心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 150-159.doi: 10.3724/SP.J.1042.2021.00150
收稿日期:
2019-11-18
出版日期:
2021-01-15
发布日期:
2020-11-23
通讯作者:
王红波
E-mail:fightingwhb@vip.163.com
基金资助:
WANG Hongbo(), GUAN Xuxu, LI Zimeng
Received:
2019-11-18
Online:
2021-01-15
Published:
2020-11-23
Contact:
WANG Hongbo
E-mail:fightingwhb@vip.163.com
摘要:
即刻消退缺损(immediate extinction deficit, IED)是指在条件性恐惧习得后, 立即进行的消退训练不能长期抑制恐惧记忆的现象。IED可能与消退起始时的应激水平和事件分割等因素有关。在高应激水平下, 消退记忆的巩固受损导致IED; 而在中等或较低的应激水平条件下, 即刻消退有效但效果可能容易受事件分割的影响。IED的神经生物学机制涉及应激激活蓝斑去甲肾上腺素能系统, 去甲肾上腺素引起杏仁核基底外侧核(basolateral amygdala, BLA)过度兴奋, 然后BLA通过投射突触抑制在恐惧消退中起核心作用的内侧前额叶神经元的活动。未来研究应注意即刻消退缺损引起的长期后果, 并深入探讨如何优化即刻消退在临床上的应用。
中图分类号:
王红波, 关旭旭, 李梓萌. (2021). 即刻消退缺损的原因分析及其神经生物学机制. 心理科学进展 , 29(1), 150-159.
WANG Hongbo, GUAN Xuxu, LI Zimeng. (2021). Immediate extinction deficit: Causes and neurobiological mechanisms. Advances in Psychological Science, 29(1), 150-159.
[1] |
Abiri, D., Douglas, C. E., Calakos, K. C., Barbayannis, G., Roberts, A., & Bauer, E. P. (2014). Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behavioural Brain Research, 271, 234-239.
URL pmid: 24946071 |
[2] | Alberini, C. M., Johnson, S. A., & Ye, X. J.(2013). Chapter five-Memory reconsolidation: Lingering consolidation and the dynamic memory trace. In C. M. Alberini (Ed.), Memory reconsolidation (pp. 81-117). San Diego: Academic Press. |
[3] |
Alvarez, R. P., Johnson, L., & Grillon, C. (2007). Contextual- specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learning and Memory, 14(4), 247-253.
URL pmid: 17412963 |
[4] |
Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89-99.
URL pmid: 25436222 |
[5] |
Arruda-Carvalho, M., & Clem, R. L. (2014). Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. Journal of Neuroscience, 34(47), 15601-15609.
URL pmid: 25411488 |
[6] |
Bangasser, D. A., Eck, S. R., & Ordoñes Sanchez, E. (2019). Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology, 44(1), 129-139.
URL pmid: 30022063 |
[7] |
Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), 60-60.
URL pmid: 29507292 |
[8] |
Borodovitsyna, O., Joshi, N., & Chandler, D. (2018). Persistent stress-induced neuroplastic changes in the locus coeruleus/norepinephrine system. Neural Plasticity, 2018, 1892570.
URL pmid: 30008741 |
[9] |
Bouret, S., & Richmond, B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. Journal of Neuroscience, 35(9), 4005-4014.
URL pmid: 25740528 |
[10] |
Briggs, J. F., & Fava, D. A. (2016). Immediate extinction attenuates spontaneous recovery and reinstatement in a passive avoidance paradigm. Perceptual and Motor Skills, 123(1), 5-16.
URL pmid: 27307156 |
[11] |
Britton, J. C., Evans, T. C., & Hernandez, M. V. (2014). Looking beyond fear and extinction learning: Considering novel treatment targets for anxiety. Current Behavioral Neuroscience Reports, 1(3), 134-143.
doi: 10.1007/s40473-014-0015-0 URL pmid: 25705579 |
[12] |
Bukalo, O., Pinard, C. R., Silverstein, S., Brehm, C., Hartley, N. D., Whittle, N., ... Holmes, A. (2015). Prefrontal inputs to the amygdala instruct fear extinction memory formation. Science Advances, 1(6), e1500251.
URL pmid: 26504902 |
[13] |
Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371(6499), 702-704.
URL pmid: 7935815 |
[14] |
Careaga, M. B. L., Girardi, C. E. N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience & Biobehavioral Reviews, 71, 48-57.
URL pmid: 27590828 |
[15] |
Chandler, D. J., Gao, W-J., & Waterhouse, B. D. (2014). Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6816-6821.
URL pmid: 24753596 |
[16] |
Chandler, D. J., Jensen, P., McCall, J. G., Pickering, A. E., Schwarz, L. A., & Totah, N. K. (2019). Redefining noradrenergic neuromodulation of behavior: Impacts of a modular locus coeruleus architecture. Journal of Neuroscience, 39(42), 8239-8249.
URL pmid: 31619493 |
[17] | Chang, C. H., Berke, J. D., & Maren, S. (2010). Single-unit activity in the medial prefrontal cortex during immediate and delayed extinction of fear in rats. PLoS One, 5(8), e22971. |
[18] |
Chang, C. H., & Maren, S. (2009). Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning and Memory, 16(1), 62-68.
URL pmid: 19141467 |
[19] |
Chang, C. H., & Maren, S. (2011). Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning and Memory, 18(4), 221-225.
URL pmid: 21430044 |
[20] |
Cho, J-H., Deisseroth, K., & Bolshakov, V. Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6), 1491-1507.
URL pmid: 24290204 |
[21] |
Do-Monte, F. H., Manzano-Nieves, G., Quiñones-Laracuente, K., Ramos-Medina, L., & Quirk, G. J. (2015). Revisiting the role of infralimbic cortex in fear extinction with optogenetics. Journal of Neuroscience, 35(8), 3607-3615.
URL pmid: 25716859 |
[22] |
Dunsmoor, J. E., Kroes, M. C. W., Moscatelli, C. M., Evans, M. D., Davachi, L., & Phelps, E. A. (2018). Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour, 2(4), 291-299.
URL pmid: 30221203 |
[23] | Ebrahimi, C., Koch, S. P., Pietrock, C., Fydrich, T., Heinz, A., & Schlagenhauf, F. (2019). Opposing roles for amygdala and vmPFC in the return of appetitive conditioned responses in humans. Translation Psychiatry, 9(1), 148. |
[24] |
Fadok, J. P., Krabbe, S., Markovic, M., Courtin, J., Xu, C., Massi, L., ... Lüthi, A. (2017). A competitive inhibitory circuit for selection of active and passive fear responses. Nature, 542(7639), 96-100.
URL pmid: 28117439 |
[25] |
Fitzgerald, P. J., Giustino, T. F., Seemann, J. R., & Maren, S. (2015). Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 112(28), E3729-3737.
URL pmid: 26124100 |
[26] |
Flores, S., Bailey, H. R., Eisenberg, M. L., & Zacks, J. M. (2017). Event segmentation improves event memory up to one month later. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(8), 1183-1202.
URL pmid: 28383955 |
[27] |
Gafford, G. M., & Ressler, K. J. (2015). GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Hormones and Behavior, 76, 136-142.
URL pmid: 25888455 |
[28] |
Giustino, T. F., Fitzgerald, P. J., & Maren, S. (2016). Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiology of Learning and Memory, 130, 26-33.
URL pmid: 26808441 |
[29] |
Giustino, T. F., Fitzgerald, P. J., Ressler, R. L., & Maren, S. (2019). Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8570-8575.
URL pmid: 30971490 |
[30] |
Giustino, T. F., & Maren, S. (2015). The role of the medial prefrontal cortex in the conditioning and extinction of fear. Frontiers in Behavioral Neuroscience, 9, 298.
URL pmid: 26617500 |
[31] |
Giustino, T. F., & Maren, S. (2018). Noradrenergic modulation of fear conditioning and extinction. Frontiers in Behavioral Neuroscience, 12, 43.
URL pmid: 29593511 |
[32] |
Giustino, T. F., Ramanathan, K. R., Totty, M. S., Miles, O. W., & Maren, S. (2020). Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. Journal of Neuroscience, 40(4), 907-916.
URL pmid: 31801809 |
[33] |
Giustino, T. F., Seemann, J. R., Acca, G. M., Goode, T. D., Fitzgerald, P. J., & Maren, S. (2017). Beta-adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology, 42(13), 2537-2544.
URL pmid: 28462941 |
[34] |
Golkar, A., & Öhman, A. (2012). Fear extinction in humans: Effects of acquisition-extinction delay and masked stimulus presentations. Biological psychology, 91(2), 292-301.
URL pmid: 22898744 |
[35] |
Goode, T. D., & Maren, S. (2019). Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology, 236(1), 415-437.
doi: 10.1007/s00213-018-5024-3 URL pmid: 30255379 |
[36] |
Hayat, H., Regev, N., Matosevich, N., Sales, A., Paredes- Rodriguez, E., Krom, A. J., ... Nir, Y. (2020). Locus-coeruleus norepinephrine activity gates sensory-evoked awakenings from sleep. Science Advances, 6(15), eaaz4232.
URL pmid: 33355127 |
[37] |
Hollis, F., Sevelinges, Y., Grosse, J., Zanoletti, O., & Sandi, C. (2016). Involvement of CRFR1 in the basolateral amygdala in the immediate fear extinction deficit. eNeuro, 3(5). doi: 10.1523/ENEURO.0084-16.2016
URL pmid: 28032118 |
[38] |
Huff, N. C., Hernandez, J. A., Blanding, N. Q., & LaBar, K. S. (2009). Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behavioral Neuroscience, 123(4), 834-843.
URL pmid: 19634943 |
[39] |
Hupalo, S., & Berridge, C. W. (2016). Working memory impairing actions of corticotropin-releasing factor (CRF) neurotransmission in the prefrontal cortex. Neuropsychopharmacology, 41(11), 2733-2740.
URL pmid: 27272767 |
[40] |
Hupalo, S., Bryce, C. A., Bangasser, D. A., Berridge, C. W., Valentino, R. J., & Floresco, S. B. (2019). Corticotropin- releasing factor (CRF) circuit modulation of cognition and motivation. Neuroscience and Biobehavioral Reviews, 103, 50-59.
URL pmid: 31212019 |
[41] |
Hupalo, S., Martin, A. J., Green, R. K., Devilbiss, D. M., & Berridge, C. W. (2019). Prefrontal corticotropin-releasing factor (CRF) neurons act locally to modulate frontostriatal cognition and circuit function. Journal of Neuroscience, 39(11), 2080-2090.
URL pmid: 30651328 |
[42] |
Kim, S. C., Jo, Y. S., Kim, I. H., Kim, H., & Choi, J. S. (2010). Lack of medial prefrontal cortex activation underlies the immediate extinction deficit. Journal of Neuroscience, 30(3), 832-837.
URL pmid: 20089891 |
[43] |
Klavir, O., Prigge, M., Sarel, A., Paz, R., & Yizhar, O. (2017). Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nature Neuroscience, 20(6), 836-844.
URL pmid: 28288126 |
[44] |
Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 583(2-3), 204-214.
URL pmid: 18275957 |
[45] |
MacPherson, K., Whittle, N., Camp, M., Gunduz-Cinar, O., Singewald, N., & Holmes, A. (2013). Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy. Biology of Mood & Anxiety Disorders, 3(1), 13.
URL pmid: 23830244 |
[46] |
Maren, S. (2014). Nature and causes of the immediate extinction deficit: A brief review. Neurobiology of Learning and Memory, 113, 19-24.
URL pmid: 24176924 |
[47] |
Maren, S., & Chang, C. H. (2006). Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 18020-18025.
URL pmid: 17090669 |
[48] |
Maren, S., & Holmes, A. (2016). Stress and fear extinction. Neuropsychopharmacology, 41(1), 58-79.
URL pmid: 26105142 |
[49] |
McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605-620.
URL pmid: 26212712 |
[50] | McCall, J. G., Siuda, E. R., Bhatti, D. L., Lawson, L. A., McElligott, Z. A., Stuber, G. D., & Bruchas, M. R. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife, 6, e18247. |
[51] |
McGarry, L. M., & Carter, A. G. (2016). Inhibitory gating of basolateral amygdala inputs to the prefrontal cortex. Journal of Neuroscience, 36(36), 9391-9406.
URL pmid: 27605614 |
[52] |
McGaugh, J. L. (2000). Memory - A century of consolidation. Science, 287(5451), 248-251.
URL pmid: 10634773 |
[53] |
Merz, C. J., Hamacher-Dang, T. C., & Wolf, O. T. (2016). Immediate extinction promotes the return of fear. Neurobiology of Learning and Memory, 131, 109-116.
URL pmid: 26995309 |
[54] |
Merz, C. J., & Wolf, O. T. (2019). The immediate extinction deficit occurs in a nonemotional learning paradigm. Learning and Memory, 26(2), 39-45.
URL pmid: 30651376 |
[55] |
Mingote, S., de Bruin, J. P., & Feenstra, M. G. (2004). Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. Journal of Neuroscience, 24(10), 2475-2480.
URL pmid: 15014123 |
[56] |
Monfils, M-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science, 324(5929), 951-955.
URL pmid: 19342552 |
[57] |
Myers, K. M., Ressler, K. J., & Davis, M. (2006). Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learning and Memory, 13(2), 216-223.
doi: 10.1101/lm.119806 URL pmid: 16585797 |
[58] |
Norrholm, S. D., Vervliet, B., Jovanovic, T., Boshoven, W., Myers, K. M., Davis, M., ... Duncan, E. J. (2008). Timing of extinction relative to acquisition: A parametric analysis of fear extinction in humans. Behavioral Neuroscience, 122(5), 1016-1030.
URL pmid: 18823159 |
[59] |
Prouty, E. W., Waterhouse, B. D., & Chandler, D. J. (2017). Corticotropin releasing factor dose-dependently modulates excitatory synaptic transmission in the noradrenergic nucleus locus coeruleus. European Journal of Neuroscience, 45(5), 712-722.
doi: 10.1111/ejn.13501 URL |
[60] | Radvansky, G. A., & Zacks, J. M. (2017). Event boundaries in memory and cognition. Current Opinion in Behavoral Sciences, 17, 133-140. |
[61] | Rothbaum, B. O., Kearns, M. C., Reiser, E., Davis, J. S., Kerley, K. A., Rothbaum, A. O., ... Ressler, K. J. (2014). Early intervention following trauma may mitigate genetic risk for PTSD in civilians: A pilot prospective emergency department study. Journal of Clinical Psychiatry, 75(12), 1380-1387. |
[62] |
Schiller, D., Cain, C. K., Curley, N. G., Schwartz, J. S., Stern, S. A., Ledoux, J. E., & Phelps, E. A. (2008). Evidence for recovery of fear following immediate extinction in rats and humans. Learning and Memory, 15(6), 394-402.
URL pmid: 18509113 |
[63] |
Senn, V., Wolff, S. B., Herry, C., Grenier, F., Ehrlich, I., Grundemann, J., ... Lüthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 81(2), 428-437.
URL pmid: 24462103 |
[64] |
Siddiqui, S. A., Singh, S., Ranjan, V., Ugale, R., Saha, S., & Prakash, A. (2017). Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cellular and Molecular Neurobiology, 37(7), 1287-1301.
URL pmid: 28097489 |
[65] |
Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. J. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2), 529-538.
doi: 10.1038/npp.2010.184 URL pmid: 20962768 |
[66] |
Singh, S., Siddiqui, S. A., Tripathy, S., Kumar, S., Saha, S., Ugale, R., ... Prakash, A. (2018). Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain research bulletin, 140, 355-364.
URL pmid: 29908895 |
[67] |
Stafford, J. M., Maughan, D. K., Ilioi, E. C., & Lattal, K. M. (2013). Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits. Learning and Memory, 20(3), 156-163.
URL pmid: 23422280 |
[68] |
Sun, Q., Gu, S. M., & Yang, J. J. (2018). Context and time matter: Effects of emotion and motivation on episodic memory overtime. Neural Plasticity, 2018, 7051925.
URL pmid: 29849564 |
[69] |
Totty, M. S., Payne, M. R., & Maren, S. (2019). Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Scientific Reports, 9(1), 9459.
URL pmid: 31263140 |
[70] |
Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317-331.
doi: 10.1038/nrn3945 URL |
[71] |
Uematsu, A., Tan, B. Z., Ycu, E. A., Cuevas, J. S., Koivumaa, J., Junyent, F., ... Johansen, J. P. (2017). Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nature Neuroscience, 20(11), 1602-1611.
doi: 10.1038/nn.4642 URL pmid: 28920933 |
[72] |
Uribe-Mariño, A., Gassen, N. C., Wiesbeck, M. F., Balsevich, G., Santarelli, S., Solfrank, B., ... Schmidt, M. V. (2016). Prefrontal cortex corticotropin-releasing factor receptor 1 conveys acute stress-induced executive dysfunction. Biological Psychiatry, 80(10), 743-753.
URL pmid: 27318500 |
[73] |
Vervliet, B., Craske, M. G., & Hermans, D. (2013). Fear extinction and relapse: state of the art. Annual Review of Clinical Psychology, 9, 215-248.
URL pmid: 23537484 |
[74] |
Weston, C. S. E. (2014). Posttraumatic stress disorder: A theoretical model of the hyperarousal subtype. Frontiers in Psychiatry, 5, 37.
doi: 10.3389/fpsyt.2014.00037 URL pmid: 24772094 |
[75] |
Woods, A. M., & Bouton, M. E. (2008). Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning. Learning and Memory, 15(12), 909-920.
URL pmid: 19050163 |
[76] | Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130(1), 29-58. |
[77] |
Zitnik, G. A. (2016). Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Research, 1641(Pt B), 338-350.
URL pmid: 26688115 |
[1] | 李俊娇, 陈伟, 石佩, 董媛媛, 郑希付. 预期错误在恐惧记忆更新中的作用与机制[J]. 心理科学进展, 2022, 30(4): 834-850. |
[2] | 曹杨婧文, 李俊娇, 陈伟, 杨勇, 胡琰健, 郑希付. 条件性恐惧记忆消退的提取干预范式及其作用的神经机制[J]. 心理科学进展, 2019, 27(2): 268-277. |
[3] | 曾祥星;向燕辉;杜娟;郑希付. 条件性恐惧记忆提取消退干预范式[J]. 心理科学进展, 2014, 22(3): 431-438. |
[4] | 王红波; 安献丽; 李幼虹; 郑希耕. 干预条件性恐惧记忆表达的相关影响因素分析[J]. 心理科学进展, 2010, 18(5): 718-724. |
[5] | 安献丽;王文忠;郑希耕. 阻碍条件性恐惧记忆消退的原因分析[J]. 心理科学进展, 2009, 17(1): 126-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||