心理学报 ›› 2024, Vol. 56 ›› Issue (1): 93-106.doi: 10.3724/SP.J.1041.2024.00093
董琳1, 叶扬华1, 黄慧雅1, 李丽娜2, 李何慧1(), 罗跃嘉3,4()
收稿日期:
2022-11-08
发布日期:
2023-11-23
出版日期:
2024-01-25
通讯作者:
李何慧,罗跃嘉
E-mail:hehuili@szu.edu.cn;luoyj@bnu.edu.cn
基金资助:
DONG Lin1, YE Yanghua1, HUANG Huiya1, LI Lina2, LI Hehui1(), LUO Yue-Jia3,4()
Received:
2022-11-08
Online:
2023-11-23
Published:
2024-01-25
Contact:
LI Hehui, LUO Yue-Jia
E-mail:hehuili@szu.edu.cn;luoyj@bnu.edu.cn
摘要:
以往研究多关注阅读焦虑如何影响情绪脑区的神经活动, 几乎没有研究考察阅读焦虑是否以及如何影响阅读网络。为了探讨此问题, 本研究从大脑和小脑功能差异的视角入手, 采集了49名成人被试在英语词汇阅读任务中的神经影像数据, 试图探讨外语阅读焦虑影响大、小脑内阅读网络的机制。结果发现, 在行为层面上, 外语阅读焦虑与外语词汇解码显著相关, 但与外语词汇加工效率并不存在显著的相关关系; 神经层面上, 外语阅读焦虑与小脑内阅读相关区域激活显著相关, 与大脑内阅读网络的神经活动并不存在显著的相关, 但其与大脑内阅读区和非阅读相关区域间的功能连接显著相关。本研究结合大、小脑的功能分化, 深入揭示了外语阅读焦虑影响外语阅读的认知与神经机制。
中图分类号:
董琳, 叶扬华, 黄慧雅, 李丽娜, 李何慧, 罗跃嘉. (2024). 外语阅读焦虑对大脑和小脑阅读网络影响的差异. 心理学报, 56(1), 93-106.
DONG Lin, YE Yanghua, HUANG Huiya, LI Lina, LI Hehui, LUO Yue-Jia. (2024). Differential effects of foreign language reading anxiety on the reading-related networks in the cerebellum and cerebrum. Acta Psychologica Sinica, 56(1), 93-106.
测验名称 | 外语阅读焦虑量表 | 英语焦虑来源问卷 | 英语焦虑自评 | 特质焦虑 | 状态焦虑 |
---|---|---|---|---|---|
真词识别 | −0.254 (p = 0.08) | −0.436** (p = 0.002, R2 = 0.19, 95% CI [−0.62, −0.15]) | −0.416** (p = 0.003, R2 = 0.17, 95% CI [−2.47, −0.54]) | 0.041 (p = 0.78) | −0.178 (p = 0.22) |
假词辨认 | −0.129 (p = 0.38) | −0.390** (p = 0.006, R2 = 0.15, 95% CI [−0.7, −0.13]) | −0.286* (p = 0.047, R2 = 0.08, 95% CI [−2.45, −0.02]) | 0.161 (p = 0.27) | −0.238 (p = 0.1) |
英语能力自评 | −0.115 (p = 0.43) | −0.613*** (p < 0.001, R2 = 0.38, 95% CI [−0.14, −0.07]) | −0.487*** (p < 0.001, R2 = 0.24, 95% CI [−0.52, −0.16]) | 0.025 (p = 0.86) | −0.060 (p = 0.68) |
快速字母命名 | 0.207 (p = 0.15) | 0.276(*) (p = 0.055) | 0.119 (p = 0.41) | 0.019 (p = 0.9) | 0.041 (p = 0.78) |
表1 行为测试相关分析
测验名称 | 外语阅读焦虑量表 | 英语焦虑来源问卷 | 英语焦虑自评 | 特质焦虑 | 状态焦虑 |
---|---|---|---|---|---|
真词识别 | −0.254 (p = 0.08) | −0.436** (p = 0.002, R2 = 0.19, 95% CI [−0.62, −0.15]) | −0.416** (p = 0.003, R2 = 0.17, 95% CI [−2.47, −0.54]) | 0.041 (p = 0.78) | −0.178 (p = 0.22) |
假词辨认 | −0.129 (p = 0.38) | −0.390** (p = 0.006, R2 = 0.15, 95% CI [−0.7, −0.13]) | −0.286* (p = 0.047, R2 = 0.08, 95% CI [−2.45, −0.02]) | 0.161 (p = 0.27) | −0.238 (p = 0.1) |
英语能力自评 | −0.115 (p = 0.43) | −0.613*** (p < 0.001, R2 = 0.38, 95% CI [−0.14, −0.07]) | −0.487*** (p < 0.001, R2 = 0.24, 95% CI [−0.52, −0.16]) | 0.025 (p = 0.86) | −0.060 (p = 0.68) |
快速字母命名 | 0.207 (p = 0.15) | 0.276(*) (p = 0.055) | 0.119 (p = 0.41) | 0.019 (p = 0.9) | 0.041 (p = 0.78) |
测验名称 | F1 | F2 |
---|---|---|
假词辨认(WA) | 0.903 | −0.094 |
真词识别(WI) | 0.898 | −0.124 |
快速字母命名(RAN) | −0.12 | 0.993 |
表2 旋转后因子载荷矩阵
测验名称 | F1 | F2 |
---|---|---|
假词辨认(WA) | 0.903 | −0.094 |
真词识别(WI) | 0.898 | −0.124 |
快速字母命名(RAN) | −0.12 | 0.993 |
NO. | 脑区 | 半球 | BA | voxels | MNI坐标 | t | p | ||
---|---|---|---|---|---|---|---|---|---|
x | y | z | |||||||
大脑内显著激活的区域 | |||||||||
1 | Lingual_L | L | 19 | 8132 | −36 | −88 | −18 | 10.34 | 0.000 |
2 | Cingulum_Mid_L | L | 24 | 1321 | −6 | 12 | 40 | 7.12 | 0.000 |
3 | Postcentral_L | L | 4 | 1222 | −54 | −6 | 42 | 6.73 | 0.000 |
4 | Parietal_Sup_L | L | 7 | 606 | −26 | −62 | 48 | 6.28 | 0.000 |
5 | Amygdala_L | L | 34 | 393 | −22 | −2 | −12 | 6.59 | 0.000 |
6 | Parietal_Inf_L | L | 2 | 309 | −46 | −34 | 44 | 5.42 | 0.000 |
7 | Putamen_R | R | 48 | 302 | 22 | 10 | −4 | 6.00 | 0.000 |
8 | Angular_R | R | 7 | 212 | 28 | −60 | 44 | 5.31 | 0.000 |
9 | Supp_Motor_Area_R | R | 6 | 114 | 12 | 8 | 70 | 5.86 | 0.002 |
10 | Insula_L | L | 47 | 105 | −30 | 24 | 2 | 4.62 | 0.003 |
11 | Insula_R | R | 47 | 97 | 32 | 20 | 2 | 5.45 | 0.005 |
12 | Thalamus_L | L | 0 | 63 | −8 | −20 | 8 | 4.89 | 0.046 |
小脑内显著激活的区域 | |||||||||
1 | Cerebellum_Superior_Crus1_L | L | 37 | 5027 | −44 | −62 | −26 | 7.95 | 0.000 |
2 | Cerebellum_ Superior_VI_R | R | 18 | 8 | −70 | −18 | 7.94 | 0.000 | |
3 | Cerebellum_ Superior_VI_R | R | 37 | 36 | −46 | −30 | 7.62 | 0.000 |
表3 大脑和小脑中的激活脑区
NO. | 脑区 | 半球 | BA | voxels | MNI坐标 | t | p | ||
---|---|---|---|---|---|---|---|---|---|
x | y | z | |||||||
大脑内显著激活的区域 | |||||||||
1 | Lingual_L | L | 19 | 8132 | −36 | −88 | −18 | 10.34 | 0.000 |
2 | Cingulum_Mid_L | L | 24 | 1321 | −6 | 12 | 40 | 7.12 | 0.000 |
3 | Postcentral_L | L | 4 | 1222 | −54 | −6 | 42 | 6.73 | 0.000 |
4 | Parietal_Sup_L | L | 7 | 606 | −26 | −62 | 48 | 6.28 | 0.000 |
5 | Amygdala_L | L | 34 | 393 | −22 | −2 | −12 | 6.59 | 0.000 |
6 | Parietal_Inf_L | L | 2 | 309 | −46 | −34 | 44 | 5.42 | 0.000 |
7 | Putamen_R | R | 48 | 302 | 22 | 10 | −4 | 6.00 | 0.000 |
8 | Angular_R | R | 7 | 212 | 28 | −60 | 44 | 5.31 | 0.000 |
9 | Supp_Motor_Area_R | R | 6 | 114 | 12 | 8 | 70 | 5.86 | 0.002 |
10 | Insula_L | L | 47 | 105 | −30 | 24 | 2 | 4.62 | 0.003 |
11 | Insula_R | R | 47 | 97 | 32 | 20 | 2 | 5.45 | 0.005 |
12 | Thalamus_L | L | 0 | 63 | −8 | −20 | 8 | 4.89 | 0.046 |
小脑内显著激活的区域 | |||||||||
1 | Cerebellum_Superior_Crus1_L | L | 37 | 5027 | −44 | −62 | −26 | 7.95 | 0.000 |
2 | Cerebellum_ Superior_VI_R | R | 18 | 8 | −70 | −18 | 7.94 | 0.000 | |
3 | Cerebellum_ Superior_VI_R | R | 37 | 36 | −46 | −30 | 7.62 | 0.000 |
图5 小脑中的脑激活−焦虑相关分析 注: L表示左侧脑区, R表示右侧脑区, Cerebellum_Superior_Crus1: 双侧小脑Crus I区; 左上为右侧小脑VI 区, 右上为该脑区与英语焦虑来源问卷的相关关系; 左下为双侧小脑Crus I 区, 右下为该脑区与英语焦虑自评的相关关系的示意图。
图6 大脑中的脑功能连接−焦虑相关分析 注: L表示左侧脑区, R表示右侧脑区, SuppMotorArea.R: 右侧辅助运动区, ParietalSup.L: 左侧顶上回; 左图为右侧辅助运动区与左侧顶上回的功能连接关系, 蓝色的点为大脑右侧的辅助运动区, 红色的点为大脑左侧顶上回。蓝色区域为大脑在阅读任务中显著激活的区域, 而左侧的顶上回并不在此区域中。右图为该功能连接与英语焦虑自评的相关关系。
[1] |
Alvarez T. A., & Fiez J. A. (2018). Current perspectives on the cerebellum and reading development. Neuroscience & Biobehavioral Reviews, 92, 55-66.
doi: 10.1016/j.neubiorev.2018.05.006 URL |
[2] |
Ashburn S. M., Flowers D. L., Napoliello E. M., & Eden G. F. (2020). Cerebellar function in children with and without dyslexia during single word processing. Human Brain Mapping, 41(1), 120-138.
doi: 10.1002/hbm.24792 pmid: 31597004 |
[3] |
Ashida R., Cerminara N. L., Edwards R. J., Apps R., & Brooks J. C. (2019). Sensorimotor, language, and working memory representation within the human cerebellum. Human Brain Mapping, 40(16), 4732-4747.
doi: 10.1002/hbm.24733 pmid: 31361075 |
[4] | Bernard J. A., Seidler R. D., Hassevoort K. M., Benson B. L., Welsh R. C., Wiggins J. L.,... Peltier S. J. (2012). Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and selforganizing map approaches. Frontiers in Neuroanatomy, 6, doi: 10.3389/fnana.2012.00031 |
[5] |
Bishop S. (2009). Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience, 12, 92-98.
doi: 10.1038/nn.2242 pmid: 19079249 |
[6] |
Bishop S. J. (2007). Neurocognitive mechanisms of anxiety: An integrative account. Trends in Cognitive Sciences, 11(7), 307-316.
doi: 10.1016/j.tics.2007.05.008 pmid: 17553730 |
[7] |
Blomert L. (2011). The neural signature of orthographic- phonological binding in successful and failing reading development. Neuroimage, 57(3), 695-703.
doi: 10.1016/j.neuroimage.2010.11.003 pmid: 21056673 |
[8] |
Buchanan T. W., Laures-Gore J. S., & Duff M. C. (2014). Acute stress reduces speech fluency. Biological Psychology, 97, 60-66.
doi: 10.1016/j.biopsycho.2014.02.005 pmid: 24555989 |
[9] | Capan S. A., & Pektas R. (2013). An empirical analysis of the relationship between foreign language reading anxiety and reading strategy training. English Language Teaching, 6(12), 181-188. |
[10] |
Chen S. A., & Desmond J. E. (2005). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage, 24(2), 332-338.
pmid: 15627576 |
[11] |
Danelli L., Berlingeri M., Bottini G., Ferri F., Vacchi L., Sberna M., & Paulesu E. (2013). Neural intersections of the phonological, visual magnocellular and motor/ cerebellar systems in normal readers: Implications for imaging studies on dyslexia. Human Brain Mapping, 34(10), 2669-2687.
doi: 10.1002/hbm.22098 pmid: 22736513 |
[12] |
Davis K., Margolis A. E., Thomas L., Huo Z., & Marsh R. (2018). Amygdala sub-regional functional connectivity predicts anxiety in children with reading disorder. Developmental Science, 21(5), e12631.
doi: 10.1111/desc.2018.21.issue-5 URL |
[13] |
Denckla M. B., & Rudel R. G. (1974). Rapid “automatized” Naming of Pictured objects, colors, letters and numbers by normal children. Cortex, 10, 186-202.
pmid: 4844470 |
[14] |
Eysenck M. W., Derakshan N., Santos R., & Calvo M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336-53.
doi: 10.1037/1528-3542.7.2.336 pmid: 17516812 |
[15] |
Frings M., Dimitrova A., Schorn C. F., Elles H.-G., Hein-Kropp C., Gizewski E. R.,... Timmann D. (2006). Cerebellar involvement in verb generation: An fMRI study. Neuroscience Letters, 409(1), 19-23.
doi: 10.1016/j.neulet.2006.08.058 pmid: 17046160 |
[16] |
Gatti D., Vecchi T., & Mazzoni G. (2020). Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex, 135, 78-91.
doi: 10.1016/j.cortex.2020.11.017 URL |
[17] |
Georgiou G., Ghazyani R., & Parrila R. (2018). Are RAN deficits in university students with dyslexia due to defective lexical access, impaired anchoring, or slow articulation? Annals of Dyslexia, 68(2), 85-103.
doi: 10.1007/s11881-018-0156-z pmid: 29511958 |
[18] | Georgiou G., & Parrila R. (2013). Rapid automatized naming and reading. In L. Swanson, K. Harris, & S. Graham(Eds.), Handbook of learning disabilities(2nd ed., pp. 169-185). New York: Guilford.. |
[19] |
Georgiou G. K., Parrila R., & Liao C.-H. (2008b). Rapid naming speed and reading across languages that vary in orthographic consistency. Reading and Writing: An Interdisciplinary Journal, 21(9), 885-903
doi: 10.1007/s11145-007-9096-4 URL |
[20] | Guimba W. D., & Alico J. C. (2015). Reading anxiety and comprehension of grade 8 Filipino learners. International Journal of Humanities and Social Sciences, 1, 44-59. |
[21] |
Horwitz E. (2001). Language anxiety and achievement. Annual Review of Applied Linguistics, 21, 112-126.
doi: 10.1017/S0267190501000071 URL |
[22] |
Horwitz E. K. (2010). Foreign and second language anxiety. Language Teaching, 43(2), 154-167.
doi: 10.1017/S026144480999036X URL |
[23] |
Hsiao T. (2002). Unidimensionality of the Chinese version of the foreign language reading anxiety scale. Perceptual and Motor Skills, 95, 927-933.
doi: 10.2466/pms.2002.95.3.927 URL |
[24] | Hu X., Zhang X., & McGeown S. (2021). Foreign language anxiety and achievement: A study of primary school students learning English in China. Language Teaching Research, doi: 10.1177/13621688211032332 |
[25] |
Hung Y.-H., Frost S. J., Molfese P., Malins J. G., Landi N., Mencl W. E.,... Pugh K. R. (2019). Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill. Scientific Studies of Reading, 23(1), 89-100.
doi: 10.1080/10888438.2018.1451533 URL |
[26] |
Indefrey P., & Levelt W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.
doi: 10.1016/j.cognition.2002.06.001 pmid: 15037128 |
[27] |
Janacsek K., Shattuck K. F., Tagarelli K. M., Lum J. A., Turkeltaub P. E., & Ullman M. T. (2019). Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. Neuroimage, 207, 116387.
doi: 10.1016/j.neuroimage.2019.116387 URL |
[28] |
Jobard G., Crivello F., & Tzourio-Mazoyer N. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neurolmage, 20(2), 693-712.
doi: 10.1016/S1053-8119(03)00343-4 URL |
[29] |
Li H., Kepinska O., Caballero J. N., Zekelman L., Marks R. A., Uchikoshi Y.,... Hoeft F. (2021). Decoding the role of the cerebellum in the early stages of reading acquisition. Cortex, 141, 262-279.
doi: 10.1016/j.cortex.2021.02.033 pmid: 34102410 |
[30] |
Li H., Wu J., Marks R. A., Huang H., Li L., Dong L., Luo Y.-J., Tao W., & Ding G. (2022). Functional mapping and cooperation between the cerebellum and cerebrum during word reading. Cerebral Cortex, 32(22), 5175-5190.
doi: 10.1093/cercor/bhac006 URL |
[31] |
Li R. (2022). Foreign language reading anxiety and its correlates: A meta-analysis. Reading and Writing, 35(4), 995-1018.
doi: 10.1007/s11145-021-10213-x |
[32] | Liu C. (2006). Neural correlatesn of foreign language learning anxiety modulating language production processes (Unpublished doctorial dissertation). Beijing Normal University. |
[ 刘聪慧. (2006). 外语学习焦虑影响第二语言产生的认知神经机制研究 (博士学位论文). 北京师范大学.] | |
[33] | Mariën P., Ackermann H., Adamaszek M., Barwood C. H., Beaton A., Desmond J.,... Ziegler W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. The Cerebellum, 13(3), 386-410. |
[34] | Matsumura Y. (2001). An inquiry into foreign language reading anxiety among Japanese EFL learners. Eibeibunka: Studies in English Language, Literature and Culture, 31, 23-38. |
[35] |
McCandliss B. D., & Noble K. G. (2003). The development of reading impairment: A cognitive neuroscience model. Mental Retardation and Developmental Disabilities Research Reviews, 9(3), 196-205.
pmid: 12953299 |
[36] |
Meng X. Z., You H. L., Song M. X., Desroches A. S., Wang Z. K., Wei N.,... Ding G. S. (2016). Neural deficits in auditory phonological processing in Chinese children with English reading impairment. Bilingualism-Language and Cognition, 19(2), 331-346.
doi: 10.1017/S1366728915000073 URL |
[37] |
Menghini D., Hagberg G. E., Caltagirone C., Petrosini L., & Vicari S. (2006). Implicit learning deficits in dyslexic adults: An fMRI study. Neuroimage, 33(4), 1218-1226.
pmid: 17035046 |
[38] |
Miranda S., Seidl-Rathkopf K. N., & Kastner S. (2015). Functions of the human frontoparietal attention network: Evidence from neuroimaging. Current Opinion in Behavioral Sciences, 1, 32-39.
pmid: 27398396 |
[39] |
Murphy K., Jogia J., & Talcott J. (2019). On the neural basis of word reading: A meta-analysis of fMRI evidence using activation likelihood estimation. Journal of Neurolinguistics, 49, 71-83.
doi: 10.1016/j.jneuroling.2018.08.005 |
[40] |
Newman R. L., & Joanisse M. F. (2011). Modulation of brain regions involved in word recognition by homophonous stimuli: An fMRI study. Brain Research, 1367, 250-264.
doi: 10.1016/j.brainres.2010.09.089 pmid: 20888806 |
[41] |
Nicolson R. I., Fawcett A. J., Berry E. L., Jenkins I. H., Dean P., & Brooks D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. The Lancet, 353(9165), 1662-1667.
doi: 10.1016/S0140-6736(98)09165-X URL |
[42] |
Nicolson R. I., Fawcett A. J., & Dean P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508-511.
pmid: 11506881 |
[43] |
Norton E. S., Black J. M., Stanley L. M., Tanaka H., Gabrieli J. D., Sawyer C., & Hoeft F. (2014). Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia, 61, 235-246.
doi: 10.1016/j.neuropsychologia.2014.06.015 pmid: 24953957 |
[44] |
Norton E. S., & Wolf M. (2012). Rapid automatized naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63(1), 427-452.
doi: 10.1146/psych.2012.63.issue-1 URL |
[45] |
Palesi F., de Rinaldis A., Castellazzi G., Calamante F., Muhlert N., Chard D.,... Claudia A. M. (2017). Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: Implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Scientific Reports, 7(1), 12841.
doi: 10.1038/s41598-017-13079-8 pmid: 28993670 |
[46] |
Pernet C. R., Poline J. B., Demonet J. F., & Rousselet G. A. (2009). Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neuroscience, 10, 67.
doi: 10.1186/1471-2202-10-67 pmid: 19555471 |
[47] |
Pessoa L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357-71.
doi: S1364-6613(17)30036-0 pmid: 28363681 |
[48] |
Piccolo L. R., Giacomoni C. H., Julio-Costa A., Oliveira S., Zbornik J., Haase V. G., & Salles J. F. (2017). Reading anxiety in L1: Reviewing the concept. Early Childhood Education Journal, 45(4), 537-543.
doi: 10.1007/s10643-016-0822-x URL |
[49] |
Ramnani N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews Neuroscience, 7(7), 511-522.
doi: 10.1038/nrn1953 pmid: 16791141 |
[50] |
Raschle N. M., Zuk J., & Gaab N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences, 109(6), 2156-2161.
doi: 10.1073/pnas.1107721109 URL |
[51] |
Rimrodt S. L., Peterson D. J., Denckla M. B., Kaufmann W. E., & Cutting L. E. (2010). White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex, 46(6), 739-49
doi: 10.1016/j.cortex.2009.07.008 pmid: 19682675 |
[52] | Roy A. K., Fudge J. L., Kelly C., Perry J. S., Daniele T., Carlisi C.,... Ernst M. (2013). Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 52(3), 290-299. |
[53] |
Saito Y., Horwitz E. K., & Garza T. J. (1999). Foreign language reading anxiety. Modern Language Journal, 83(2), 202-218.
doi: 10.1111/modl.1999.83.issue-2 URL |
[54] |
Schmahmann J. D., Guell X., Stoodley C. J., & Halko M. A. (2019). The theory and neuroscience of cerebellar cognition. Annual Review of Neuroscience, 42, 337-364.
doi: 10.1146/annurev-neuro-070918-050258 pmid: 30939101 |
[55] | Spielberger C. D., Gonzalez-Reigosa F., Martinez-Urrutia A., Natalicio L. F., & Natalicio D. S. (1971). The state-trait anxiety inventory. Revista Interamericana de Psicologia/Interamerican Journal of Psychology, 5, 145-158. |
[56] |
Stein M. B., Simmons A. N., Feinstein J. S., & Paulus M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164(2), 318-327.
doi: 10.1176/ajp.2007.164.2.318 pmid: 17267796 |
[57] |
Tan L. H., Laird A. R., Li K., & Fox P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta‐analysis. Human Brain Mapping, 25(1), 83-91.
doi: 10.1002/hbm.v25:1 URL |
[58] |
Teimouri Y., Goetze J., & Plonsky L. (2019). Second Language Anxiety And Achievement: A meta-analysis. Studies in Second Language Acquisition, 41(2), 363-387.
doi: 10.1017/S0272263118000311 |
[59] |
Vitasari P., Wahab M. N. A., Herawan T., Othman A., & Sinnadurai S. K. (2011). Re-test of State Trait Anxiety Inventory (STAI) among engineering students in Malaysia: Reliability and validity tests. Procedia-Social and Behavioral Sciences, 15, 3843-3848.
doi: 10.1016/j.sbspro.2011.04.383 URL |
[60] |
Wong C. H., Liu J., Lee T. M., Tao J., Wong A. W., Chau B. K., Chen L., & Chan C. C. (2021). Fronto-cerebellar connectivity mediating cognitive processing speed. NeuroImage, 226, 117556.
doi: 10.1016/j.neuroimage.2020.117556 URL |
[61] | Woodcock R. W. (1987). Woodcock reading mastery tests, revised. American Guidance Service, Circle Pines, MN. |
[62] |
Wu C.-Y., Ho M.-H. R., & Chen S.-H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. NeuroImage, 63(1), 381-391.
doi: 10.1016/j.neuroimage.2012.06.047 URL |
[63] |
Yan C. G., Wang X. D., Zuo X. N., & Zang Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339-351.
doi: 10.1007/s12021-016-9299-4 URL |
[64] |
Yang Y., Bi H.-Y., Long Z.-Y., & Tao S. (2013). Evidence for cerebellar dysfunction in Chinese children with developmental dyslexia: An fMRI study. International Journal of Neuroscience, 123(5), 300-310.
doi: 10.3109/00207454.2012.756484 pmid: 23227882 |
[65] |
Zhang X. (2019). Foreign language anxiety and foreign language performance: A meta-analysis. The Modern Language Journal, 103(4), 763-781.
doi: 10.1111/modl.v103.4 URL |
[66] | Zhu Y. (2012). A study on English reading anxiety of non-English majors of vocational college in China-With the case study of Qingdao Harbor Vocational and Technical College (Unpublished doctoral dissertation). Shandong University of Science and Technology, China. |
[ 朱营营. (2012). 中国高职院校非英语专业学生英语阅读焦虑研究——以青岛港湾职业技术学院为例 (博士学位论文). 山东科技大学.] | |
[67] | MasoudZoghi. (2012). An instrument for EFL reading anxiety: Inventory construction and preliminary validation. The Journal of Asia TEFL, 9(1), 31-56. |
[1] | 封世文,沈兴安,杨亦鸣. 从使动句加工的功能性磁共振成像看中文句法加工的独立性[J]. 心理学报, 2011, 43(02): 123-131. |
[2] | 游旭群,宋晓蕾. 视觉表象产生的大脑半球专门化效应[J]. 心理学报, 2009, 41(10): 911-921. |
[3] | 朱婉儿,张蓉,胡长春,董逢泉,吴丽霞,陈芝芸. 慢性束缚应激对大鼠脑内Fas、FasL含量的影响[J]. 心理学报, 2008, 40(06): 723-728. |
[4] | 张昕,韩世辉. 大脑两半球与整体和局部性质的选择性加工[J]. 心理学报, 2004, 36(05): 507-514. |
[5] | 王常生,于生元,唐建荣. 右侧脑发育不全遗忘症患者的启动效应与右侧皮层的分离[J]. 心理学报, 2000, 32(1): 86-90. |
[6] | 徐晓虹,郭丹,章子贵,吴馥梅. 高压氧对小鼠学习记忆及脑细胞形态结构的影响[J]. 心理学报, 2000, 32(1): 91-94. |
[7] | 张倩,郭念锋. 攻击行为儿童大脑半球某些认知特点的研究[J]. 心理学报, 1999, 31(1): 104-110. |
[8] | 梁立,王重鸣,白延强,马国庆. 多任务信息加工中的多道分时机制[J]. 心理学报, 1997, 29(4): 370-376. |
[9] | 蔡厚德. 阿拉伯数字与汉字大写数字认知的大脑功能一侧化实验研究[J]. 心理学报, 1996, 28(2): 209-214. |
[10] | 郭可教,杨奇志. 汉字认知的“复脑效应”的实验研究[J]. 心理学报, 1995, 27(1): 78-83. |
[11] | 赵莉. 大脑两半球对McCollough效应敏感性的比较研究[J]. 心理学报, 1992, 24(3): 60-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||