心理学报 ›› 2013, Vol. 45 ›› Issue (1): 114-124.doi: 10.3724/SP.J.1041.2013.00114
黎光明;张敏强
LI Guangming;ZHANG Minqiang
摘要: Bootstrap方法是一种有放回的再抽样方法, 可用于概化理论的方差分量及其变异量估计。用Monte Carlo技术模拟四种分布数据, 分别是正态分布、二项分布、多项分布和偏态分布数据。基于p×i设计, 探讨校正的Bootstrap方法相对于未校正的Bootstrap方法, 是否改善了概化理论估计四种模拟分布数据的方差分量及其变异量。结果表明:跨越四种分布数据, 从整体到局部, 不论是“点估计”还是“变异量”估计, 校正的Bootstrap方法都要优于未校正的Bootstrap方法, 校正的Bootstrap方法改善了概化理论方差分量及其变异量估计。