Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (7): 835-846.doi: 10.3724/SP.J.1041.2020.00835
• Reports of Empirical Studies • Previous Articles Next Articles
TANG Xiaoyu1(), WU Yingnan1, PENG Xing2, WANG Aijun3(), LI Qi4
Received:
2019-11-15
Published:
2020-07-25
Online:
2020-05-25
Contact:
TANG Xiaoyu,WANG Aijun
E-mail:tangyu-2006@163.com;ajwang@suda.edu.cn
Supported by:
TANG Xiaoyu, WU Yingnan, PENG Xing, WANG Aijun, LI Qi. (2020). The influence of endogenous spatial cue validity on audiovisual integration. Acta Psychologica Sinica, 52(7), 835-846.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2020.00835
Figure 1. Example of the stimuli and experimental procedure. (a) Schematic diagram of the target stimulus presentation position; (b) Procedure of a single trial. The visual cue (central arrow) points to the left, and the target stimulus (audiovisual) appears to the left (i. e., the valid cue position). Subjects are required to respond both quickly and accurately to the target stimulus. Target (V/A/AV) represents visual, auditory and audiovisual targets respectively. The ISI is the inter-stimulus interval. ITI is the inter-interval trial.
Target modality | Cue type | Experiment 1 | Experiment 2 | ||
---|---|---|---|---|---|
RT (ms) | ACC (%) | RT (ms) | ACC (%) | ||
AV | valid | 302 ± 34 | 99.2 ± 1.2 | 289 ± 42 | 98.7 ± 1.2 |
invalid | 312 ± 36 | 99.2 ± 1.2 | 333 ± 51 | 95.8 ± 4.8 | |
A | valid | 341 ± 39 | 97.1 ± 2.8 | 318 ± 51 | 97.1 ± 2.6 |
invalid | 353 ± 42 | 96.8 ± 2.7 | 363 ± 56 | 92.7 ± 4.5 | |
V | valid | 334 ± 42 | 98.0 ± 2.3 | 324 ± 41 | 97.5 ± 2.3 |
invalid | 345 ± 47 | 97.7 ± 2.9 | 362 ± 46 | 95.4 ± 4.7 |
Table 1 Average of median reaction times (RTs, in milliseconds), accuracy (ACC, percent correct), and standard deviation (SD) for all combinations of target type (A, V, and AV) and cue validity (valid and invalid) in each experiment
Target modality | Cue type | Experiment 1 | Experiment 2 | ||
---|---|---|---|---|---|
RT (ms) | ACC (%) | RT (ms) | ACC (%) | ||
AV | valid | 302 ± 34 | 99.2 ± 1.2 | 289 ± 42 | 98.7 ± 1.2 |
invalid | 312 ± 36 | 99.2 ± 1.2 | 333 ± 51 | 95.8 ± 4.8 | |
A | valid | 341 ± 39 | 97.1 ± 2.8 | 318 ± 51 | 97.1 ± 2.6 |
invalid | 353 ± 42 | 96.8 ± 2.7 | 363 ± 56 | 92.7 ± 4.5 | |
V | valid | 334 ± 42 | 98.0 ± 2.3 | 324 ± 41 | 97.5 ± 2.3 |
invalid | 345 ± 47 | 97.7 ± 2.9 | 362 ± 46 | 95.4 ± 4.7 |
Figure 2. Reaction time results in Experiment 1. (a) Average of median RT in each condition; (b) Magnitude of relative multisensory response enhancement (rMRE) in both cue validity conditions. The error bars represent the standard errors of the mean (***p < 0.001)
Figure 3. Race model results in Experiment 1. (a) Mean probability enhancement over the race model across the full range of response times (RTs) for the valid cue (dashed red line), and the invalid cue condition (solid black line). (b) Significant violations time window. * Represents the peak value, and the arrows represent the starting time and the peak value of the violation of the race model time window.
Figure 4. Reaction time results in Experiment 2. (a) Average of median RT in each condition; (b) Magnitude of relative multisensory response enhancement (rMRE) in both cue validity conditions. The error bars represent the standard errors of the mean (***p < 0.001, * p < 0.05)
Experiment | Conditions | M | 95% CI | t | p | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Experiment 1 | Cueing effect | |||||
A | 12.23 | 5.97 | 18.49 | 3.97 | <0.001 | |
AV | 9.44 | 5.48 | 13.41 | 4.84 | <0.001 | |
V | 10.23 | 5.62 | 14.84 | 4.51 | <0.001 | |
Cueing effect comparison | ||||||
A vs. AV | 2.79 | -1.31 | 6.88 | 1.38 | 0.176 | |
A vs. V | 2.00 | -3.28 | 7.28 | 0.77 | 0.447 | |
AV vs. V | -0.78 | -4.37 | 2.80 | -0.45 | 0.659 | |
Experiment 2 | Cueing effect | |||||
A | 45.04 | 29.77 | 60.30 | 6.06 | <0.001 | |
AV | 43.54 | 29.75 | 57.32 | 6.49 | <0.001 | |
V | 38.70 | 26.00 | 51.41 | 6.26 | <0.001 | |
Cueing effect comparison | ||||||
A vs. AV | 1.50 | -3.14 | 6.14 | 0.67 | 0.512 | |
A vs. V | 6.33 | 0.21 | 12.46 | 2.13 | 0.043 | |
AV vs. V | 4.83 | -0.88 | 10.54 | 1.74 | 0.094 |
Table 2 Comparison of cueing effect in different target modalities
Experiment | Conditions | M | 95% CI | t | p | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Experiment 1 | Cueing effect | |||||
A | 12.23 | 5.97 | 18.49 | 3.97 | <0.001 | |
AV | 9.44 | 5.48 | 13.41 | 4.84 | <0.001 | |
V | 10.23 | 5.62 | 14.84 | 4.51 | <0.001 | |
Cueing effect comparison | ||||||
A vs. AV | 2.79 | -1.31 | 6.88 | 1.38 | 0.176 | |
A vs. V | 2.00 | -3.28 | 7.28 | 0.77 | 0.447 | |
AV vs. V | -0.78 | -4.37 | 2.80 | -0.45 | 0.659 | |
Experiment 2 | Cueing effect | |||||
A | 45.04 | 29.77 | 60.30 | 6.06 | <0.001 | |
AV | 43.54 | 29.75 | 57.32 | 6.49 | <0.001 | |
V | 38.70 | 26.00 | 51.41 | 6.26 | <0.001 | |
Cueing effect comparison | ||||||
A vs. AV | 1.50 | -3.14 | 6.14 | 0.67 | 0.512 | |
A vs. V | 6.33 | 0.21 | 12.46 | 2.13 | 0.043 | |
AV vs. V | 4.83 | -0.88 | 10.54 | 1.74 | 0.094 |
Figure 5. Race model results in Experiment 2. (a) Mean probability enhancement over the race model across the full range of response times (RTs) for the valid cue (dashed red line), and the invalid cue condition (solid black line). (b) Significant violations time window. * Represents the peak value, and the arrows represent the starting time and the peak value of the violation of the race model time window.
1 |
Arjona, A., Escudero, M., & Gómez, C. M . ( 2016). cue validity probability influences neural processing of targets. Biological Psychology, 119, 171-183.
doi: 10.1016/j.biopsycho.2016.07.001 URL pmid: 27430935 |
2 |
Baluch, F., & Itti, L. ( 2011). Mechanisms of top-down attention. Trends in Neurosciences, 34( 4), 210-224.
doi: 10.1016/j.tins.2011.02.003 URL pmid: 21439656 |
3 | Bertelson, P., Vroomen, J., de Gelder, B., & Driver, J . ( 2000). The ventriloquist effect does not depend on the direction of deliberate visual attention. Perception & Psychophysics, 62( 2), 321-332. |
4 |
Buschman, T. J., & Miller, E. K. ( 2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315( 5820), 1860-1862.
doi: 10.1126/science.1138071 URL pmid: 17395832 |
5 |
Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G . ( 2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences of the United States of America, 102( 51), 18751-18756.
doi: 10.1073/pnas.0507704102 URL pmid: 16339900 |
6 | Carrasco, I. ( 2014). Gender gap in innovation: An institutionalist explanation. Management Decision, 52( 2), 410-424. |
7 |
Chica, A. B., & Lupiáñez, J. ( 2009). Effects of endogenous and exogenous attention on visual processing: An Inhibition of Return study. Brain Research, 1278, 75-85.
doi: 10.1016/j.brainres.2009.04.011 URL pmid: 19374885 |
8 |
Dombert, P. L., Kuhns, A., Mengotti, P., Fink, G. R., & Vossel, S . ( 2016). Functional mechanisms of probabilistic inference in feature- and space-based attentional systems. Neuroimage, 142, 553-564.
doi: 10.1016/j.neuroimage.2016.08.010 URL pmid: 27523448 |
9 |
Eimer, M. ( 1997). Uninformative symbolic cues may bias visual-spatial attention: Behavioral and electrophysiological evidence. Biological Psychology, 46( 1), 67-71.
doi: 10.1016/s0301-0511(97)05254-x URL pmid: 9255432 |
10 |
Fairhall, S. L., & Macaluso, E. ( 2009). Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. European Journal of Neuroscience, 29( 6), 1247-1257.
URL pmid: 19302160 |
11 |
Giard, M. H., & Peronnet, F. ( 1999). audiovisual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11( 5), 473-490.
doi: 10.1162/089892999563544 URL pmid: 10511637 |
12 | Jonides, J. ( 1983). Towards a model of the mind's eye's movement. Bulletin of the Psychonomic Society, 21( 4), 247-250. |
13 |
Koelewijn, T., Bronkhorst, A., & Theeuwes, J . ( 2010). Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychologica, 134( 3), 372-384.
doi: 10.1016/j.actpsy.2010.03.010 URL pmid: 20427031 |
14 |
Kuhns, A. B., Dombert, P. L., Mengotti, P., Fink, G. R., & Vossel, S . ( 2017). Spatial attention, motor intention, and Bayesian cue predictability in the human brain. Journal of Neuroscience, 37( 21), 5334-5344.
doi: 10.1523/JNEUROSCI.3255-16.2017 URL pmid: 28450541 |
15 |
Laurienti, P. J., Burdette, J. H., Maldjian, J. A., & Wallace, M. T . ( 2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27( 8), 1155-1163.
doi: 10.1016/j.neurobiolaging.2005.05.024 URL pmid: 16039016 |
16 |
Lewald, J., & Guski, R. ( 2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cognitive Brain Research, 16( 3), 468-478.
doi: 10.1016/s0926-6410(03)00074-0 URL pmid: 12706226 |
17 |
Li, Q., Wu, J. L., & Touge, T . ( 2010). Audiovisual interaction enhances auditory detection in late stage: an event-related potential study. Neuroreport, 21( 3), 173-178.
doi: 10.1097/WNR.0b013e3283345f08 URL pmid: 20065887 |
18 |
Lunn, J., Sjoblom, A., Ward, J., Soto-Faraco, S., & Forster, S . ( 2019). Multisensory enhancement of attention depends on whether you are already paying attention. Cognition, 187, 38-49.
URL pmid: 30825813 |
19 |
McCracken, H. S., Murphy, B. A., Glazebrook, C. M., Burkitt, J. J., Karellas, A. M., & Yielder, P. C . ( 2019). Audiovisual multisensory integration and evoked potentials in young adults with and without attention-deficit/hyperactivity disorder. Frontiers in Human Neuroscience, 13, 95.
doi: 10.3389/fnhum.2019.00095 URL pmid: 30941026 |
20 |
Mengotti, P., Boers, F., Dombert, P. L., Fink, G. R., & Vossel, S . ( 2018). Integrating modality-specific expectancies for the deployment of spatial attention. Scientific Reports, 8( 1), 1210.
doi: 10.1038/s41598-018-19593-7 URL pmid: 29352145 |
21 | Meredith, M. A., Nemitz, J. W., & Stein, B. E . ( 1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuropathology and Experimental Neurology, 7( 10), 3215-3229. |
22 |
Meredith, M. A., & Stein, B. E. ( 1986a). Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Research, 365( 2), 350-354.
doi: 10.1016/0006-8993(86)91648-3 URL pmid: 3947999 |
23 |
Meredith, M. A., & Stein, B. E. ( 1986b). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56( 3), 640-662.
doi: 10.1152/jn.1986.56.3.640 URL pmid: 3537225 |
24 |
Meyer, K. N., Du, F., Parks, E., & Hopfinger, J. B . ( 2018). Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity. Neuropsychologia, 111, 307-316.
doi: 10.1016/j.neuropsychologia.2018.02.006 URL pmid: 29425803 |
25 | Miller, J. ( 1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14( 2), 247-279. |
26 |
Miller, J. ( 1986). Timecourse of coactivation in bimodal divided attention. Perception & Psychophysics, 40( 5), 331-343.
doi: 10.3758/bf03203025 URL pmid: 3786102 |
27 |
Peelen, M. V., & Kastner, S. ( 2014). Attention in the real world: Toward understanding its neural basis. Trends in Cognitive Sciences, 18( 5), 242-250.
doi: 10.1016/j.tics.2014.02.004 URL pmid: 24630872 |
28 |
Posner, M. I . ( 1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32( 1), 3-25.
doi: 10.1080/00335558008248231 URL pmid: 7367577 |
29 | Raab, D. H . ( 1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24( 5), 574-590. |
30 | Riggio, L., & Kirsner, K. ( 1997). The relationship between central cues and peripheral cues in covert visual orientation. Perception & Psychophysics, 59( 6), 885-899. |
31 |
Santangelo, V., Fagioli, S., & Macaluso, E . ( 2010). The costs of monitoring simultaneously two sensory modalities decrease when dividing attention in space. Neuroimage, 49( 3), 2717-2727.
doi: 10.1016/j.neuroimage.2009.10.061 URL pmid: 19878728 |
32 |
Santangelo, V., Ho, C., & Spence, C . ( 2008). Capturing spatial attention with multisensory cues. Psychonomic Bulletin & Review, 15( 2), 398-403.
URL pmid: 18488658 |
33 |
Santangelo, V., & Spence, C. ( 2007). Multisensory cues capture spatial attention regardless of perceptual load. Journal of Experimental Psychology: Human Perception and Performance, 33( 6), 1311-1321.
doi: 10.1037/0096-1523.33.6.1311 URL pmid: 18085945 |
34 | Stein, B. E., Meredith, M. A., & Wallace, M. T . ( 1993). The visually responsive neuron and beyond: Multisensory integration in cat and monkey. Progress in Brain Research, 95, 79-90. |
35 |
Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G . ( 2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14( 9), 400-410.
doi: 10.1016/j.tics.2010.06.008 URL pmid: 20675182 |
36 |
Talsma, D., & Woldorff, M. G. ( 2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17( 7), 1098-1114.
URL pmid: 16102239 |
37 |
Tang, X. Y., Gao, Y. L., Yang, W. P., Ren, Y. N., Wu, J. L., Zhang, M., & Wu, Q . ( 2019). Bimodal-divided attention attenuates visually induced inhibition of return with audiovisual targets. Experimental Brain Research, 237( 4), 1093-1107.
doi: 10.1007/s00221-019-05488-0 URL pmid: 30770958 |
38 | Ulrich, R., Miller, J., & Schröter, H . ( 2007). Testing the race model inequality: An algorithm and computer programs. Behavioural Brain Research, 39( 2), 291-302. |
39 |
van den Brink, R. L., Cohen, M. X., van der Burg, E., Talsma, D., Vissers, M. E., & Slagter, H. A . ( 2014). Subcortical, modality-specific pathways contribute to multisensory processing in humans. Cerebral Cortex, 24( 8), 2169-2177.
doi: 10.1093/cercor/bht069 URL pmid: 23529004 |
40 |
van der Burg, E., Olivers, C. N. L., Bronkhorst, A. W., & Theeuwes, J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065.
doi: 10.1037/0096-1523.34.5.1053 URL pmid: 18823194 |
41 |
van der Burg, E., Talsma, D., Olivers, C. N. L., Hickey, C., & Theeuwes, J . ( 2011). Early multisensory interactions affect the competition among multiple visual targets. Neuroimage, 55( 3), 1208-1218.
doi: 10.1016/j.neuroimage.2010.12.068 URL |
42 |
van der Stigchel, S., Meeter, M., & Theeuwes, J . ( 2007). Top-down influences make saccades deviate away: The case of endogenous cues. Acta Psychologica, 125( 3), 279-290.
doi: 10.1016/j.actpsy.2006.08.002 URL pmid: 17022930 |
43 | van der Stoep, N., van der Stigchel, S., & Nijboer, T. C. W . ( 2015). Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77( 2), 464-482. |
44 |
van der Stoep, N., van der Stigchel, S., Nijboer, T. C. W., & Spence, C . ( 2017). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46( 1), 6-17.
doi: 10.1177/0301006616661934 URL pmid: 27484341 |
45 |
Vossel, S., Mathys, C., Daunizeau, J., Bauer, M., Driver, J., Friston, K. J., & Stephan, K. E . ( 2014). Spatial attention, precision, and Bayesian inference: A study of saccadic response speed. Cerebral Cortex, 24( 6), 1436-1450.
doi: 10.1093/cercor/bhs418 URL pmid: 23322402 |
46 |
Vossel, S., Mathys, C., Stephan, K. E., & Friston, K. J . ( 2015). Cortical coupling reflects Bayesian belief updating in the deployment of spatial attention. Journal of Neuroscience, 35( 33), 11532-11542.
doi: 10.1523/JNEUROSCI.1382-15.2015 URL pmid: 26290231 |
47 |
Vossel, S., Thiel, C. M., & Fink, G. R . ( 2006). cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage, 32( 3), 1257-1264.
doi: 10.1016/j.neuroimage.2006.05.019 URL pmid: 16846742 |
48 |
Zou, H., Müller, H. J., & Shi, Z . ( 2012). Non-spatial sounds regulate eye movements and enhance visual search. Journal of Vision, 12( 5), 2.
URL pmid: 22562709 |
[1] | ZHANG Ming, WANG Tingting, WU Xiaogang, ZHANG Yue’e, WANG Aijun. Effects of integration of facial expression and emotional voice on inhibition of return [J]. Acta Psychologica Sinica, 2022, 54(4): 331-342. |
[2] | TANG Xiaoyu, TONG Jiageng, YU Hong, WANG Aijun. Effects of endogenous spatial attention and exogenous spatial attention on multisensory integration [J]. Acta Psychologica Sinica, 2021, 53(11): 1173-1188. |
[3] | Xiaoyu TANG, Jiaying SUN, Xing PENG. The effect of bimodal divided attention on inhibition of return with audiovisual targets [J]. Acta Psychologica Sinica, 2020, 52(3): 257-268. |
[4] | PENG Xing, CHANG Ruosong, LI Qi, WANG Aijun, TANG Xiaoyu. Visually induced inhibition of return affects the audiovisual integration under different SOA conditions [J]. Acta Psychologica Sinica, 2019, 51(7): 759-771. |
[5] | CHEN Airui, WANG Aijun, WANG Tianqi, TANG Xiaoyu, ZHANG Ming. The primary visual cortex modulates attention oscillation [J]. Acta Psychologica Sinica, 2018, 50(2): 158-167. |
[6] | Sui Guangyuan,Wu Yan. Overt Visual-Spatial Attention Shifts in Children [J]. , 2006, 38(06): 841-848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||