ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展, 2020, 28(11): 1789-1799 doi: 10.3724/SP.J.1042.2020.01789

研究构想

睡眠剥夺对风险决策的影响机制探讨

彭嘉熙,1, 赵鹿鸣2, 方鹏3, 曹云飞1, 苗丹民3, 肖玮,3

1成都大学师范学院, 成都 610106

2北京大学汇丰商学院, 深圳 518055

3空军军医大学军事医学心理学系, 西安 710032

The effect mechanism of sleep deprivation on risky decision making

PENG Jiaxi,1, ZHAO Lumimg2, FANG Peng3, CAO Yunfei1, MIAO Danmin3, XIAO Wei,3

1College of Teachers, Chengdu University, Chengdu 610106, China

2HSBC Business School, Peking University, Shenzhen 518055, China

3Department of Military Medical Psychology, Air Force Medical University, Xi’an 710032, China;

通讯作者: 彭嘉熙, E-mail:pengjx880124@hotmail.com;肖玮, E-mail:xiaoweifmmu@yeah.net

收稿日期: 2020-03-10   网络出版日期: 2020-11-15

基金资助: * 国家自然科学基金青年项目(31900791)
教育部人 文社科基金青年项目(19YJC190020)
军事医学创新专项(18CXZ012)
军事医学科技青年培育计划(18QNP025)

Received: 2020-03-10   Online: 2020-11-15

摘要

许多行业的决策者必须在睡眠不足的状态下做出选择与判断。睡眠剥夺是睡眠不足的实验室模型, 被证明能显著影响风险决策, 但内在机制不明。基于前人研究基础提出假设模型, 即睡眠剥夺通过影响个体的反馈加工、风险感知、抑制控制、决策理性, 进而影响风险决策。拟通过实验室研究与现场研究, 采用简单赌博任务、概率折扣任务、双选择Oddball任务等研究范式, 对比睡眠剥夺前后被试在执行上述实验任务时的行为差异, 同时比较执行控制网络、奖赏网络等脑功能网络连接强度, 以及任务诱发的FRN等脑电成分在睡眠剥夺前后的变化, 进而论证上述反应被试反馈加工等心理过程的行为-脑电-脑成像指标的变化与睡眠剥夺后被试风险决策变化的关系。研究结果将科学地解释睡眠剥夺影响风险决策的内在机制, 为进一步探讨如何规避睡眠不足导致的决策失误提供理论与实证依据。

关键词: 睡眠剥夺; 风险决策; 机制; 脑成像; 事件相关电位

Abstract

In many industries, it is possible and sometimes inevitable for decision makers to make choices and decisions under the state of mental fatigue due to insufficient sleep. Sleep deprivation, as the laboratory model of insufficient sleep, has been proved to have significant influence on risky decision-making, while the internal mechanism remains unclear. A hypothetical model was suggested based previous studies that that the feedback processing, risk perception, inhibition control, and priority of heuristic system could mediate the influence of sleep deprivation on risky decision-making. Using laboratory study and field study, the current study planed to adopt Simple gambling task, Adult decision-making competence scale, Probability discounting task, two choice oddball paradigm, and other tasks and measurements, and compare participants’ performance in these tasks before and after sleep deprivation. Meanwhile, the connections between executive control network and reward network were compared, and the changes of task-induced FRN and other EEG components were compared as well before and after sleep deprivation. The results might present scientific explanations about how sleep deprivation influences risky decision-making, and provide theoretical basis for further exploration to avoid errors in decision-making due to insufficient sleep.

Keywords: sleep deprivation; risky decision making; mechanism; brain imaging; event-related potentials

PDF (730KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

彭嘉熙, 赵鹿鸣, 方鹏, 曹云飞, 苗丹民, 肖玮. 睡眠剥夺对风险决策的影响机制探讨. 心理科学进展, 2020, 28(11): 1789-1799 doi:10.3724/SP.J.1042.2020.01789

PENG Jiaxi, ZHAO Lumimg, FANG Peng, CAO Yunfei, MIAO Danmin, XIAO Wei. The effect mechanism of sleep deprivation on risky decision making. Advances in Psychological Science, 2020, 28(11): 1789-1799 doi:10.3724/SP.J.1042.2020.01789

1 问题提出

“日出而作, 日入而息”是传唱于尧帝时代《击壤歌》中的两句, 是我国先民最古老的智慧结晶, 它强调了规律作息与睡眠的重要意义。睡眠是人类基本的生理需要, 是在长期进化中昼夜节律与生物节律同步化的结果。睡眠不足导致脑力疲劳与免疫力下降, 表现为头脑昏沉、易激惹、健忘等(Toda, Williams, Gulledge, & Sehgal, 2019)。目前, 实验室研究常常通过睡眠剥夺(Sleep deprivation, SD)模拟睡眠不足的状态。前人的大量研究表明, 睡眠剥夺会造成警觉、学习、记忆、思维与执行功能的下降, 并诱发焦虑、愤怒、无聊感等多种负性情绪(Ratcliff & van Dongen, 2018)。

决策是对行为的选择, 是一种高级的认知活动。在金融、医疗、交通、军事等行业, 决策者常常需要在缺乏睡眠的脑疲劳状态下做出选择与判断, 如货车司机常常夜间驾驶, 在缺乏睡眠的状态下做出交通决策; 战场上, 指挥官需要在持续高压力与缺乏睡眠的状态下做出军事决策(Seelig et al., 2016; Irwin, Khalesi, Desbrow, & McCartney, 2020)。与睡眠不足有关的决策失误所造成的损失相当惊人。以航空医学相关数据为例, 美国国家运输安全委员会报告指出, 飞行员疲劳导致的决策失误与4%~7%的民航事故有关; 美国陆、海、空军安全中心总结各自军种的航空事故中, 缘于飞行员睡眠不足造成危机处理不当的竟占4%~25% (常耀明, 肖玮, 苗丹民, 2013)。目前, 睡眠剥夺对决策, 尤其是风险决策影响的研究还相对较少, 研究结论也并不一致。睡眠剥夺后决策者能否做出理性选择, 其决策倾向性会有怎样的改变, 睡眠剥夺影响风险决策的心理与神经机制如何, 目前并不清楚。鉴于睡眠缺乏和风险决策的普遍性, 探讨睡眠缺乏如何影响风险决策具有重要的理论和实际意义。

1.1 决策的双加工理论

决策者无法确定选择判断的确切后果, 这种决策被成为非确定型决策(Decision-making under uncertainty)。Knight (1921)将非确定型决策分成风险决策(Risky decision-making)与模糊决策(Ambiguity decision-making)两类。前者指概率已知但结果不确定的决策, 研究范式如剑桥赌博任务(Cambridge Gambling Task)、扔骰子任务(Game of Dice Task)等; 后者是指概率未知且结果不确定的决策, 研究范式如爱荷华赌博任务(Iowa Gambling Task)、模拟气球任务(Balloon Analogue Risk Task)等。决策的双加工理论(Dual-process model)认为决策过程存在启发式(Heuristic system)与分析式(Analytic system)两个加工系统。前者是直觉的、自动化的快速加工, 占用认知资源少, 情绪在其中发挥重要作用且该系统容易受到信息框架等影响, 通常决策者只能意识到加工的结果而无法感知到加工的过程; 后者是缓慢的、基于认知努力的加工, 需要消耗更多的认知资源, 其加工的过程和结果都能被决策者意识到(孙彦, 李纾, 殷晓莉, 2007)。启发式系统主要与大脑边缘系统有关, 包括杏仁核(Amygdala)、腹侧纹状体(Ventral striatum, VS)、眼眶皮质(Orbitofrontal cortex, OFC)、腹内侧前额叶(Ventromedial prefrontal cortex, VMPFC)等(Steinberg, 2010), 上述脑区活动与奖赏、刺激寻求相关; 分析式系统主要与前额皮层和顶叶皮层有关, 如背外侧前额叶(Dorsolateral prefrontal cortex, DLPFC), 背内侧前额叶(Dorsomedial prefrontal cortex, DMPFC), 前扣带回(Anterior cingulate cortex, ACC), 以及与之间联系的顶叶部分等。目前, 关于启发式-分析式加工系统究竟是并行激活还是串行激活还存在争议, 主流观点认为启发式系统加工先于分析式加工系统, 当个体意识到有必要干涉、纠正或支持启发式系统做出的判断时, 分析式加工系统才会被激活, 进而调节启发式系统的加工活动(Evans, 2007)。

双加工理论得到大量实证支持, 是一种重要的决策理论模型(Diederich & Trueblood, 2018)。该模型提示我们, 认知和情绪主导了决策行为。因此, 我们可以从与决策相关的认知活动以及情绪加工入手, 通过分析启发式-分析式系统涉及的脑区活动是否会受到睡眠剥夺的影响, 进而探讨睡眠不足对风险决策的影响机制。

1.2 睡眠剥夺降低唤醒度, 损伤认知功能

研究表明, 睡眠剥夺后, 个体注意与警觉显著下降, 接受和处理信息的速度减慢(Lim & Dinges, 2010)。如Drummond, Paulus和Tapert (2005)发现被试在36小时睡眠剥夺后精神运动警觉测试(Psychomotor vigilance test, PVT)成绩显著下降, 且PVT得分与默认网络功能连接强度显著负相关, 与前额皮质、顶叶、皮质下结构(如基底核)的功能连接强度显著正相关。记忆与学习是决策的重要认知基础, Lim和Dinges (2010)的元分析结果表明睡眠剥夺会导致工作记忆的准确率和反应时都出现显著下降。此外, 睡眠剥夺还能显著影响个体的思维与推理, 如研究发现睡眠剥夺后, 被试在伦敦塔测验(类似汉诺塔游戏)与交替使用任务(Alternate Uses Task, 一种评估发散思维的方法)的成绩均比平时显著下降, 说明思维能力受损(Killgore, Kahn-Greene, Grugle, Killgore, & Balkin, 2009; Vartanian et al., 2014)。

1.3 睡眠剥夺影响情绪加工

缺乏睡眠会导致焦虑、愤怒、无聊等负性情绪产生, 表现为不耐烦、好冲动、自我中心等(Killgore, 2010)。Saadat等(2016)以值班医生为研究对象, 发现17小时睡眠剥夺后被试自我报告的压力、愤怒、疲劳、困惑、紧张等指标显著高于平时。Killgore, Lipizzi, Kamimori和Balkin (2007)发现, 睡眠剥夺导致情绪智力下降, 尤其是同理心、冲动控制、延迟满足等。Killgore (2010)认为, 内侧前额叶皮质活动的降低, 会削弱个体对情绪加工相关脑区如杏仁核、边缘系统等的调节作用, 进而造成负性情绪的升高。Gujar, Yoo, Hu和Walker (2011)认为, 睡眠剥夺不仅会增大个体对负性刺激的情绪反应, 同时对调节获益与快乐相关的中脑多巴胺系统有去抑制作用, 即睡眠剥夺会造成情绪的不平衡和不稳定。在我们的预研究中也发现36小时睡眠剥夺后, 被试在心境状态量表(Profile of Mood States, POMS)中抑郁维度得分显著上升, 脑成像结果显示抑郁情绪上升与左右伏隔核同额下回、ACC等与奖赏相关的脑区功能连接下降显著相关。综上, 可以认为睡眠会剥夺诱导负性情绪, 并造成情绪不稳定。

1.4 睡眠剥夺影响决策

睡眠剥夺导致认知能力的普遍性下降, 产生负性情绪。认知和情绪是主导决策行为的因素, 据此有理由推测睡眠剥夺会对决策产生重要影响。已有研究者对此进行探索(Harrison & Horne, 2000)。早期的研究常常使用爱荷华赌博任务(Iowa Gambling Task, IGT):有ABCD四种纸牌, 翻开每张牌后都会有不确定的收益或损失。AB牌高收益高损失, 且收益的数学期望为负, 为冒险不利牌; CD牌低收益低损失, 且收益的数学期望为正, 为保守有利牌。一般地, 人们在多次尝试翻牌后会意识到纸牌的规律, 进而更多地选择CD牌。Killgore, Balkin和Wesensten (2006)发现, 49小时睡眠剥夺后被试会比平时更愿意冒险, 即使在IGT后期仍然倾向选择不利的AB牌。咖啡因、右旋安非他命、莫达非尼等被证明能够有效地抵御睡眠剥夺对警觉、注意的影响, 但在Killgore团队的研究中发现, 摄取咖啡因等觉醒促进剂并不能有效提升睡眠剥夺后被试在IGT的表现, 被试仍表现出盲目的冒险倾向(Killgore et al., 2007; Killgore, Grugle, & Balkin, 2012)。因此, 睡眠剥夺对决策的影响并不完全是因为警觉等初级认知能力下降造成的, 而有其更复杂的心理机制。

模拟气球任务(Balloon Analogue Risk Task, BART)是另一种常见的决策研究范式:被试可选择是否对一虚拟气球继续充气, 每次充气均会获得额外的奖励, 但气球爆炸(奖励归零)的风险也随之升高。每个气球爆炸对应的充气次数是随机的, 标准版BART最大充气次数为128次, 而简化版BART最大充气次数为8或12次。未爆炸气球的平均充气次数能够反应个体的冒险或保守倾向。多项关于睡眠剥夺对决策影响的研究采用了BART范式, 但结论却并不一致。如Acheson, Richards和de Wit (2007)发现, 相较于平时状态, 睡眠剥夺后女性被试平均充气次数显著减少, 即表现为更加保守; 男性被试却与平时无显著差异。但有研究者对这一结果表示质疑, 认为这种睡眠剥夺导致决策倾向保守的结论很可能是因为实验范式造成的:在标准版BART中, 被试往往需要重复按键很多次才可能导致气球的爆炸, 充气次数的下降不仅反应个体的保守与冒险, 还可能是因为睡眠剥夺造成大脑和身体疲劳, 被试不愿意消耗更多的体力在按键行为所造成的。Telzer, Fuligni, Lieberman和Galván (2013)采用简化版BART, 发现与正常组被试相比, 睡眠障碍组被试更倾向冒险, 且在完成认知控制任务时, 其DLPFC活动显著下降, 而在奖赏呈现时脑岛激活显著上升, DLPFC与脑岛、腹侧纹状体的耦合强度显著下降。Lei等(2017)采用简化版BART也发现睡眠剥夺后被试更倾向冒险, 且与左侧额下回异常激活有关, 因而作者认为认知控制下降与情绪加工不平衡可能是睡眠不足导致风险寻求的关键因素。

IGT与BART均可视为模糊决策研究范式(也有研究者将IGT后半程视为风险决策), Venkatraman领导的课题组关注了睡眠剥夺对风险决策的影响。他们使用轮盘的不同颜色表征不同结果的概率, 被试能够在高-低风险选项中做出选择。结果发现, 相比于平时状态, 睡眠剥夺后被试更倾向选择高风险选项; 脑成像结果显示, 睡眠剥夺后, 当被试选择高风险选项时, 与奖赏相关的伏隔核平均激活显著增强, 而当呈现损失反馈时, 脑岛、OFC等脑区活动显著下降(Venkatraman, Chuah, Huettel, & Chee, 2007)。在其跟进的研究中进一步发现, 睡眠剥夺后被试倾向冒险与其在做选择时、奖赏-损失反馈呈现时VMPFC激活的增强以及前脑岛活动的减弱显著相关。因而作者认为, 个体在睡眠剥夺后的冒险倾向与其对结果评价的改变有关(Venkatraman, Huettel, Chuah, Payne, & Chee, 2011)。

综上所述, 关于睡眠剥夺影响非确定型决策的研究还相对较少, 早期的研究多采用行为学方法, 比较睡眠剥夺前后个体在IGT、BART等决策任务的差异; 近期的研究多结合功能性磁共振成像(functional Magnetic Resonance Imaging, fMRI)技术, 且关注点多集中于睡眠剥夺前后相关脑区(如VMPFC、OFC、脑岛)在做出选择或接受奖赏-损失反馈时脑区活动的变化。由于研究范式不一, 前人研究结论并不完全一致, 但大多数研究认为睡眠剥夺会造成个体的更愿意冒险。

1.5 已有研究的不足

前人的研究对睡眠剥夺条件下决策行为的改变进行了一系列探索, 取得了许多重要的发现, 但该问题仍然值得我们进一步思考。决策是最复杂的认知活动之一, 仅仅用冒险或保守并不能充分地描述个体在睡眠剥夺后的决策特点, 特别是掩盖于睡眠剥夺与风险寻求之下的复杂心理与认知神经机制, 目前并不明确。

Venkatraman等(2011)的论文在The Journal of Neuroscience发表后, 我们曾提出情绪可能是睡眠剥夺与风险寻求的关键中介变量, 并将此观点以letter的形式发表在该杂志。但情绪对决策的影响是复杂的:睡眠剥夺后, 决策者对输-赢的情绪反应与平时显著不同, VMPFC、OFC、脑岛等前人重点关注的脑区也与情绪加工密切相关。睡眠剥夺诱导负性情绪, 而负性情绪对决策会有怎样的影响目前还有很大的争议, 存在情绪泛化与情绪维持两种截然相反的理论假说, 前者认为负性情绪会导致风险规避, 而后者认为负性情绪会造成风险寻求, 且均有部分证据支持(Pearson, Wonderlich, & Smith, 2015); 睡眠剥夺造成个体情绪的不稳定, 而大量研究证明, 情绪不稳定往往会导致风险规避(Tang et al., 2016; Byrne, Silasi- Mansat, & Worthy, 2015), 这又与多数研究发现睡眠剥夺后被试更倾向冒险的结论相矛盾; 睡眠剥夺导致愤怒、无聊、焦虑等情绪, 愤怒、无聊被证明与风险寻求正相关(Biolcati, Mancini, & Trombini, 2018), 焦虑却与风险规避正相关(Lerner, Li, Valdesolo, & Kassam, 2015)。因此, 单以情绪作为睡眠剥夺与风险寻求的中介变量并不具有操作意义。Frings (2012)实证地讨论了风险感知与风险吸引这两个认知过程在脑疲劳与风险寻求之间的作用。进而, 我们提出决策前认知与情绪可能是从睡眠剥夺到风险寻求的关键中介因素(彭嘉熙, 肖玮, 2013)。李爱梅、谭磊、孙海龙、熊冠星和潘集阳(2016)认为睡眠剥夺会影响注意、记忆、思维等认知过程, 并且造成愤怒、焦虑等负性情绪, 进而影响个体的风险感知、风险容忍以及决策策略, 最终改变决策行为, 该假设给了本项目极大的启发。

综上, 本项目拟在前人研究基础上回答睡眠剥夺究竟如何影响风险决策的问题, 着重探讨睡眠剥夺后决策者的冒险倾向具体地与哪些认知和情绪加工有关, 涉及哪些脑区的活动。基于决策的双加工理论, 我们试图构建一个相对简洁而全面的模型, 解释睡眠剥夺影响风险决策的内在机制, 为进一步研究如何规避睡眠不足造成的决策失误提供理论依据。

2 研究构想

风险决策是决策者在已知待选方案可能的结果以及所有结果发生概率的情况下对方案的选择, 涉及大量认知活动与情绪加工, 而睡眠剥夺对认知和情绪的影响是广泛性的、复杂的。因而单一因素很难解释睡眠剥夺对风险决策的影响, 但若逐一分析所有可能的影响因素又难免顾此失彼, 前后矛盾。我们认为, 虽然风险决策是一种复杂的认知活动, 但其加工过程仍可以总结为以下三个重要方面:1)方案的利弊分析(Cost-benefit analysis), 这既包括决策者对方案实际价值的判断, 还包括个体对赢利-损失的主观感受。对奖励敏感, 越容易趋利, 而对损失敏感, 则更容易避害; 2)对赢利-损失的概率判断。风险决策是结果概率已知的决策行为, 可视为风险已知, 但个体对概率的感知可能存在个体差异与状态差异; 3)分析式系统对启发式系统的调控, 即当启发式系统快速做出判断后, 分析式系统是否参与监控、纠正或支持。其中, 决策者对赢利-损失的主观感受可由反馈加工反应; 对赢利-损失的概率判断实则是对风险的感知; 分析式系统对启发式系统的调控一方面是决策者是否有意识地让分析式系统运行, 以监控和调节启发式系统, 另一方面则是当个体意识到有必要干涉启发式系统做出的判断时, 是否有能力对此进行抑制和纠偏, 前者好比司机是否有意识地将脚放在刹车上, 而后者则是指是否能刹得住车。基于此, 我们逐一对睡眠剥夺如何影响风险决策进行分析。

2.1 睡眠剥夺影响反馈加工

在睡眠剥夺状态下, 决策者接受反馈时部分脑区活动与平时有显著差异, 如当反馈奖赏时, VMPFC、伏隔核、纹状体等脑区活动显著上升; 而当反馈损失时, 前脑岛、OFC等脑区活动显著下降(Venkatraman et al., 2011; Lei et al., 2017)。睡眠剥夺后, 决策者“记吃不记打”, 对奖赏敏感度上升, 对损失敏感度下降(研究假设1), 这一机制是目前睡眠剥夺影响风险决策研究最充分的部分, 本项目也将沿袭这一思路, 并拟将脑电技术运用于该项内容。反馈相关负波(Feedback related negativity, FRN)是反馈刺激呈现后200~350 ms, 源发于ACC (也有研究认为发生源可能在纹状体附近)的负走向的脑电波成分, 被证明与反馈加工紧密相关(Gehring & Willoughby, 2002)。通常, 负反馈会比正反馈诱发波幅更大的FRN, 强化学习理论与情绪动机理论认为FRN反映了个体对反馈的监控以及对反馈诱发的情绪动机意义的评价(李丹阳, 李鹏, 李红, 2018)。事件相关电位(Event-Related Potentials, ERPs)技术的高时间定位优势将有助于揭示睡眠剥夺后反馈加工的变化, 及其与决策行为改变的关系。

2.2 睡眠剥夺影响风险感知

风险感知(Risk perception)是指个体对风险的感受与认识, 包括对不确定性的估计, 以及对估计的信心等(Frings, 2012)。在风险决策中, 由于决策后果的概率是已知的, 风险感知进而可以理解为决策者多大程度上将不确定视为威胁或机会, 以及对客观概率的主观感受(Hansson, 2010)。概率折扣任务(Probability Discounting Task)和俄罗斯轮盘赌博任务(Russian Roulette Task)是风险决策研究中常用的评估风险感知和主观概率的研究范式(Li, He, Li, Xu, & Rao, 2009; Lin, Zhou, Dong, & Du, 2015)。与概率加工和风险感知相关的脑区主要包括顶上小叶、内侧顶叶、外侧前额叶、额下回、中央前回、脑岛、杏仁核等(张颖, 冯廷勇, 2014; Lin et al., 2015)。Harrison和Horne (2000)很早就提出, 睡眠剥夺可能会损害个体的风险感知能力, 但却少有实证研究探讨睡眠剥夺对风险感知的影响。我们认为, 睡眠剥夺导致情绪变化, 可能会影响决策者的机会-威胁认知, 而研究表明, 当决策者将风险视为机会时, 则更倾向冒险, 而将风险视为到威胁时, 则倾向保守(张文慧, 王晓田, 2008); 同时, 情绪也能影响决策者的主观概率(Lerner et al., 2015)。冒险倾向(Risk-taking propensity)是指个体对冒险的意愿与兴趣(Killgore, 2010)。前人的研究发现, 睡眠剥夺后被试的冒险倾向会出现显著下降(Killgore et al., 2007; Chaumet et al., 2009)。睡眠剥夺同时造成冒险意愿的下降与冒险行为的上升, 这之间的矛盾恰恰从侧面说明睡眠剥夺损害了个体的风险感知能力。进而我们提出研究假设2, 睡眠剥夺后个体可能无法准确地意识和评估行为风险, 更多地将风险理解为机会而不是威胁, 进而造成被试虽不愿冒险, 但实际却更采取更多冒险行为。

2.3 睡眠剥夺影响抑制控制

抑制控制(Inhibition control)是指个体对自身不恰当的、冲动的行为的抑制(袁加锦, 徐萌萌, 杨洁敏, 李红, 2017)。目前, 抑制控制的研究方法主要包括Stroop范式、Go/Nogo范式、停止信号范式、侧抑制(Flanker)范式、双选择Oddball范式等。研究表明, 抑制控制的神经基础是额叶-基底神经节回路, 包括DLPFC、ACC、额下回等(Czapla et al., 2017), 而上述脑区恰恰对睡眠剥夺十分敏感。大量研究证明了睡眠剥夺后, 人们的抑制控制能力会显著下降。如Drummond, Paulus和Tapert (2006)的研究中, 被试在23、32及55小时睡眠剥夺后分别完成Go/Nogo任务, 结果表明, 在这三个时间点Nogo反应错误率均较基线值显著上升, 说明抑制控制能力受损; 而在23、32小时睡眠剥夺后, 并未发现Go反应的击中率与反应时比较基线值有显著差异, 说明抑制控制比简单的注意反应对睡眠剥夺更加敏感。Kusztor等(2019)的研究中, 基于停止信号范式与ERPs技术, 探讨了睡眠剥夺对抑制控制不同的成分的影响。结果显示, Go刺激诱发的N2、P3成分, 睡眠剥夺组与控制组存在显著差异, 说明睡眠剥夺损害注意维持; Stop刺激诱发的N2、ERN等成分, 组间差异不显著, 说明睡眠剥夺并不影响自动化控制; Stop刺激诱发P3、Pe成分, 睡眠剥夺组波幅显著小于控制组, 说明自上而下的控制受损。冲动被认为是去抑制(Disinhibition)的主要后果, 且被证明与冒险高度相关(Horn, Dolan, Elliott, Deakin, & Woodruff, 2003; Nigg, 2017), 进而我们有理由推测睡眠剥夺后冒险倾向与抑制控制受损有关。目前, 鲜有研究将抑制控制下降作为睡眠剥夺影响决策的内在机制考虑。基于上述分析, 我们提出研究假设3:睡眠剥夺造成抑制控制受损, 人会更冲动进而更愿意冒险。

2.4 睡眠剥夺影响决策理性

Evans (2007)认为, 启发式加工系统与分析式加工系统竞争着主导决策行为。众多决策模型, 如模糊痕迹理论、齐当别模型、占优启发式模型等均认为人是认知的吝啬者(Cognitive miser), 面对决策问题, 常常依赖简单有效的策略评估决策信息, 充分利用启发式加工系统, 以节省认知资源(张阳阳, 饶俪琳, 梁竹苑, 周媛, 李纾, 2014)。启发式加工优势具有进化的生态性, 但也被认为是一系列决策偏差(Decision-making deficits)的成因, 如框架效应(McCoy & Platt, 2005)。认知资源的投入能有效减少决策偏差, 如认知需求(Need for cognition), 即个体愿意投入认知资源努力思考问题的特质, 被证明能有效抵御框架描述对决策的影响(Korn, Ries, Schalk, Oganian, & Saalbach, 2018)。睡眠剥夺降低唤醒度, 造成认知资源的减少, 在此情况下决策者可能更倾向使用启发式决策策略以节省认知资源; 睡眠剥夺造成抑制控制的下降, 本身也可视为分析式加工的减弱; 睡眠剥夺诱导愤怒情绪, 而Lerner和Tiedens (2006)研究表明, 在愤怒情绪下更倾向采用启发式加工, 较少注意细节。Stanovich团队, Fischhoff团队先后提出理性思维(Rational thought)与决策能力(Decision making competence)用以描述决策者规避直觉偏差, 理性判断的个体差异。而无论理性思维还是理性决策能力都是在一定程度上反应分析式系统对启发式系统的调控(Toplak, West, & Stanovich, 2017; Parker, Bruine de Bruin, Fischhoff, & Weller, 2018), 既可能存在个体差异, 也会有状态差异。在我们的预研究中, 我们发现睡眠剥夺后默认网络功能连接强度上升与被试的冒险倾向上升显著相关。Killgore, Mcbride, Killgore, Balkin和Kamimori (2008)认为睡眠剥夺后默认网络的异常激活反应了认知资源的异常分配, 认知资源不能有效地调用到执行决策任务所需的脑区。因此, 我们提出研究假设4, 睡眠剥夺后分析式系统对启发式系统的调节和控制会减弱, 该过程可由框架效应等决策偏差增大以及理性思维(决策能力、认知反思能力等)下降所反应。

3 研究方案

本项目拟通过实验室研究与现场研究, 采用自身前后对照与随机对照实验设计, 比较被试在睡眠剥夺前后以及睡眠剥夺组-控制组被试在反馈加工、风险认知、抑制控制、决策偏差任务的差异, 结合fMRI与ERPs技术深入讨论睡眠剥夺影响风险性决策的心理与神经机制。实验室研究结果和现场研究结果可以相互印证与补充。

3.1 实验室研究

本项目拟使用36小时睡眠剥夺作为睡眠不足的实验室模型。被试被要求在睡眠剥夺前一日到达实验室, 进行静息态fMRI 扫描后完成决策任务、采集脑电数据, 并以此作为基线值; 正常休息后, 进入睡眠剥夺周期。在36小时睡眠剥夺后再次进行静息态fMRI扫描, 并完成决策任务和采集脑电。睡眠剥夺全程会有两名主试监控, 且每次进入实验的被试不超过两人, 保证睡眠剥夺过程的标准化。

与前人的研究多采用任务态fMRI, 基于一般线性模型(General Linear Model, GLM)分析睡眠剥夺前后被试在做选择时或反馈呈现时VMPFC等脑区活动的差异不同, 本研究将采用静息态fMRI, 主要基于以下几点考虑。首先, 本项目涉及的决策任务较多, 如果采用任务态fMRI则需对每个决策任务设计不同的任务态实验。且任务态fMRI为了解释结果, 需要进行大量重复的刺激扫描, 耗时过长, 被试的配合度会大大降低, 因此采用任务态fMRI实验操作会非常困难。静息态fMRI扫描时间短, 脑成像数据可与多个决策任务的行为学数据结合分析。其次, 大脑在静息状态下的能量消耗远大于任务引起的能耗增加(Raichle & Mintun, 2006), 就整体脑功能而言, 静止状态的大脑活动远比任务相关大脑活动重要。因此睡眠剥夺对大脑本体活动和准备状态的影响能够由静息态较好地体现(Smitha et al., 2017)。与前人研究关注脑区独立活动不同, 本研究重点关注睡眠剥夺后相关脑区功能连接变化与风险决策改变有何关系。大脑分区不是孤立的, 而总是在产生信息的交互, 任何任务的完成均需要多个脑区的协同参与, 决策过程是大脑高级认知功能, 需要大量脑区的协同合作才能完成, 因此脑功能连接网络的分析显得必不可少。任务态fMRI的分析方法以检测脑区激活为主, 静息态fMRI分析方法更多变, 采用种子点、相关分析、独立成分分析、图论等方法, 能够进行基于局部信号、功能连接、大尺度脑网络等不同层次的分析, 进而充分揭示睡眠剥夺前后大脑静息状态改变与反馈加工、风险认知等关注研究变量之间的关系。

本研究具体的实验室研究方案及实验范式如下。

3.1.1 睡眠剥夺后反馈加工相关脑区功能连接以及FRN的变化。

前人研究表明睡眠剥夺后, 当呈现奖赏时, VMPFC、伏隔核、纹状体等脑区活动显著上升; 当呈现损失时, 脑岛、OFC等脑区活动显著下降。我们认为反馈加工是睡眠剥夺影响风险决策的核心机制之一, 该过程可由反馈加工相关脑区, 如VMPFC、伏隔核、OFC、后顶叶皮质等, 功能连接以及奖赏-惩罚诱发的 FRN 在睡眠剥夺前后的变化所体现。本项目拟采用简单赌博任务诱导FRN, 结合静息fMRI, 重点分析睡眠剥夺前后奖赏网络的功能连接以及FRN波幅、潜伏期的变化, 并探讨上述指标与睡眠剥夺后被试冒险倾向改变的关系。

其中, 简单赌博任务由Gehring和Willoughby (2002)设计。每次赌博任务开始, 屏幕会呈现10元和50元的赌注供被试选择。当被试选择10元时, 有50%的概率赢得10元的代币, 50%的概率输掉10元代币; 选择50元亦然。被试做出选择后电脑屏幕呈现伪随机输赢反馈。之后进入下一轮赌博任务。主要关注指标反馈诱发FRN的波幅与潜伏期, 以及选择50元赌注(冒险选项)的比例。

3.1.2 睡眠剥夺对风险感知的影响及其神经机制

采用概率折扣任务评估被试在风险决策中的风险感知, 比较被试在睡眠剥夺前后执行上述任务的差异, 探讨顶上小叶、内侧顶叶、外侧前额叶、额下回、杏仁核、脑岛等与风险认知相关的脑区活动以及功能连接变化, 及其与睡眠剥夺后冒险倾向改变的关系。

在概率折扣任务中, 被试需要在确定收益金额和一定概率下能获得的更大的收益这两种选项中做出选择, 如选择获得10元还是90%得可能获得12元(Lin et al., 2015)。实验中, 计算机屏幕呈现二择一的判断, 被试须在4000 ms内做出选择。实验设置9种概率(10%至90%)和9种高收益金额(11至100元), 共9×9=81个试次。根据公式V=A/(1+hθ), 计算概率折扣率h。研究中常将log h作为反映风险感知的指标, log h值越大, 说明对风险感知越敏感。本项目主要关注的指标为log h值、选择平均反应时, 及选择诱发的N2, P3等脑电成分。

3.1.3 睡眠剥夺对抑制控制及风险寻求的影响

双选择Oddball是研究抑制控制的优良范式(Yuan, He, Qinglin, Chen, & Li, 2008)。被试被要求当屏幕呈现任务刺激如“W”或“M”时, 尽可能快地按“J”或“F”键。其中“W”为标准刺激, 出现概率为80%, “M”为偏差刺激, 出现概率为20%。偏差刺激相较于标准刺激的错误率上升与反应时延长被认为能够反应抑制控制。本项目拟基于双选择Oddball范式, 重点关注标准刺激和偏差刺激的反应时、正确率, 及其诱发的N2、P3等内源性脑电成分, 以及执行控制网络连接强度在睡眠剥夺前后的变化, 论证上述指标变化与睡眠剥夺后风险决策变化的关系。

3.1.4 睡眠剥夺对决策偏差任务的影响

我们认为, 框架效应等决策偏差任务能够反应个体的决策理性。McCoy和Platt (2005)开发了适合ERPs叠加要求的收益-损失情境赌博任务。实验中, 计算机屏幕上标有数字1和2的两个圆球随机出现在屏幕中心的左右两侧。在收益情境下, 球1表示将获得100元, 球2表示50%的可能获得200元, 50%的可能获得0元; 在损失的情境下, 球1代表将损失100元, 球2代表50%的可能损失200元, 50%的可能损失0元。被试需要在球1和球2做出选择, 之后电脑呈现伪随机的反馈结果, 1500 ms后进入下一轮选择。本项目中关注的指标主要包括睡眠剥夺前后, 在收益-损失情境下被试的做出保守-冒险选择的比例差异(框架效应)、反应时, 及诱发的N2, P3等脑电成分。

3.2 现场研究

以长途运输汽车司机、民航飞行员、需要昼夜轮换值班的医护人员等为研究对象, 采用随机对照实验, 按名单提前将被试随机分为两组, 夜班组被试在夜班后完成决策任务, 白班组被试在其正常夜间休息后完成决策任务。主要进行行为学数据采集, 包括决策能力问卷(Adult Decision Makin Competence Scale), 认知反思测试(Cognitive Reflection Test)用以评估理性决策能力, 机会-威胁量表用以评估风险感知(Peng et al., 2019; Toplak, West, & Stanovich, 2011)。

4 理论建构

在许多行业, 决策者需要在睡眠不足的状态下做出选择与判断。前人研究证明了睡眠剥夺对决策的显著影响, 却较少探讨其机制。风险决策是高级的认知活动, 涉及注意、学习、记忆等大量认知加工和情绪加工(Ratcliff, Voskuilen, & McKoon, 2018), 而睡眠剥夺对认知与情绪的影响是广泛性的(Killgore, 2010), 因此睡眠剥夺对决策的影响非常复杂。如果仅从单一方面分析, 难免管中窥豹, 所得出的结论也可能是片面的, 矛盾的; 但若不抓重点, 舍本逐末, 睡眠剥夺对风险决策影响的中间变量可能难以胜数。本项目基于前人的研究与决策的双加工理论, 提出了一个相对简洁全面的理论模型。我们认为, 从认知的视角, 睡眠剥夺造成最大的影响是认知资源的减少与认知能力的普遍性下降; 从情绪的视角, 睡眠剥夺则诱导了复杂的负性情绪, 并造成个体对输-赢的情绪反应与平时显著不同。由于认知与情绪的交互影响, 进一步造成决策者的反馈加工、风险认知、抑制控制以及决策理性的改变, 进而影响风险决策(图1)。与前人关于睡眠剥夺影响风险决策的解释模型只关注了单一因素相比, 本项目提出的理论模型更为全面。用一个例子解释这个模型, 张三赌博了一夜, 仍然在不断地下注。为什么他愿意持续地冒险?基于我们的理论模型, 是因为缺乏睡眠造成他脑功能出现变化:他对损失已经不敏感了, 却强烈渴望赢利; 虽然输赢的概率客观存在, 但他更多地感觉这是机会, 对风险的容忍也比平时更高; 他无法抑制自己再赌一把的冲动; 他甚至都意识不到为什么还要继续赌下去, 赌博行为完全受情绪驱动和支配。

图1

图1   假设模型示意图


情绪与认知是交互作用的(Dolcos, Iordan, & Dolcos, 2011), 因而在模型中我们并不试图厘清哪些改变是认知的, 哪些改变是情绪变化造成的。同时, 我们认为反馈加工、风险感知、抑制控制、决策理性这四个影响路径也并非完全独立, 而是彼此相关, 甚至部分重叠的。比如, 抑制控制会参与到惩罚加工, 引导个体为了规避损失或惩罚而放弃冒险(Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010), 同时抑制控制的减弱本身也可部分地反应分析式加工系统的势弱和决策理性的受损; 个体对奖赏的强烈渴望, 可能造成风险感知受损(Hansson, 2010); 概率折扣率, 能够反应个体对风险是否敏感, 也能在一定程度上反应冲动的个体差异, 与抑制控制有关(Robertson & Rasmussen, 2018); 睡眠剥夺后奖赏网络的功能连接增强, 这既能反应反馈加工的差异, 也是情感启发式加工系统的增强的直接证据。但我们同时也认为, 上述四个过程能各自侧重地反应睡眠剥夺影响风险决策的不同方面, 各有意义。

在研究方法上, 前人关于睡眠剥夺后决策变化的研究研究范式较少, 方法较为单一, 特别是脑成像研究结果缺乏行为学或脑电指标支撑。如Telze等(2013)虽然发现睡眠剥夺后被试更倾向冒险与执行控制网络功能连接强度下降有关, 但缺乏Go/Nogo或双选择Oddball任务等直接反应抑制控制的指标支撑; Venkatraman等(2011)虽然发现睡眠剥夺后的冒险倾向与VMPFC等反馈加工脑区活动改变有关, 但若能结合FRN等反应反馈加工的其它指标, 将为解释该机制提供更有力的证据。本项目拟综合使用多种决策研究范式, 结合fMRI与ERPs技术空间与时间定位优势, 更充分地反应睡眠剥夺后决策行为的改变。同时, 本项目结合实验室研究和现场研究, 相关结果能够相互印证与补充。

睡眠不足是众多行业从业人员常见的工作状态(Knutson, van Cauter, Rathouz, DeLeire, & Lauderdale, 2010), 但传统的觉醒促进剂被证明无法有效改善睡眠剥夺导致的决策能力下降(Killgore et al., 2007; Killgore, Grugle, & Balkin, 2012)。因此, 探究睡眠剥夺影响风险决策的心理与神经机制具有重要的实践意义。比如, 如果能证明抑制控制能力下降是睡眠剥夺影响风险决策的关键因素, 一些能够有效提升抑制控制能力的训练手段, 如任务转换训练(Task-switching training), 神经反馈训练(Neurofeedback training), 以及对额叶区域的经颅直流电刺激等就可以尝试运用于特殊行业的从业者(Kiesel et al., 2018; Baumeister et al., 2018), 进而规避因睡眠不足造成的决策失误; 如果能够证明决策理性是睡眠不足影响决策的因素, 那么对特殊岗位则可以考虑增加制定理性决策能力的选拔标准。

综上所述, 本项目拟通过比较睡眠剥夺前后决策者在反馈加工、风险感知、抑制控制与决策理性的差异, 结合fMRI与ERPs技术, 深入探索睡眠剥夺影响风险决策的心理与神经机制, 为下一步进行特殊岗位的人员选拔, 防护以及训练提供理论支撑。

致谢:

衷心感谢匿名审稿专家所提出宝贵的建设性意见。

参考文献

常耀明, 肖玮, 苗丹民 . (2013). 航空航天医学全书: 航空航天心理学. 西安: 第四军医大学出版社.

[本文引用: 1]

李爱梅, 谭磊, 孙海龙, 熊冠星, 潘集阳 . ( 2016).

睡眠剥夺影响风险决策的双系统模型探讨

心理科学进展, 24( 5), 804-814.

[本文引用: 1]

李丹阳, 李鹏, 李红 . ( 2018).

反馈负波及其近10年理论解释

心理科学进展, 26( 9), 1642-1650.

[本文引用: 1]

彭嘉熙, 肖玮 . ( 2013).

脑力疲劳对决策的影响及机制分析

中华航空航天医学杂志, 24( 1), 75-79.

[本文引用: 1]

孙彦, 李纾, 殷晓莉 . ( 2007).

决策与推理的双系统——启发式系统和分析系统

心理科学进展, 15( 5), 721-726.

[本文引用: 1]

袁加锦, 徐萌萌, 杨洁敏, 李红 . ( 2017).

双选择Oddball范式在行为抑制控制研究中的应用

中国科学:生命科学, 47( 10), 1065-1073.

[本文引用: 1]

张文慧, 王晓田 . ( 2008).

自我框架, 风险认知和风险选择

心理学报, 40( 6), 633-641.

[本文引用: 1]

张阳阳, 饶俪琳, 梁竹苑, 周媛, 李纾 . ( 2014).

风险决策过程验证: 补偿/非补偿模型之争的新认识与新证据

心理科学进展, 22( 2), 205-219.

[本文引用: 1]

张颖, 冯廷勇 . ( 2014).

青少年风险决策的发展认知神经机制

心理科学进展, 22( 7), 1139-1148.

[本文引用: 1]

Acheson, A., Richards, J. B., & de Wit, H . ( 2007).

Effects of sleep deprivation on impulsive behaviors in men and women

Physiology & behavior, 91( 5), 579-587.

DOI:10.1016/j.physbeh.2007.03.020      URL     PMID:17477941      [本文引用: 1]

The purpose of this study was to examine the effects of sleep deprivation on impulsive behavior. Patients with impulse control disorders often report sleep problems, and sleep deprivation even in healthy individuals impairs cognition, decision-making, and perhaps impulse control. To characterize the effects of sleep loss on specific forms of impulsive behavior, we tested the effects of overnight, monitored sleep deprivation on measures of impulsivity and cognition in healthy volunteers. Ten men and ten women completed two 24 h sessions in random order, in which they were either allowed to sleep normally or remained awake all night. At 8:30 am and 6:15 pm on the day after sleep or no sleep, participants were tested on the Balloon Analogue Risk Task (BART), the Experiential Discounting Task, the Adjusting Amount Delay and Probability Discounting Task, and the Stop Task. Participants also completed mood questionnaires and the Automated Neuropsychological Assessment Matrix (ANAM) throughout the course of the day. Sleep deprivation did not affect most of the measures of impulsive behavior. However, on the BART, sleep deprivation decreased risk taking in women, but not men. Sleep deprivation produced expected increases in subjective fatigue, and impaired performance on measures of attention and cognitive efficiency on the ANAM. The results indicate that sleep deprivation does not specifically increase impulsive behaviors but may differentially affect risk taking in men and women.

Baumeister, S., Wolf, I., Holz, N., Boecker-Schlier, R., Adamo, N., Holtmann, M., … Brandeis, D . ( 2018).

Neurofeedback training effects on inhibitory brain activation in ADHD: A matter of learning?

Neuroscience, 378, 89-99.

[本文引用: 1]

Biolcati, R., Mancini, G., & Trombini, E . ( 2018).

Proneness to boredom and risk behaviors during adolescents’ free time

Psychological Reports, 121( 2), 303-323.

DOI:10.1177/0033294117724447      URL     PMID:28776483      [本文引用: 1]

As a clinical condition, boredom is an emotional state, widespread among young people, characterized by unpleasant feelings, lack of motivation, and low physiological arousal in which the level of stimulation is perceived as unsatisfactorily low. Boredom is an important emotional state due to its spread among young people. Recent research has mainly studied the complex connection between boredom and leisure-time experiences, which may be involved in adolescents' risk-taking behaviors. The current study aims to investigate boredom proneness, conceived as a personality trait, in adolescents' free time, and its involvement in more extreme behaviors, such as binge drinking and addictive Internet use, which may represent ways to cope with the search for additional stimuli. Data from a large sample of Italian adolescents ( n = 478, aged between 14 years and 19 years, M = 16.31, SD = 1.47) revealed significant differences between low-boredom and high-boredom subjects. Both girls and boys with high boredom proneness used technology more, engaged less in hobbies and activities such as sports, more frequently consumed strong drinks and binge drank, and were more at risk of Internet addiction than non-bored adolescents. These findings suggest a hypothetical risk profile linked to boredom proneness in adolescence. The results are discussed in light of the literature from a psychosocial and clinical perspective.

Byrne, K. A., Silasi-Mansat, C. D., & Worthy, D. A . ( 2015).

Who chokes under pressure? The Big Five personality traits and decision-making under pressure

Personality and Individual Differences, 74, 22-28.

DOI:10.1016/j.paid.2014.10.009      URL     PMID:28373740      [本文引用: 1]

The purpose of the present study was to examine whether the Big Five personality factors could predict who thrives or chokes under pressure during decision-making. The effects of the Big Five personality factors on decision-making ability and performance under social (Experiment 1) and combined social and time pressure (Experiment 2) were examined using the Big Five Personality Inventory and a dynamic decision-making task that required participants to learn an optimal strategy. In Experiment 1, a hierarchical multiple regression analysis showed an interaction between neuroticism and pressure condition. Neuroticism negatively predicted performance under social pressure, but did not affect decision-making under low pressure. Additionally, the negative effect of neuroticism under pressure was replicated using a combined social and time pressure manipulation in Experiment 2. These results support distraction theory whereby pressure taxes highly neurotic individuals' cognitive resources, leading to sub-optimal performance. Agreeableness also negatively predicted performance in both experiments.

Chaumet, G., Taillard, J., Sagaspe, P., Pagani, M., Dinges, D. F., Pavy-Le-Traon, A., … Philip, P . ( 2009).

Confinement and sleep deprivation effects on propensity to take risks

Aviation, Space, and Environmental Medicine, 80( 2), 73-80.

[本文引用: 1]

Czapla, M., Baeuchl, C., Simon, J. J., Richter, B., Kluge, M., Friederich, H. C., … Loeber, S . ( 2017).

Do alcohol- dependent patients show different neural activation during response inhibition than healthy controls in an alcohol- related fMRI go/no-go-task?

Psychopharmacology, 234( 6), 1001-1015.

[本文引用: 1]

Diederich, A., & Trueblood, J. S . ( 2018).

A dynamic dual process model of risky decision making

Psychological Review, 125( 2), 270-292.

DOI:10.1037/rev0000087      URL     PMID:29658730      [本文引用: 1]

Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record

Dolcos, F., Iordan, A. D., & Dolcos, S . ( 2011).

Neural correlates of emotion-cognition interactions: A review of evidence from brain imaging investigations

Journal of Cognitive Psychology, 23( 6), 669-694.

DOI:10.1080/20445911.2011.594433      URL     PMID:22059115      [本文引用: 1]

Complex dynamic behaviour involves reciprocal influences between emotion and cognition. On the one hand, emotion is a

Drummond, S. P. A., Paulus, M. P., & Tapert, S. F . ( 2006).

Effects of two nights sleep deprivation and two nights recovery sleep on response inhibition

Journal of Sleep Research, 15( 3), 261-265.

URL     PMID:16911028      [本文引用: 2]

Evans, J. S. B. T . ( 2007).

On the resolution of conflict in dual process theories of reasoning

Thinking & Reasoning, 13( 4), 321-339.

[本文引用: 2]

Frings, D. ( 2012).

The effects of sleep debt on risk perception, risk attraction and betting behavior during a blackjack style gambling task

Journal of Gambling Studies, 28( 3), 393-403.

URL     PMID:21915653      [本文引用: 2]

Gehring, W. J., & Willoughby, A. R . ( 2002).

The medial frontal cortex and the rapid processing of monetary gains and losses

Science, 295( 5563), 2279-2282.

[本文引用: 2]

Gujar, N., Yoo, S. S., Hu, P., & Walker, M. P . ( 2011).

Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences

Journal of Neuroscience, 31( 12), 4466-4474.

DOI:10.1523/JNEUROSCI.3220-10.2011      URL     PMID:21430147      [本文引用: 1]

Appropriate interpretation of pleasurable, rewarding experiences favors decisions that enhance survival. Conversely, dysfunctional affective brain processing can lead to life-threatening risk behaviors (e.g., addiction) and emotion imbalance (e.g., mood disorders). The state of sleep deprivation continues to be associated with maladaptive emotional regulation, leading to exaggerated neural and behavioral reactivity to negative, aversive experiences. However, such detrimental consequences are paradoxically aligned with the perplexing antidepressant benefit of sleep deprivation, elevating mood in a proportion of patients with major depression. Nevertheless, it remains unknown how sleep loss alters the dynamics of brain and behavioral reactivity to rewarding, positive emotional experiences. Using functional magnetic resonance imaging (fMRI), here we demonstrate that sleep deprivation amplifies reactivity throughout human mesolimbic reward brain networks in response to pleasure-evoking stimuli. In addition, this amplified reactivity was associated with enhanced connectivity in early primary visual processing pathways and extended limbic regions, yet with a reduction in coupling with medial frontal and orbitofrontal regions. These neural changes were accompanied by a biased increase in the number of emotional stimuli judged as pleasant in the sleep-deprived group, the extent of which exclusively correlated with activity in mesolimbic regions. Together, these data support a view that sleep deprivation not only is associated with enhanced reactivity toward negative stimuli, but imposes a bidirectional nature of affective imbalance, associated with amplified reward-relevant reactivity toward pleasure-evoking stimuli also. Such findings may offer a neural foundation on which to consider interactions between sleep loss and emotional reactivity in a variety of clinical mood disorders.

Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M . ( 2010).

The role of the right inferior frontal gyrus: Inhibition and attentional control

Neuroimage, 50( 3), 1313-1319.

[本文引用: 1]

Hansson, S. O . ( 2010).

Risk: Objective or subjective, facts or values

Journal of Risk Research, 13( 2), 231-238.

[本文引用: 2]

Harrison, Y., & Horne, J. A . ( 2000).

The impact of sleep deprivation on decision making: A review

Journal of Experimental Psychology: Applied, 6(3), 236-249.

[本文引用: 2]

Horn, N. R., Dolan, M., Elliott, R., Deakin, J. F. W Woodruff, P. W. R. ( 2003).

Response inhibition and impulsivity: An fMRI study

Neuropsychologia, 41( 14), 1959-1966.

DOI:10.1016/S0028-3932(03)00077-0      URL     [本文引用: 1]

Irwin, C., Khalesi, S., Desbrow, B., & McCartney, D . ( 2020).

Effects of acute caffeine consumption following sleep loss on cognitive, physical, occupational and driving performance: A systematic review and meta-analysis

Neuroscience & Biobehavioral Reviews, 108, 877-888.

URL     PMID:31837359      [本文引用: 1]

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I . ( 2010).

Control and interference in task switching-A review

Psychological bulletin, 136( 5), 849-874.

[本文引用: 2]

Killgore, W. D. S., Balkin, T. J., & Wesensten, N. J . ( 2006).

Impaired decision making following 49 h of sleep deprivation

Journal of Sleep Research, 15( 1), 7-13.

DOI:10.1111/j.1365-2869.2006.00487.x      URL     PMID:16489997      [本文引用: 1]

Sleep deprivation reduces regional cerebral metabolism within the prefrontal cortex, the brain region most responsible for higher-order cognitive processes, including judgment and decision making. Accordingly, we hypothesized that two nights of sleep loss would impair decision making quality and lead to increased risk-taking behavior on the Iowa Gambling Task (IGT), which mimics real-world decision making under conditions of uncertainty. Thirty-four healthy participants completed the IGT at rested baseline and again following 49.5 h of sleep deprivation. At baseline, volunteers performed in a manner similar to that seen in most samples of healthy normal individuals, rapidly learning to avoid high-risk decks and selecting more frequently from advantageous low-risk decks as the game progressed. After sleep loss, however, volunteers showed a strikingly different pattern of performance. Relative to rested baseline, sleep-deprived individuals tended to choose more frequently from risky decks as the game progressed, a pattern similar to, though less severe than, previously published reports of patients with lesions to the ventromedial prefrontal cortex. Although risky decision making was not related to participant age when tested at rested baseline, age was negatively correlated with advantageous decision making on the IGT, when tested following sleep deprivation (i.e. older subjects made more risky choices). These findings suggest that cognitive functions known to be mediated by the ventromedial prefrontal cortex, including decision making under conditions of uncertainty, may be particularly vulnerable to sleep loss and that this vulnerability may become more pronounced with increased age.

Killgore, W. D. S., Grugle, N. L., & Balkin, T. J . ( 2012).

Gambling when sleep deprived: Don't bet on stimulants

Chronobiology International, 29( 1), 43-54.

DOI:10.3109/07420528.2011.635230      URL     PMID:22217100      [本文引用: 2]

Recent evidence suggests that sleep deprivation leads to suboptimal decision-making on the Iowa Gambling Task (IGT), a pattern that appears to be unaffected by moderate doses of caffeine. It is not known whether impaired decision-making could be reversed by higher doses of caffeine or by other stimulant countermeasures, such as dextroamphetamine or modafinil. Fifty-four diurnally active healthy subjects completed alternate versions of the IGT at rested baseline, at 23 and 46 h awake, and following a night of recovery sleep. After 44 h awake, participants received a double-blind dose of caffeine (600 mg), dextroamphetamine (20 mg), modafinil (400 mg), or placebo. At baseline, participants showed a normal pattern of advantageous performance, whereas both sleep-deprived sessions were associated with suboptimal decision-making on the IGT. Following stimulant administration on the second night of sleep deprivation, groups receiving caffeine, dextroamphetamine, or modafinil showed significant reduction in subjective sleepiness and improvement in psychomotor vigilance, but decision-making on the IGT remained impaired for all stimulants and did not differ from placebo. Decision-making returned to normal following recovery sleep. These findings are consistent with prior research showing that sleep deprivation leads to suboptimal decision-making on some types of tasks, particularly those that rely heavily on emotion processing regions of the brain, such as the ventromedial prefrontal cortex. Moreover, the deficits in decision-making were not reversed by commonly used stimulant countermeasures, despite restoration of psychomotor vigilance and alertness. These three stimulants may restore some, but not all, aspects of cognitive functioning during sleep deprivation.

Killgore, W. D. S., Kahn-Greene, E. T., Grugle, N. L., Killgore, D. B., & Balkin, T. J . ( 2009).

Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil

Sleep, 32( 2), 205-216.

URL     PMID:19238808      [本文引用: 1]

Killgore, W. D. S., Lipizzi, E. L., Kamimori, G. H., & Balkin, T. J . ( 2007).

Caffeine effects on risky decision making after 75 hours of sleep deprivation

Aviation, Space, and Environmental Medicine, 78( 10), 957-962.

DOI:10.3357/asem.2106.2007      URL     PMID:17955944      [本文引用: 4]

INTRODUCTION: Recent research indicates that sleep deprivation impairs decision making. However, it is unknown to what extent such deficits are exacerbated in a dose-response manner by increasing levels of sleepiness, and the extent to which such sleep-loss-induced deficits can be reversed by caffeine. METHODS: At three time points, 26 healthy subjects completed alternate forms of the Iowa Gambling Task (IGT): rested baseline, 51 h awake, and 75 h awake. Every 2 h each night, 12 volunteers also received 4 200-mg doses of caffeine, with the last dose occurring 3 h prior to the IGT. RESULTS: At baseline, volunteers readily learned to avoid disadvantageous high-risk card decks while progressively choosing more frequently from advantageous low-risk card decks. When sleep deprived, however, these same subjects showed impaired performance, choosing more frequently from the disadvantageous high-risk card decks, particularly during the latter half of the game. Contrary to expectations, the severity of performance impairment did not increase significantly from 51 to 75 h of wakefulness, and caffeine had no significant effects on IGT performance during sleep deprivation. DISCUSSION AND CONCLUSIONS: As a provisional extension of our previous study, these preliminary findings further suggest that the ability to integrate emotion with cognition to guide decision making, a capacity believed to be mediated by the ventromedial prefrontal cortex, may be particularly vulnerable to sleep loss. Moreover, these capacities may not be significantly improved by moderate doses of caffeine, suggesting that they may function separately from simple arousal and alertness systems.

Killgore, W. D. S., Mcbride, S. A., Killgore, D. B., Balkin, T. J., & Kamimori, G. H . ( 2008).

Baseline odor identification ability predicts degradation of psychomotor vigilance during 77 hours of sleep deprivation

International Journal of Neuroscience, 118( 9), 1207-1225.

[本文引用: 1]

Killgore, W. D. S . ( 2010).

Effects of sleep deprivation on cognition

Progress in Brain Research, 185, 105-129.

[本文引用: 3]

Knight, F. H . ( 1921).

Risk, uncertainty, and Profit

Boston: Houghton Miffiin.

[本文引用: 1]

Knutson, K. L., van Cauter, E., Rathouz, P. J., DeLeire, T., & Lauderdale, D. S . ( 2010).

Trends in the prevalence of short sleepers in the USA: 1975-2006

Sleep, 33( 1), 37-45.

[本文引用: 1]

Korn, C. W., Ries, J., Schalk, L., Oganian, Y., & Saalbach, H . ( 2018).

A hard-to-read font reduces the framing effect in a large sample

Psychonomic Bulletin & Review, 25( 2), 696-703.

DOI:10.3758/s13423-017-1395-4      URL     PMID:29086158      [本文引用: 1]

How can apparent decision biases, such as the framing effect, be reduced? Intriguing findings within recent years indicate that foreign language settings reduce framing effects, which has been explained in terms of deeper cognitive processing. Because hard-to-read fonts have been argued to trigger deeper cognitive processing, so-called cognitive disfluency, we tested whether hard-to-read fonts reduce framing effects. We found no reliable evidence for an effect of hard-to-read fonts on four framing scenarios in a laboratory (final N = 158) and an online study (N = 271). However, in a preregistered online study with a rather large sample (N = 732), a hard-to-read font reduced the framing effect in the classic

Kusztor, A., Raud, L., Juel, B. E., Nilsen, A. S., Storm, J. F., & Huster, R. J . ( 2019).

Sleep deprivation differentially affects subcomponents of cognitive control

Sleep, 42( 4), 1-19.

[本文引用: 1]

Lei, Y., Wang, L., Chen, P., Li, Y., Han, W., Ge, M., … Yang, Z . ( 2017).

Neural correlates of increased risk-taking propensity in sleep-deprived people along with a changing risk level

Brain Imaging and Behavior, 11( 6), 1910-1921.

DOI:10.1007/s11682-016-9658-7      URL     PMID:27975159      [本文引用: 2]

Risky decision-making under a changing risk level is a complex process involving contextual information. The neural mechanism underlying how sleep deprivation (SD) influences risky decision-making behaviors with a changing risk level has yet to be elucidated. In this study, we used the Balloon Analogue Risk Task (BART) during functional magnetic resonance imaging to investigate the neural correlates of SD-induced changes on decision-making behaviors at different risk levels. Thirty-seven healthy male adults were recruited in this within-subjects, repeat-measure, counterbalanced study. These individuals were examined during a state of rested wakefulness state and after nearly 36 h of total SD. The results showed that SD increased the activation of risk modulation in the left inferior frontal gyrus and were positively correlated with risk-taking propensity after SD. Activation in the ventral striatum and thalamus during cash out was increased, and activation in the middle temporal gyrus after explosion (loss of money) was decreased in sleep-deprived subjects, providing additional evidence for greater risk-taking propensity after SD. These results extend our understanding of the neural mechanism underlying alteration of the risk-taking propensity in sleep-deprived individuals.

Lerner, J. S., & Tiedens, L. Z . ( 2006).

Portrait of the angry decision maker: How appraisal tendencies shape anger's influence on cognition

Journal of Behavioral Decision Making, 19( 2), 115-137.

[本文引用: 1]

Lerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. S . ( 2015).

Emotion and decision making

Annual Review of Psychology, 66( 1), 799-823.

[本文引用: 2]

Li, L. B., He, S. H., Li, S., Xu, J. H., & Rao, L. L . ( 2009).

A closer look at the Russian roulette problem: A re-examination of the nonlinearity of the prospect theory’s decision weight π

International Journal of Approximate Reasoning, 50( 3), 515-520.

[本文引用: 1]

Lim, J., & Dinges, D. F . ( 2010).

A meta-analysis of the impact of short-term sleep deprivation on cognitive variables

Psychological Bulletin, 136( 3), 375-389.

DOI:10.1037/a0018883      URL     PMID:20438143      [本文引用: 2]

Lin, X., Zhou, H., Dong, G., & Du, X . ( 2015).

Impaired risk evaluation in people with Internet gaming disorder: fMRI evidence from a probability discounting task

Progress in Neuro-Psychopharmacology and Biological Psychiatry, 56, 142-148.

DOI:10.1016/j.pnpbp.2014.08.016      URL     PMID:25218095      [本文引用: 3]

This study examined how Internet gaming disorder (IGD) subjects modulating reward and risk at a neural level under a probability-discounting task with functional magnetic resonance imaging (fMRI). Behavioral and imaging data were collected from 19 IGD subjects (22.2 +/- 3.08 years) and 21 healthy controls (HC, 22.8 +/- 3.5 years). Behavior results showed that IGD subjects prefer the probabilistic options to fixed ones and were associated with shorter reaction time, when comparing to HC. The fMRI results revealed that IGD subjects show decreased activation in the inferior frontal gyrus and the precentral gyrus when choosing the probabilistic options than HC. Correlations were also calculated between behavioral performances and brain activities in relevant brain regions. Both of the behavioral performance and fMRI results indicate that people with IGD show impaired risk evaluation, which might be the reason why IGD subjects continue playing online games despite the risks of widely known negative consequence.

McCoy, A. N., & Platt, M. L . ( 2005).

Risk-sensitive neurons in macaque posterior cingulate cortex

Nature Neuroscience, 8( 9), 1220-1227.

DOI:10.1038/nn1523      URL     PMID:16116449      [本文引用: 2]

People and animals often demonstrate strong attraction or aversion to options with uncertain or risky rewards, yet the neural substrate of subjective risk preferences has rarely been investigated. Here we show that monkeys systematically preferred the risky target in a visual gambling task in which they chose between two targets offering the same mean reward but differing in reward uncertainty. Neuronal activity in posterior cingulate cortex (CGp), a brain area linked to visual orienting and reward processing, increased when monkeys made risky choices and scaled with the degree of risk. CGp activation was better predicted by the subjective salience of a chosen target than by its actual value. These data suggest that CGp signals the subjective preferences that guide visual orienting.

Nigg, J. T . ( 2017).

Annual Research Review: On the relations among self‐regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology

Journal of Child Psychology and Psychiatry, 58( 4), 361-383.

[本文引用: 1]

Parker, A. M., Bruine de Bruin, W., Fischhoff, B., & Weller, J . ( 2018).

Robustness of decision-making competence: Evidence from two measures and an 11-year longitudinal study

Journal of Behavioral Decision Making, 31( 3), 380-391.

URL     PMID:30083026      [本文引用: 1]

Pearson, C. M., Wonderlich, S. A., & Smith, G. T . ( 2015).

A risk and maintenance model for bulimia nervosa: From impulsive action to compulsive behavior

Psychological Review, 122( 3), 516-535.

DOI:10.1037/a0039268      URL     PMID:25961467      [本文引用: 1]

This article offers a new model for bulimia nervosa (BN) that explains both the initial impulsive nature of binge eating and purging, as well as the compulsive quality of the fully developed disorder. The model is based on a review of advances in research on BN and advances in relevant basic psychological science. It integrates transdiagnostic personality risk, eating-disorder-specific risk, reinforcement theory, cognitive neuroscience, and theory drawn from the drug addiction literature. We identify both a state-based and a trait-based risk pathway, and we then propose possible state-by-trait interaction risk processes. The state-based pathway emphasizes depletion of self-control. The trait-based pathway emphasizes transactions between the trait of negative urgency (the tendency to act rashly when distressed) and high-risk psychosocial learning. We then describe a process by which initially impulsive BN behaviors become compulsive over time, and we consider the clinical implications of our model. (PsycINFO Database Record

Peng, J., Feng, T., Zhang, J., Zhao, L., Zhang, Y., Chang, Y., … Xiao, W . ( 2019).

Measuring decision‐making competence in Chinese adults

Journal of Behavioral Decision Making, 32( 3), 266-279.

[本文引用: 1]

Raichle, M. E., & Mintun, M. A . ( 2006).

Brain work and brain imaging

Annual Review of Neuroscience, 29, 449-476.

DOI:10.1146/annurev.neuro.29.051605.112819      URL     PMID:16776593      [本文引用: 1]

Functional brain imaging with positron emission tomography and magnetic resonance imaging has been used extensively to map regional changes in brain activity. The signal used by both techniques is based on changes in local circulation and metabolism (brain work). Our understanding of the cell biology of these changes has progressed greatly in the past decade. New insights have emerged on the role of astrocytes in signal transduction as has an appreciation of the unique contribution of aerobic glycolysis to brain energy metabolism. Likewise our understanding of the neurophysiologic processes responsible for imaging signals has progressed from an assumption that spiking activity (output) of neurons is most relevant to one focused on their input. Finally, neuroimaging, with its unique metabolic perspective, has alerted us to the ongoing and costly intrinsic activity within brain systems that most likely represents the largest fraction of the brain's functional activity.

Ratcliff, R., & van, Dongen , H. ( 2018).

The effects of sleep deprivation on item and associative recognition memory

Journal of Experimental Psychology: Learning, Memory, and Cognition, 44( 2), 193-208.

[本文引用: 2]

Ratcliff, R., Voskuilen, C., & McKoon, G . ( 2018).

Internal and external sources of variability in perceptual decision-making

Psychological Review, 125( 1), 33-46.

Robertson, S. H., & Rasmussen, E. B . ( 2018).

Comparison of potentially real versus hypothetical food outcomes in delay and probability discounting tasks

Behavioural Processes, 149, 8-15.

DOI:10.1016/j.beproc.2018.01.014      URL     PMID:29366752      [本文引用: 1]

Much of the research on human delay and probability discounting involves the use of hypothetical outcomes, in which participants indicate preferences for outcomes but do not receive them. Research generally shows that hypothetical and potentially real outcomes are discounted at similar rates. One study, however, shows that potentially real cigarettes are discounted more steeply than hypothetical cigarettes in smokers, calling into question the generality of the finding that potentially real and hypothetical money are discounted at similar rates. Using a within-subject design, we tested the extent to which potentially real and hypothetical monetary (Experiment 1) and food-related (Experiment 2) outcomes were discounted at similar rates. We found mixed results for monetary outcomes, in that potentially real outcomes were discounted more steeply than hypothetical outcomes when all participants were included; however, this effect disappeared when only systematic responders were used. In addition, potentially real and hypothetical monetary outcomes were significantly correlated. For food-related outcomes, we found robust and consistent effects that potentially real and hypothetical food outcomes are discounted similarly and that they correlate strongly. Generally, these findings suggest that using hypothetical outcomes generate similar levels of discounting, in particular for food, which is useful for researchers interested in characterizing food-related impulsivity.

Saadat, H., Bissonnette, B., Tumin, D., Thung, A., Rice, J., Barry, N. D., & Tobias, J . ( 2016).

Time to talk about work‐hour impact on anesthesiologists: The effects of sleep deprivation on Profile of Mood States and cognitive tasks

Pediatric Anesthesia, 26( 1), 66-71.

[本文引用: 1]

Seelig, A. D., Jacobson, I. G., Donoho, C. J., Trone, D. W., Crum-Cianflone, N. F., & Balkin, T. J . ( 2016).

Sleep and health resilience metrics in a large military cohort

Sleep, 39( 5), 1111-1120.

DOI:10.5665/sleep.5766      URL     PMID:26951391      [本文引用: 1]

8 h (long sleepers) of sleep per night had similar findings, except for the deployment outcome in which those with the shortest sleep were more likely to deploy. CONCLUSIONS: Poor sleep is a detriment to service members' health and readiness. Leadership should redouble efforts to emphasize the importance of healthy sleep among military service members, and future research should focus on the efficacy of interventions to promote healthy sleep and resilience in this population. COMMENTARY: A commentary on this article appears in this issue on page 963.]]>

Smitha, K. A., Akhil Raja, K., Arun, K. M., Rajesh, P. G., Thomas, B., Kapilamoorthy, T. R., & Kesavadas, C . ( 2017).

Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks

The Neuroradiology Journal, 30( 4), 305-317.

[本文引用: 1]

Steinberg, L. ( 2010).

A dual systems model of adolescent risk-taking

Developmental Psychobiology, 52( 3), 216-224.

URL     PMID:20213754      [本文引用: 1]

Tang, H., Liang, Z., Zhou, K., Huang, G. H., Rao, L. L., & Li, S . ( 2016).

Positive and negative affect in loss aversion: Additive or subtractive logic?

Journal of Behavioral Decision Making, 29( 4), 381-391.

[本文引用: 1]

Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Galván, A . ( 2013).

The effects of poor quality sleep on brain function and risk taking in adolescence

Neuroimage, 71, 275-283.

DOI:10.1016/j.neuroimage.2013.01.025      URL     PMID:23376698      [本文引用: 2]

Insufficient sleep and poor quality sleep are pervasive during adolescence and relate to impairments in cognitive control and increased risk taking. However, the neurobiology underlying the association between sleep and adolescent behavior remains elusive. In the current study, we examine how poor sleep quality relates to cognitive control and reward related brain function during risk taking. Forty-six adolescents participated in a functional magnetic imaging (fMRI) scan during which they completed a cognitive control and risk taking task. Behaviorally, adolescents who reported poorer sleep also exhibited greater risk-taking. This association was paralleled by less recruitment of the dorsolateral prefrontal cortex (DLPFC) during cognitive control, greater insula activation during reward processing, and reduced functional coupling between the DLPFC and affective regions including the insula and ventral striatum during reward processing. Collectively, these results suggest that poor sleep may exaggerate the normative imbalance between affective and cognitive control systems, leading to greater risk-taking in adolescents.

Toda, H., Williams, J. A., Gulledge, M., & Sehgal, A . ( 2019).

A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila

Science, 363( 6426), 509-515.

DOI:10.1126/science.aat1650      URL     PMID:30705188      [本文引用: 1]

Sleep remains a major mystery of biology. In particular, little is known about the mechanisms that account for the drive to sleep. In an unbiased screen of more than 12,000 Drosophila lines, we identified a single gene, nemuri, that induces sleep. The NEMURI protein is an antimicrobial peptide that can be secreted ectopically to drive prolonged sleep (with resistance to arousal) and to promote survival after infection. Loss of nemuri increased arousability during daily sleep and attenuated the acute increase in sleep induced by sleep deprivation or bacterial infection. Conditions that increase sleep drive induced expression of nemuri in a small number of fly brain neurons and targeted it to the sleep-promoting, dorsal fan-shaped body. We propose that NEMURI is a bona fide sleep homeostasis factor that is particularly important under conditions of high sleep need; because these conditions include sickness, our findings provide a link between sleep and immune function.

Toplak, M. E., West, R. F., & Stanovich, K. E . ( 2011).

The Cognitive Reflection Test as a predictor of performance on heuristics-and-biases tasks

Memory & Cognition, 39( 7), 1275-1289.

DOI:10.3758/s13421-011-0104-1      URL     PMID:21541821      [本文引用: 1]

The Cognitive Reflection Test (CRT; Frederick, 2005) is designed to measure the tendency to override a prepotent response alternative that is incorrect and to engage in further reflection that leads to the correct response. In this study, we showed that the CRT is a more potent predictor of performance on a wide sample of tasks from the heuristics-and-biases literature than measures of cognitive ability, thinking dispositions, and executive functioning. Although the CRT has a substantial correlation with cognitive ability, a series of regression analyses indicated that the CRT was a unique predictor of performance on heuristics-and-biases tasks. It accounted for substantial additional variance after the other measures of individual differences had been statistically controlled. We conjecture that this is because neither intelligence tests nor measures of executive functioning assess the tendency toward miserly processing in the way that the CRT does. We argue that the CRT is a particularly potent measure of the tendency toward miserly processing because it is a performance measure rather than a self-report measure.

Toplak, M. E., West, R. F., & Stanovich, K. E . ( 2017).

Real-world correlates of performance on heuristics and biases tasks in a community sample

Journal of Behavioral Decision Making, 30( 2), 541-554.

[本文引用: 1]

Vartanian, O., Bouak, F., Caldwell, J. L., Cheung, B., Cupchik, G., Jobidon, M. E., … Smith, I . ( 2014).

The effects of a single night of sleep deprivation on fluency and prefrontal cortex function during divergent thinking

Frontiers in Human Neuroscience, 8, 214.

DOI:10.3389/fnhum.2014.00214      URL     PMID:24795594      [本文引用: 1]

The dorsal and ventral aspects of the prefrontal cortex (PFC) are the two regions most consistently recruited in divergent thinking tasks. Given that frontal tasks have been shown to be vulnerable to sleep loss, we explored the impact of a single night of sleep deprivation on fluency (i.e., number of generated responses) and PFC function during divergent thinking. Participants underwent functional magnetic resonance imaging scanning twice while engaged in the Alternate Uses Task (AUT) - once following a single night of sleep deprivation and once following a night of normal sleep. They also wore wrist activity monitors, which enabled us to quantify daily sleep and model cognitive effectiveness. The intervention was effective, producing greater levels of fatigue and sleepiness. Modeled cognitive effectiveness and fluency were impaired following sleep deprivation, and sleep deprivation was associated with greater activation in the left inferior frontal gyrus (IFG) during AUT. The results suggest that an intervention known to temporarily compromise frontal function can impair fluency, and that this effect is instantiated in the form of an increased hemodynamic response in the left IFG.

Venkatraman, V., Chuah, Y. L., Huettel, S. A., & Chee, M. W . ( 2007).

Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions

Sleep, 30( 5), 603-609.

DOI:10.1093/sleep/30.5.603      URL     PMID:17552375      [本文引用: 1]

STUDY OBJECTIVES: Using a gambling task, we investigated how 24 hours of sleep deprivation modulates the neural response to the making of risky decisions with potentially loss-bearing outcomes. DESIGN: Two experiments involving sleep-deprived subjects were performed. In the first, neural responses to decision making and reward outcome were evaluated. A second control experiment evaluated responses to reward outcome only. PARTICIPANTS: Healthy right-handed adults participated in these experiments (26 [mean age 21.3 years] in Experiment 1 and 13 [mean age 21.7 years] in Experiment 2.) MEASUREMENTS AND RESULTS: Following sleep deprivation, choices involving higher relative risk elicited greater activation in the right nucleus accumbens, signifying an elevated expectation of the higher reward once the riskier choice was made. Concurrently, activation for losses in the insular and orbitofrontal cortices was reduced, denoting a diminished response to losses. This latter finding of reduced insular activation to losses was also true when volunteers were merely shown the results of the computer's decision, that is, without having to make their own choice. CONCLUSIONS: These results suggest that sleep deprivation poses a dual threat to competent decision making by modulating activation in nucleus accumbens and insula, brain regions associated with risky decision making and emotional processing.

Venkatraman, V., Huettel, S. A., Chuah, L. Y., Payne, J. W Chee, M. W. L. ( 2011).

Sleep deprivation biases the neural mechanisms underlying economic preferences

Journal of Neuroscience, 31( 10), 3712-3718.

[本文引用: 4]

Yuan, J., He, Y., Qinglin, Z., Chen, A., & Li, H . ( 2008).

Gender differences in behavioral inhibitory control: ERP evidence from a two-choice oddball task

Psychophysiology, 45( 6), 986-993.

[本文引用: 1]

/


版权所有 © 《心理科学进展》编辑部
地址:北京市朝阳区林萃路16号院 
邮编:100101 
电话:010-64850861 
E-mail:jinzhan@psych.ac.cn
备案编号:京ICP备10049795号-1 京公网安备110402500018号

本系统由北京玛格泰克科技发展有限公司设计开发