237326 |
[77] |
Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199-211.
URL pmid: 27107499 |
[78] |
Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. Journal of Neuroscience, 33(3), 1282-1290.
doi: 10.1523/JNEUROSCI.3578-12.2013 URL pmid: 23325263 |
[79] |
Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191-196.
URL pmid: 10195205 |
[80] |
Tang, W., Xiong, W., Zhang, Y.-X., Dong, Q., & Nan, Y. (2016). Musical experience facilitates lexical tone processing among mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
URL pmid: 27503769 |
[81] | Tong, Y., Francis, A. L., & Gandour, J. T. (2008). Processing dependencies between segmental and suprasegmental features in mandarin Chinese. Language and Cognitive Processes, 23(5), 689-708. |
[82] |
Tremblay, K., Kraus, N., McGee, T., Ponton, C., & Otis, B. (2001). Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear and hearing, 22(2), 79-90.
doi: 10.1097/00003446-200104000-00001 URL pmid: 11324846 |
[83] |
Wang, X., Ossher, L., & Reuter-Lorenz, P. A. (2015). Examining the relationship between skilled music training and attention. Consciousness & Cognition, 36, 169-179.
doi: 10.1016/j.concog.2015.06.014 URL pmid: 26160137 |
[84] |
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420-422.
URL pmid: 17351633 |
[85] |
Wu, H., Ma, X. H., Zhang, L. J., Liu, Y. Y., Yang, Z., & Hua, S. (2015). Musical experience modulates categorical perception of lexical tones in native chinese speakers. Frontiers in Psychology, 6, 436.
URL pmid: 25918511 |
[86] | Wu, M. J., & Zhu, H. D.. (2001). Chinese rhythmology Beijing, China: Language & Culture Press. |
[87] |
Zioga, I., Luft, C. D. B., & Bhattacharya, J. (2016). Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 1650, 267-282.
doi: 10.1016/j.brainres.2016.09.015 URL pmid: 27622645 |
[1] | ZHAO Huaiyang, JIANG Jun, ZHOU Linshu, JIANG Cunmei. Role of the human mirror system in automatic processing of musical emotion: Evidence from EEG [J]. Acta Psychologica Sinica, 2019, 51(7): 795-804. |
[2] | Wang-Yunjia,Chu-Min,He-Lin. Classification and Distribution of Sentence Stress in Mandarin [J]. , 2003, 35(06): 734-742. |
[3] | Liu Shiyi (Shanghai Institute of Physiology, Academia Sinica, Shanghai 200031, China ). SOME CONTEMPORARY THEORETICAL QUESTIONS IN SLEEP RESEARCH [J]. , 1996, 28(03): 299-306. |
[4] | Liu Shiyi,Chen Ming,Zhang Yi,Zhang Wenyuan,Dai Xiuju Shanghai Institute of Physiology, Academia Sinica. A STUDY ON CIRCADIAN BODY TEMPERATURE “CLOCK” IN YOUNG ADULT SUBJECTS [J]. , 1993, 25(03): 42-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||