ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2017, Vol. 25 ›› Issue (10): 1696-1704.doi: 10.3724/SP.J.1042.2017.01696

• 研究方法 • 上一篇    下一篇

 多阶段混合增长模型的方法及研究现状

 王 婧1,2; 唐文清5; 张敏强1,2,3,4; 张文怡6; 郭凯茵4   

  1.  (1华南师范大学心理学院) (2华南师范大学心理应用研究中心) (3华南师范大学广东省心理健康与 认知科学重点实验室) (4广东省心理学会, 广州 510631) (5广西大学教育学院, 南宁 530004) (6广东财经大学创业教育学院, 广州 511300)
  • 收稿日期:2016-10-26 出版日期:2017-10-15 发布日期:2017-08-13
  • 通讯作者: 张敏强, E-mail: zhangmq1117@qq.com E-mail:E-mail: zhangmq1117@qq.com
  • 基金资助:
      广州市教育科学“十二五”规划2014年度重大课题“基于现代教育测量学的中小学学业质量评价应用研究”(课题编号:1201411413)。

 Piecewise growth mixture models and its current researches

 WANG Jing1,2; TANG Wenqing5; ZHANG Minqiang1,2,3,4; ZHANG Wenyi6; GUO Kaiyin4   

  1.  (1 School of Psychology, South China Normal University) (2 Center for Studies of Psychological Application, South China Normal University) (3 Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University) (4 Guangdong Psychological Association, Guangzhou 510631, China) (5 School of Education, Guangxi University, Nanning 530004, China) (6 School of Entrepreneurship Education, Guangdong University of Finance & Economics, Guangzhou 511300, China)
  • Received:2016-10-26 Online:2017-10-15 Published:2017-08-13
  • Contact: ZHANG Minqiang, E-mail: zhangmq1117@qq.com E-mail:E-mail: zhangmq1117@qq.com
  • Supported by:
     

摘要:  多阶段混合增长模型(PGMM)可对发展过程中的阶段性及群体异质性特征进行分析, 在能力发展、行为发展及干预、临床心理等研究领域应用广泛。PGMM可在结构方程模型和随机系数模型框架下定义, 通常使用基于EM算法的极大似然估计和基于马尔科夫链蒙特卡洛模拟的贝叶斯推断两种方法进行参数估计。样本量、测量时间点数、潜在类别距离等因素对模型及参数估计有显著影响。未来应加强PGMM与其它增长模型的比较研究; 在相同或不同的模型框架下研究数据特征、类别属性等对参数估计方法的影响。

关键词:  追踪数据, 混合增长模型, 多阶段混合增长模型, 参数估计方法

Abstract:  Piecewise growth mixture models (PGMM) can be used to analyze multi-phase longitudinal data with unobserved heterogeneity in a population, and are widely applied in fields such as ability growth, social behaviors development and intervention, and clinical psychology. PGMM can be defined within both the structural equation modeling framework and the random coefficient modeling framework. Maximum likelihood via an expectation–maximization algorithm (EM-ML) and Markov Chain Monte Carlo for Bayesian inference (MCMC-BI) are the most commonly used methods for PGMM parameter estimation. The validity of PGMM and their parameter estimation are significantly affected by factors such as sample size, number of time points, and latent class separation. Future studies should focus on comparisons between PGMM and other growth models, and the influences of factors such as data characters and latent class attributes on the performance of parameter estimation methods under the same modeling framework or different modeling frameworks.

Key words: longitudinal data, growth mixture models, piecewise growth mixture models, parameter estimation methods

中图分类号: