Acta Psychologica Sinica ›› 2023, Vol. 55 ›› Issue (11): 1793-1805.doi: 10.3724/SP.J.1041.2023.01793
Previous Articles Next Articles
HU Xinyun, SHEN Yue, DAI Junyi()
Received:
2023-02-02
Published:
2023-11-25
Online:
2023-08-31
Contact:
DAI Junyi
E-mail:junyidai@zju.edu.cn
Supported by:
HU Xinyun, SHEN Yue, DAI Junyi. (2023). Strategy switching in a sequence of decisions: Evidence from the Iowa Gambling Task. Acta Psychologica Sinica, 55(11), 1793-1805.
Deck | A | B | C | D |
---|---|---|---|---|
Gain on every trial | 100 | 100 | 50 | 50 |
Number of losses in every 10 selections | 5 | 1 | 5 | 1 |
Potential amounts of loss | -150 | -1250 | -25 | -250 |
-200 | -50 | |||
-250 | -75 | |||
-300 | ||||
-350 | ||||
Total return after 10 selections | -250 | -250 | 250 | 250 |
Table 1 The Payoff Scheme of the IGT in Bechara et al. (1994)
Deck | A | B | C | D |
---|---|---|---|---|
Gain on every trial | 100 | 100 | 50 | 50 |
Number of losses in every 10 selections | 5 | 1 | 5 | 1 |
Potential amounts of loss | -150 | -1250 | -25 | -250 |
-200 | -50 | |||
-250 | -75 | |||
-300 | ||||
-350 | ||||
Total return after 10 selections | -250 | -250 | 250 | 250 |
Model | AICC as index | BIC as index | ||
---|---|---|---|---|
Mean (std) | Number (proportion) of participants whose data were best fitted | Mean (std) | Number (proportion) of participants whose data were best fitted | |
WSLS | 236.27 (72.65) | 42 (6.81%) | 241.46 (72.76) | 190 (30.79%) |
PVL2 | 225.25 (72.28) | 114 (18.48%) | 235.48 (72.49) | 209 (33.87%) |
VPP | 220.37 (70.25) | 194 (31.44%) | 240.13 (70.71) | 101 (16.37%) |
SSO | 219.60 (71.06) | 267 (43.27%) | 239.36 (71.48) | 117 (18.96%) |
Table 2 Results of Model Comparison in Study 1
Model | AICC as index | BIC as index | ||
---|---|---|---|---|
Mean (std) | Number (proportion) of participants whose data were best fitted | Mean (std) | Number (proportion) of participants whose data were best fitted | |
WSLS | 236.27 (72.65) | 42 (6.81%) | 241.46 (72.76) | 190 (30.79%) |
PVL2 | 225.25 (72.28) | 114 (18.48%) | 235.48 (72.49) | 209 (33.87%) |
VPP | 220.37 (70.25) | 194 (31.44%) | 240.13 (70.71) | 101 (16.37%) |
SSO | 219.60 (71.06) | 267 (43.27%) | 239.36 (71.48) | 117 (18.96%) |
Model for simulation | Model for fitting | |||
---|---|---|---|---|
WSLS | PVL2 | VPP | SSO | |
WSLS | 88.60% | 3.67% | 0.92% | 6.81% |
PVL2 | 33.55% | 46.14% | 10.97% | 9.35% |
VPP | 14.37% | 16.69% | 59.97% | 8.97% |
SSO | 13.99% | 7.73% | 2.76% | 75.53% |
Table 3 Results of Model Recovery Analysis in Study 1 Using AICC
Model for simulation | Model for fitting | |||
---|---|---|---|---|
WSLS | PVL2 | VPP | SSO | |
WSLS | 88.60% | 3.67% | 0.92% | 6.81% |
PVL2 | 33.55% | 46.14% | 10.97% | 9.35% |
VPP | 14.37% | 16.69% | 59.97% | 8.97% |
SSO | 13.99% | 7.73% | 2.76% | 75.53% |
Model for simulation | Model for fitting | |||
---|---|---|---|---|
WSLS | PVL2 | VPP | SSO | |
WSLS | 99.57% | 0.43% | 0.00% | 0.00% |
PVL2 | 51.43% | 44.79% | 3.62% | 0.16% |
VPP | 37.39% | 32.63% | 29.07% | 0.92% |
SSO | 42.63% | 20.31% | 0.05% | 37.01% |
Table 4 Results of Model Recovery Analysis in Study 1 Using BIC
Model for simulation | Model for fitting | |||
---|---|---|---|---|
WSLS | PVL2 | VPP | SSO | |
WSLS | 99.57% | 0.43% | 0.00% | 0.00% |
PVL2 | 51.43% | 44.79% | 3.62% | 0.16% |
VPP | 37.39% | 32.63% | 29.07% | 0.92% |
SSO | 42.63% | 20.31% | 0.05% | 37.01% |
Model | Average (std.) of AICC | Number (proportion) of participants whose data were best fitted | ||||
---|---|---|---|---|---|---|
95trials | 100trials | 150trials | 95trials | 100trials | 150trials | |
WSLS | 238.66 (35.45) | 224.42 (56.54) | 296.81 (111.01) | 1 (6.67%) | 36 (7.14%) | 5 (5.10%) |
PVL2 | 223.20 (39.06) | 215.21 (58.10) | 277.19 (110.48) | 5 (33.33%) | 94 (18.65%) | 15 (15.31%) |
VPP | 222.84 (40.43) | 210.29 (55.93) | 271.84 (108.07) | 7 (46.67%) | 161 (31.94%) | 26 (26.53%) |
SSO | 227.14 (37.92) | 210.14 (57.76) | 267.10 (108.68) | 2 (13.33%) | 213 (42.26%) | 52 (53.06%) |
Table 5 Results of Model Comparison Regarding IGT Studies With Different Numbers of Trials in Study 1
Model | Average (std.) of AICC | Number (proportion) of participants whose data were best fitted | ||||
---|---|---|---|---|---|---|
95trials | 100trials | 150trials | 95trials | 100trials | 150trials | |
WSLS | 238.66 (35.45) | 224.42 (56.54) | 296.81 (111.01) | 1 (6.67%) | 36 (7.14%) | 5 (5.10%) |
PVL2 | 223.20 (39.06) | 215.21 (58.10) | 277.19 (110.48) | 5 (33.33%) | 94 (18.65%) | 15 (15.31%) |
VPP | 222.84 (40.43) | 210.29 (55.93) | 271.84 (108.07) | 7 (46.67%) | 161 (31.94%) | 26 (26.53%) |
SSO | 227.14 (37.92) | 210.14 (57.76) | 267.10 (108.68) | 2 (13.33%) | 213 (42.26%) | 52 (53.06%) |
Model | Average (std.) of AICC | Number (proportion) of participants whose data were best fitted | ||
---|---|---|---|---|
100 trials | 200 trials | 100 trials | 200 trials | |
WSLS | 221.29 (54.27) | 413.04 (125.04) | 17 (10.63%) | 4 (2.48 %) |
PVL2 | 214.36 (56.19) | 392.14 (123.53) | 27 (16.88%) | 15 (9.32%) |
VPP | 212.66 (52.58) | 383.47 (120.92) | 36 (22.50%) | 37 (22.98%) |
SSO | 207.95 (54.46) | 377.02 (120.76) | 80 (50.00%) | 105 (65.22%) |
Table 6 Results of Model Comparison in Study 2
Model | Average (std.) of AICC | Number (proportion) of participants whose data were best fitted | ||
---|---|---|---|---|
100 trials | 200 trials | 100 trials | 200 trials | |
WSLS | 221.29 (54.27) | 413.04 (125.04) | 17 (10.63%) | 4 (2.48 %) |
PVL2 | 214.36 (56.19) | 392.14 (123.53) | 27 (16.88%) | 15 (9.32%) |
VPP | 212.66 (52.58) | 383.47 (120.92) | 36 (22.50%) | 37 (22.98%) |
SSO | 207.95 (54.46) | 377.02 (120.76) | 80 (50.00%) | 105 (65.22%) |
Model | WSLS | PVL2 | VPP | SSO |
---|---|---|---|---|
WSLS | 90.83%/86.13% | 2.29%/3.11% | 1.04%/0.83% | 5.83%/9.94% |
PVL2 | 38.54%/27.33% | 44.17%/53.21% | 3.13%/5.18% | 14.17%/14.29% |
VPP | 23.75%/13.66% | 17.29%/12.63% | 46.46%/63.77% | 12.50%/9.94% |
SSO | 15.21%/10.14% | 5.21%/4.35% | 2.29%/1.66% | 77.29%/83.85% |
Table 7 Results of Model Recovery Analysis in Study 2 Using AICC
Model | WSLS | PVL2 | VPP | SSO |
---|---|---|---|---|
WSLS | 90.83%/86.13% | 2.29%/3.11% | 1.04%/0.83% | 5.83%/9.94% |
PVL2 | 38.54%/27.33% | 44.17%/53.21% | 3.13%/5.18% | 14.17%/14.29% |
VPP | 23.75%/13.66% | 17.29%/12.63% | 46.46%/63.77% | 12.50%/9.94% |
SSO | 15.21%/10.14% | 5.21%/4.35% | 2.29%/1.66% | 77.29%/83.85% |
Model | WSLS | PVL2 | VPP | SSO |
---|---|---|---|---|
WSLS | 100.00%/100.00% | 0.00%/0.00% | 0.00%/0.00% | 0.00%/0.00% |
PVL2 | 59.58%/46.38% | 39.79%/53.42% | 0.00%/0.00% | 0.63%/0.21% |
VPP | 48.54%/35.20% | 27.50%/34.16% | 23.33%/29.81% | 0.63%/0.83% |
SSO | 47.71%/32.30% | 18.13%/14.70% | 0.63%/0.00% | 33.54%/53.00% |
Table 8 Results of Model Recovery Analysis in Study 2 Using BIC
Model | WSLS | PVL2 | VPP | SSO |
---|---|---|---|---|
WSLS | 100.00%/100.00% | 0.00%/0.00% | 0.00%/0.00% | 0.00%/0.00% |
PVL2 | 59.58%/46.38% | 39.79%/53.42% | 0.00%/0.00% | 0.63%/0.21% |
VPP | 48.54%/35.20% | 27.50%/34.16% | 23.33%/29.81% | 0.63%/0.83% |
SSO | 47.71%/32.30% | 18.13%/14.70% | 0.63%/0.00% | 33.54%/53.00% |
[1] |
Ahn, W. Y., Busemeyer, J. R., Wagenmakers, E. J., & Stout, J. C. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992
doi: 10.1080/03640210802352992 URL |
[2] | Ahn, W. Y., Vasilev, G., Lee, S. H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: Evidence from computational modeling with pure users. Frontiers in Psychology, 5, 849. https://doi.org/10.3389/fpsyg.2014.00849 |
[3] |
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
doi: 10.1109/TAC.1974.1100705 URL |
[4] |
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1-3), 7-15. https://doi.org/10.1016/0010-0277(94)90018-3
doi: 10.1016/0010-0277(94)90018-3 URL pmid: 8039375 |
[5] |
Bechara, A., & Damasio, H. (2002). Decision-making and addiction (part I): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 1675-1689. https://doi.org/10.1016/s0028-3932(02)00015-5
doi: 10.1016/s0028-3932(02)00015-5 URL pmid: 11992656 |
[6] |
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39(4), 376-389. https://doi.org/10.1016/s0028-3932(00)00136-6
doi: 10.1016/s0028-3932(00)00136-6 URL pmid: 11164876 |
[7] | Bergert, F. B., & Nosofsky, R. M. (2007). A response-time approach to comparing generalized rational and take-the-best models of decision making. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 107-129. |
[8] |
Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113, 409-432.
doi: 10.1037/0033-295X.113.2.409 pmid: 16637767 |
[9] | Bröder, A., & Schiffer, S. (2006). Adaptive flexibility and maladaptive routines in selecting fast and frugal decision strategies. Journal of Experimental Psychology: Learning, Memory, & Cognition, 32, 904-918. https://doi.org/10.1037/0278-7393.32.4.904 |
[10] | Broomell, S. B., Budescu, D. V., & Por, H. H. (2011). Pair-wise comparisons of multiple models. Judgment & Decision Making, 6(8), 821-831. |
[11] | Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304. https://doi.org/10.1177/0049124104268644 |
[12] |
Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological assessment, 14(3), 253. https://doi.org/10.1037/1040-3590.14.3.253
doi: 10.1037//1040-3590.14.3.253 URL pmid: 12214432 |
[13] | Clerc, M. (2010). Particle swarm optimization (Vol. 93). John Wiley & Sons. |
[14] | Dai, J., Kerestes, R., Upton, D. J., Busemeyer, J. R., & Stout, J. C. (2015). An improved cognitive model of the Iowa and Soochow Gambling Tasks with regard to model fitting performance and tests of parameter consistency. Frontiers in Psychology, 6, 299. https://doi.org/10.3389/fpsyg.2015.00229 |
[15] | Erev, I., & Roth, A. E. (1998). Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review, 88(4), 848-881. https://jstor.org/stable/117009 |
[16] |
Fang, J., Schooler, L., & Shenghua, L. (2023). Machine learning strategy identification: A paradigm to uncover decision strategies with high fidelity. Behavior Research Methods, 55(1), 263-284.
doi: 10.3758/s13428-022-01828-1 |
[17] |
Hochman, G., Yechiam, E., & Bechara, A. (2010). Recency gets larger as lesions move from anterior to posterior locations within the ventromedial prefrontal cortex. Behavioural Brain Research, 213(1), 27-34. https://doi.org/10.1016/j.bbr.2010.04.023
doi: 10.1016/j.bbr.2010.04.023 URL pmid: 20412820 |
[18] |
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-292.
doi: 10.2307/1914185 URL |
[19] | Lee, M. D., & Gluck, K. A. (2021). Modeling strategy switches in multi-attribute decision making. Computational Brain & Behavior, 4, 148-163. https://doi.org/10.1007/s42113-020-00092-w |
[20] |
Lee, M. D., Gluck, K. A., & Walsh, M. M. (2019). Understanding the complexity of simple decisions: Modeling multiple behaviors and switching strategies. Decision, 6(4), 335-368. https://doi.org/10.1037/dec0000105
doi: 10.1037/dec0000105 URL |
[21] |
Lee, M. D., Newell, B. R., & Vandekerckhove, J. (2014). Modeling the adaptation of search termination in human decision making. Decision, 1(4), 223-251. https://doi.org/10.1037/dec0000019
doi: 10.1037/dec0000019 URL |
[22] | Li, L., Zhang, J. Q., Hou, J. W., Li, Y. L., Lu, Y. J., & Guo, Z. J. (2019). Decision-making characteristics assessed by the IOWA Gambling Task in schizophrenia: A meta-analysis. Journal of Qingdao University (Medical Sciences), 55(6), 688-691, 695. |
[23] | Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York: Wiley. |
[24] |
Pachur, T., & Galesic, M. (2013). Strategy selection in risky choice: The impact of numeracy, affect, and cross-cultural differences. Journal of Behavioral Decision Making, 26, 260-271.
doi: 10.1002/bdm.v26.3 URL |
[25] |
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 534-552.
doi: 10.1037/0278-7393.14.3.534 URL |
[26] | Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning:Variations in the effectiveness of reinforcement and nonreinforcement. In A. H.Black, & W. F.Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). Appleton- Century-Crofts. |
[27] |
Rieskamp, J., & Otto, P. E. (2006). SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135(2), 207-236. https://doi.org/10.1037/0096-3445.135.2.207
doi: 10.1037/0096-3445.135.2.207 URL |
[28] | Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. |
[29] | Steingroever, H., Fridberg, D. J., Horstmann, A., Kjome, K. L., Kumari, V., Lane, S. D., … Wagenmakers, E. J. (2015). Data from 617 healthy participants performing the Iowa Gambling Task: A “Many Labs” Collaboration. Journal of Open Psychology Data, 3(1), e5. http://doi.org/10.5334/jopd.ak |
[30] |
Stout, J. C., Rodawalt, W. C., & Siemers, E. R. (2001). Risky decision making in Huntington's disease. Journal of the International Neuropsychological Society, 7(1), 92-101. https://doi.org/10.1017/s1355617701711095
URL pmid: 11253845 |
[31] | Sugiura, N. (1978). Further analysis of the data by Akaike’s information criterion and the finite corrections. Communications in Statistics, Theory and Methods, 7, 13-26. http://doi.org/10.1080/03610927808827599 |
[32] | Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054-1054. https://doi.org/10.1109/tnn.1998.712192 |
[33] | Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press. |
[34] |
Wagenmakers, E. J., Ratcliff, R., Gomez, P., & Iverson, G. J. (2004). Assessing model mimicry using the parametric bootstrap. Journal of Mathematical Psychology, 48, 28-50. https://doi.org/10.1016/j.jmp.2003.11.004
doi: 10.1016/j.jmp.2003.11.004 URL |
[35] |
Walsh, M. M., & Gluck, K. A. (2016). Verbalization of decision strategies in multiple-cue probabilistic inference. Journal of Behavioral Decision Making, 29(1), 78-91. https://doi.org/10.1002/bdm.1878
doi: 10.1002/bdm.v29.1 URL |
[36] |
Worthy, D. A., Hawthorne, M. J., & Otto, A. R. (2012). Heterogeneity of strategy use in the Iowa gambling task: A comparison of win- stay/lose-shift and reinforcement learning models. Psychonomic Bulletin & Review, 20(2), 364-371. https://doi.org/10.3758/s13423-012-0324-9
doi: 10.3758/s13423-012-0324-9 URL |
[37] |
Worthy, D. A., Pang, B., & Byrne, K. A. (2013). Decomposing the roles of perseveration and expected value representation in models of the Iowa gambling task. Frontiers in Psychology, 4, 640. https://doi.org/10.3389/fpsyg.2013.00640
doi: 10.3389/fpsyg.2013.00640 URL pmid: 24137137 |
[38] |
Xu, S. H. (2012). Internet addicts’ behavior impulsivity: Evidence from the Iowa Gambling Task. Acta Psychologica Sinica, 44(11), 1523-1534.
doi: 10.3724/SP.J.1041.2012.01523 URL |
[39] |
Yechiam, E., Busemeyer, J. R., Stout, J. C., & Bechara, A. (2005). Using cognitive models to map relations between neuropsychological disorders and human decision-making deficits. Psychological Science, 16, 973-978.
doi: 10.1111/j.1467-9280.2005.01646.x pmid: 16313662 |
[40] |
Yechiam, E., & Ert, E. (2007). Evaluating the reliance on past choices in adaptive learning models. Journal of Mathematical Psychology, 51(2), 75-84. https://doi.org/10.1016/j.jmp.2006.11.002
doi: 10.1016/j.jmp.2006.11.002 URL |
[1] | FU Zhongfang, SUN Xunwei, LIANG Peipeng. Proactive Interference in Episodic Memory: Neuropsychopharmacology and Computational Cognitive Modeling Study [J]. Acta Psychologica Sinica, 2014, 46(4): 492-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||