Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (12): 1377-1392.doi: 10.3724/SP.J.1041.2020.01377
• Reports of Empirical Studies • Previous Articles Next Articles
XIN Xin, LAN Tianyi, ZHANG Qingfang()
Received:
2020-01-16
Published:
2020-12-25
Online:
2020-10-27
Contact:
ZHANG Qingfang
E-mail:qingfang.zhang@ruc.edu.cn
Supported by:
XIN Xin, LAN Tianyi, ZHANG Qingfang. (2020). Assimilation mechanisms of phonological encoding in second language spoken production for English-Chinese bilinguals. Acta Psychologica Sinica, 52(12), 1377-1392.
CC-EE | CC-EC | EE-EC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | Std.Error | t | p | β | Std.Error | t | p | β | Std.Error | t | p | |
Intercept | 607.41 | 39.54 | 15.36 | <0.001 | 585.01 | 38.90 | 15.04 | <0.001 | 672.80 | 25.69 | 26.22 | <0.001 |
Target language | — | — | — | — | 67.65 | 24.21 | 2.80 | 0.008 | — | — | — | — |
Phonological related type | 13.11 | 1.16 | 11.28 | <0.001 | 19.09 | 3.77 | 5.07 | <0.001 | 19.98 | 3.86 | 5.16 | <0.001 |
Target language: Phonological related type | — | — | — | — | -6.343 | 2.38 | -2.66 | 0.008 | -6.77 | 2.45 | -2.76 | 0.006 |
Table 1 LMM estimates of fixed effects for response latencies in picture naming
CC-EE | CC-EC | EE-EC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | Std.Error | t | p | β | Std.Error | t | p | β | Std.Error | t | p | |
Intercept | 607.41 | 39.54 | 15.36 | <0.001 | 585.01 | 38.90 | 15.04 | <0.001 | 672.80 | 25.69 | 26.22 | <0.001 |
Target language | — | — | — | — | 67.65 | 24.21 | 2.80 | 0.008 | — | — | — | — |
Phonological related type | 13.11 | 1.16 | 11.28 | <0.001 | 19.09 | 3.77 | 5.07 | <0.001 | 19.98 | 3.86 | 5.16 | <0.001 |
Target language: Phonological related type | — | — | — | — | -6.343 | 2.38 | -2.66 | 0.008 | -6.77 | 2.45 | -2.76 | 0.006 |
Source (df1, df2) | 200~250 ms | 250~300 ms | 300~350 ms | 350~400 ms | 400~450 ms | 450~500 ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | ηp2 | F | ηp2 | F | ηp2 | F | ηp2 | F | ηp2 | F | ηp2 | |
CC | ||||||||||||
Phonologically type (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Hemispheres (1,17) | — | — | 8.02* | 0.32 | 11.53* | 0.40 | 5.15* | 0.23 | — | — | — | — |
Laterality (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type × Hemisphere (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type ×Laterality (4,68) | — | — | — | — | — | — | — | — | 3.83* | 0.18 | — | — |
Type × hemisphere ×Laterality (4,68) | — | — | 3.27* | 0.16 | — | — | — | — | — | — | — | — |
EE | ||||||||||||
Phonologically type (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Hemispheres (1,17) | 9.54* | 0.36 | 12.88* | 0.43 | 8.84* | 0.34 | 5.33* | 0.24 | — | — | — | — |
Laterality (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type × Hemisphere (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type ×Laterality (4,68) | — | — | 2.72* | 0.14 | — | — | — | — | — | — | — | — |
Type × Hemisphere × Laterality (4,68) | — | — | — | — | — | — | — | — | — | — | — | — |
EC | ||||||||||||
Phonologically type (2,34) | — | — | 4.10* | 0.24 | 3.42* | 0.24 | — | — | — | — | — | — |
Hemispheres (1,17) | 13.72* | 0.45 | 13.72* | 0.45 | 9.35* | 0.36 | — | — | — | — | — | — |
Laterality (2,34) | — | — | — | — | — | — | — | — | 6.55* | 0.28 | 6.66* | 0.28 |
Type × hemisphere (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type × Laterality (4,68) | — | — | 3.27* | 0.16 | — | — | — | — | — | — | — | — |
Type × hemisphere × Laterality (4,68) | — | — | 3.17* | 0.16 | — | — | — | — | — | — | — | — |
Table 2 Summary of omnibus ANOVA results on mean ERP amplitude, at individual ROIs, in different time windows
Source (df1, df2) | 200~250 ms | 250~300 ms | 300~350 ms | 350~400 ms | 400~450 ms | 450~500 ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | ηp2 | F | ηp2 | F | ηp2 | F | ηp2 | F | ηp2 | F | ηp2 | |
CC | ||||||||||||
Phonologically type (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Hemispheres (1,17) | — | — | 8.02* | 0.32 | 11.53* | 0.40 | 5.15* | 0.23 | — | — | — | — |
Laterality (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type × Hemisphere (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type ×Laterality (4,68) | — | — | — | — | — | — | — | — | 3.83* | 0.18 | — | — |
Type × hemisphere ×Laterality (4,68) | — | — | 3.27* | 0.16 | — | — | — | — | — | — | — | — |
EE | ||||||||||||
Phonologically type (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Hemispheres (1,17) | 9.54* | 0.36 | 12.88* | 0.43 | 8.84* | 0.34 | 5.33* | 0.24 | — | — | — | — |
Laterality (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type × Hemisphere (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type ×Laterality (4,68) | — | — | 2.72* | 0.14 | — | — | — | — | — | — | — | — |
Type × Hemisphere × Laterality (4,68) | — | — | — | — | — | — | — | — | — | — | — | — |
EC | ||||||||||||
Phonologically type (2,34) | — | — | 4.10* | 0.24 | 3.42* | 0.24 | — | — | — | — | — | — |
Hemispheres (1,17) | 13.72* | 0.45 | 13.72* | 0.45 | 9.35* | 0.36 | — | — | — | — | — | — |
Laterality (2,34) | — | — | — | — | — | — | — | — | 6.55* | 0.28 | 6.66* | 0.28 |
Type × hemisphere (2,34) | — | — | — | — | — | — | — | — | — | — | — | — |
Type × Laterality (4,68) | — | — | 3.27* | 0.16 | — | — | — | — | — | — | — | — |
Type × hemisphere × Laterality (4,68) | — | — | 3.17* | 0.16 | — | — | — | — | — | — | — | — |
Figure 2. The average waveforms of the CC (left), EE (middle) and EC (right) at Cz in three different conditions, and the topographic distribution of the corresponding time windows.
Figure 3. Spatio-temporal segmentation and global field power (GFP) traces of grand-averaged ERPs of 3 experimental conditions in CC, EE and EC. Fig. 3A indicates that 4 topographic maps explained most variance in the data. Fig. 3B shows that maps are color-coded and presented as a function of their time of appearance in grand-averaged data.
[1] | Baković, E. (2014). Phonemes, segments and features. Language, Cognition & Neuroscience, 29(1), 21-23. |
[2] | Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[3] | Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel EEG: CARTOOL. Computational intelligence and neuroscience, 2, 813870. |
[4] |
Cai, X., Yin, Y. L., & Zhang, Q. F. (2020). The roles of syllables and phonemes during phonological encoding in Chinese spoken word production: A topographic ERP study. Neuropsychologia, 140, 107382.
doi: 10.1016/j.neuropsychologia.2020.107382 URL pmid: 32068028 |
[5] | Chen, B. G., Wang, L. X., & Peng, D. L. (2006). The time course of graphic, phonological and semantic activation of Chinese high-and-low frequency characters. Studies of Psychology and Behavior, 4(4), 252-257. |
[6] | Chen, J.‐Y. (2000). Syllable errors from naturalistic slips of the tongue in Mandarin Chinese. Psychologia, 43(1), 15-26. |
[7] | Chen, J.‐Y., Chen, T.‐M., & Dell, G. S. (2002). Word‐form encoding in Mandarin Chinese as assessed by the implicit priming task. Journal of Memory and Language, 46(4), 751-781. |
[8] | Chen, J.‐Y., Lin, W.‐C., & Ferrand, L. (2003). Masked priming of the syllable in Mandarin Chinese speech production. Chinese Journal of Psychology, 45(1), 107-120. |
[9] | Chen, J.-Y., O'Séaghdha, P. G., & Chen, T.-M. (2016). The primacy of abstract syllables in Chinese word production. Journal of Experimental Psychology: Learning, Memory & Cognition, 42(5), 825-836. |
[10] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum. |
[11] | Damian, M. F., & Bowers, J. S. (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49(1), 119-132. |
[12] |
Damian, M. F., & Martin, R. C. (1999). Semantic and phonological codes interact in single word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(2), 345-361.
doi: 10.1037//0278-7393.25.2.345 URL pmid: 10093206 |
[13] |
Das, T., Padakannaya, P., Pugh, K. R., & Singh, N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. NeuroImage, 54(2), 1476-1487.
doi: 10.1016/j.neuroimage.2010.09.022 URL pmid: 20854914 |
[14] |
Dell, G. S. (1986). A spreading activation theory of retrieval in sentence production. Psychological Review, 93(3), 283-321.
URL pmid: 3749399 |
[15] |
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009 URL pmid: 15102499 |
[16] | Fabbro, F. (1999). The neurolinguistics of bilingualism. UK: Psychology Press. |
[17] |
Feng, C., Yue, Y., & Zhang, Q. F. (2019). Syllables are retrieved before segments in the spoken production of Mandarin Chinese: An ERP Study. Scientific reports, 9, 11773-11781.
doi: 10.1038/s41598-019-48033-3 URL pmid: 31409830 |
[18] |
Ferrand, L., Segui, J., & Grainger, J. (1996). Masked priming of word and picture naming: The role of syllabic units. Journal of Memory and Language, 35(5), 708-723.
doi: 10.1006/jmla.1996.0037 URL |
[19] |
Forster, K. I., & Davis, C. (1991). The density constraint on form-priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30(1), 1-25.
doi: 10.1016/0749-596X(91)90008-8 URL |
[20] |
Gollan, T. H., Sandoval, T., & Salmon, D. P. (2011). Cross-language intrusion errors in aging bilinguals reveal the link between executive control and language selection. Psychological Science, 22(9), 1155-1164.
doi: 10.1177/0956797611417002 URL pmid: 21775653 |
[21] |
Indefrey, P. (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255.
doi: 10.3389/fpsyg.2011.00255 URL pmid: 22016740 |
[22] |
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.
doi: 10.1016/j.cognition.2002.06.001 URL pmid: 15037128 |
[23] |
Jamal, N. I., Piche, A. W., Napoliello, E. M., Perfetti, C. A., & Eden, G. F. (2012). Neural basis of single-word reading in Spanish-English bilinguals. Human Brain Mapping, 33(1), 235-245.
doi: 10.1002/hbm.21208 URL pmid: 21391265 |
[24] | Katz, L., & Frost, R. (1992). The reading process is different for different orthographies: The orthographic depth hypothesis. In R. Frost & L. Katz (Eds.), Orthography, phonology, morphology, and meaning(pp. 45-66). Amsterdam: Elsevier. |
[25] |
Kinoshita, S., & Woollams, A. (2002). The masked onset priming effect in naming: Computation of phonology or speech planning? Memory & Cognition, 30, 237-245.
doi: 10.3758/bf03195284 URL pmid: 12035885 |
[26] |
Koenig, T., Kottlow, M., Stein, M., & Melie-García, L. (2011). Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Computational Intelligence and Neuroscience, 2011, 938925.
doi: 10.1155/2011/938925 URL pmid: 21403863 |
[27] |
Koenig, T., Stein, M., Grieder, M., & Kottlow, M. (2014). A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topography, 27, 72-83.
doi: 10.1007/s10548-013-0310-1 URL pmid: 23990321 |
[28] | Koukkou, M., & Lehmann, D. (1987). An information-processing perspective of psychophysiological measurements. Journal of Psychophysiology, 1(2), 109-112. |
[29] |
Laganaro, M. (2014). ERP topographic analyses from concept to articulation in word production studies. Frontiers in Psychology, 5, 493.
doi: 10.3389/fpsyg.2014.00493 URL pmid: 24904505 |
[30] |
Laganaro, M. (2017). Inter-study and inter-Individual consistency and variability of EEG/ERP microstate sequences in referential word production. Brain topography, 30, 785-796.
doi: 10.1007/s10548-017-0580-0 URL pmid: 28770364 |
[31] |
Lehmann, D., & Skrandies, W. (1984). Spatial analysis of evoked potentials in man-a review. Progress in neurobiology, 23(3), 227-250.
doi: 10.1016/0301-0082(84)90003-0 URL pmid: 6395186 |
[32] |
Lehmann, D., Strik, W. K., Henggeler, B., Koenig, T., & Koukkou, M. (1998). Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. International Journal of Psychophysiology, 29(1), 1-11.
doi: 10.1016/s0167-8760(97)00098-6 URL pmid: 9641243 |
[33] |
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1-75.
doi: 10.1017/s0140525x99001776 URL pmid: 11301520 |
[34] | Liberman, I. Y., Liberman, A. M., Mattingly, I. G., & Shankweiler, D. (1980). Orthography and the beginning reader. In J. Kavanaugh & R. Venezky (Eds.), Orthography, reading, and dyslexia, (pp. 81-101). Baltimore: University Park Press. |
[35] | Liu, H. S., & Cao, F. (2016). L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain and language, 159, 60-73. |
[36] |
Malouf, T., & Kinoshita, S. (2007). Masked onset priming effect for high-frequency words: Further support for the speech-planning account. The Quarterly Journal of Experimental Psychology, 60(8), 1155-1167.
URL pmid: 17654397 |
[37] |
Meyer, A. S., & Schriefers, H. (1991). Phonological facilitation in picture-word interference experiments: Effects of stimulus onset asynchrony and types of interfering stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(6), 1146-1160.
doi: 10.1037/0278-7393.17.6.1146 URL |
[38] |
Michel, C. M., Thut, G., Morand, S., Khateb, A., Pegna, A. J., de Peralta, R. G., … Landis, T. (2001). Electric source imaging of human brain functions. Brain Research Reviews, 36(2-3), 108-118.
doi: 10.1016/s0165-0173(01)00086-8 URL pmid: 11690607 |
[39] | Misra, M., Guo, T. M., Bobb, S. C., & Kroll, J. F. (2012). When bilinguals choose a single word to speak: Electrophysiological evidence for inhibition of the native language. Journal of Memory & Language, 67(1), 224-237. |
[40] |
Murray, M. M., Brunet, D., & Michel, C. M. (2008). Topographic ERP analyses: A step-by-step tutorial review. Brain topography, 20, 249-264.
doi: 10.1007/s10548-008-0054-5 URL pmid: 18347966 |
[41] |
Nakayama, M., Kinoshita, S., & Verdonschot, R. G. (2016). The emergence of a phoneme-sized units in L2 speech production: Evidence from Japanese-English bilinguals. Frontiers in Psychology, 7, 175.
doi: 10.3389/fpsyg.2016.00175 URL pmid: 26941669 |
[42] | Nelson, J. R., Liu, Y., Fiez, J., & Perfetti, C. A. (2009). Assimilation and accommodation patterns in ventral occipitotemporal cortex in learning a second writing system. Human Brain Mapping, 30(3), 810-820. |
[43] |
O’Seaghdha, P. G., Chen, J.-Y., Chen, T.-M. (2010). Proximate units in word production: Phonological encoding begins with syllables in Mandarin Chinese but with segments in English. Cognition, 115(2), 282-302.
doi: 10.1016/j.cognition.2010.01.001 URL pmid: 20149354 |
[44] | O’Seaghdha, P. G., Chen, J.-Y., & Chen, T.-M. (2013). Close but not proximate: The significance of phonological segments in speaking depends on their functional engagement. Proceedings of the National Academy of Sciences of the Unitsed States of America, 110(1), E3. |
[45] |
Paulesu, E., McCrory, E., Fazio, F., Menoncello, L., Brunswick, N., Cappa, S. F., … Frith, U. (2000). A cultural effect on brain function. Nature Neuroscience, 3, 91-96.
doi: 10.1038/71163 URL pmid: 10607401 |
[46] | Perfetti, C. A., Liu, Y., Fiez, J., Nelson, J., Bolger, D. J., & Tan, L. H. (2007). Reading in two writing systems: Accommodation and assimilation of the brain's reading network. Bilingualism: Language and Cognition, 10(2), 131-146. |
[47] | Qu, Q. Q., Damian, M. F., & Kazanina, N. (2012). Sound-sized segments are significant for Mandarin speakers. Proceedings of the National Academy of Sciences of the Unitsed States of America, 109(35), 14265-14270. |
[48] | R Development Core Team. (2009). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. |
[49] |
Roelofs, A. (2014). A dorsal-pathway account of aphasic language production: The WEAVER++/ARC model. Cortex, 59, 33-48.
doi: 10.1016/j.cortex.2014.07.001 URL pmid: 25128898 |
[50] | Roelofs, A. (2015). Modeling of phonological encoding in spoken word production: From Germanic languages to Mandarin Chinese and Japanese. Japanese Psychological Research, 57(1), 22-37. |
[51] |
Schiller, N. O. (2008). The masked onset priming effect in picture naming. Cognition, 106(2), 952-962.
URL pmid: 17442296 |
[52] | Schriefers, H., Meyer, A. S., & Levelt, W. J. M. (1990). Exploring the time course of lexical access in language production: Picture-word interference studies. Journal of Memory and Language, 29(1), 86-102. |
[53] | Snodgrass, J. C., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174-215. |
[54] | Sun, Y. F., Peng, D. L., Ding, G. S., Qi, T., Desroches, A. S., & Liu, L. (2015). The dynamic nature of assimilation and accommodation procedures in the brains of Chinese-English and English-Chinese bilinguals. Human Brain Mapping, 36(10), 4144-4157. |
[55] |
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2010). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83-91.
URL pmid: 15846817 |
[56] | Tian, M. Y., Chen, B. G., Yang, H. Y., & Bi, H. Y. (2019). Chinese phonological consistency effect in native and second language learners of Chinese: An fMRI study. Journal of Neurolinguistics, 49, 202-213. |
[57] |
Timmer, K., Ganushchak, L. Y., Ceusters, I., & Schiller, N. O. (2014). Second language phonology influences first language word naming. Brain and Language, 133, 14-25.
URL pmid: 24735994 |
[58] |
Timmer, K., & Schiller, N. O. (2012). The role of orthography and phonology in English: An ERP study on first and second language reading aloud. Brain Research, 1483, 39-53.
doi: 10.1016/j.brainres.2012.09.004 URL pmid: 22975434 |
[59] |
Verdonschot, R. G., Nakayama, M., Zhang, Q. F., Tamaoka, K., & Schiller, N. O. (2013). The proximate phonological units of Chinese-English bilinguals: Proficiency matters. PLoS One, 8(4), e61454.
doi: 10.1371/journal.pone.0061454 URL pmid: 23646107 |
[60] | Wang, H., Liu, J., & Chang, B. R. (1986). Modern Chinese frequency dictionary. Beijing, China: Beijing Language Institute Publisher. |
[61] |
Wang, J., Wong, A. W.-K., & Chen, H.-C. (2017). Time course of syllabic and sub-syllabic processing in mandarin word production: Evidence from the picture-word interference paradigm. Psychonomic Bulletin & Review, 25(3), 1147-1152.
URL pmid: 28585056 |
[62] |
Wang, J., Wong, A. W.-K., Wang, S. P., & Chen, H.-C. (2017). Primary phonological planning units in spoken word production are language-specific: Evidence from an ERP study. Scientific Reports, 7(1), 5815.
URL pmid: 28724982 |
[63] |
Wang, L., Bastiaansen, M., Yang, Y. F., & Hagoort, P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49(5), 813-820.
doi: 10.1016/j.neuropsychologia.2010.12.035 URL pmid: 21195102 |
[64] | Wang, X. X. (2013). Phonological Facilitation in Mandarin Word Production: Evidence from Tibetan-Chinese Bilinguals. Unpublished master’s thesis, Hebei Normal University. |
[65] |
Wang, Y., Jongman, A., & Sereno, J. A. (2001). Dichotic perception of mandarin tones by Chinese and American listeners. Brain and Language, 78(3), 332-348.
doi: 10.1006/brln.2001.2474 URL pmid: 11703061 |
[66] |
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). FMRI evidence for cortical modification during learning of mandarin lexical tone. Journal of Cognitive Neuroscience, 15(7), 1019-1027.
doi: 10.1162/089892903770007407 URL pmid: 14614812 |
[67] | Wong, A. W.-K., & Chen, H.-C. (2008). Processing segmental and prosodic information in Cantonese word production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(5), 1172-1190. |
[68] |
Wong, A. W.-K., & Chen, H.-C. (2009). What are effective phonological units in Cantonese spoken word planning? Psychonomic Bulletin & Review, 16, 888-892.
URL pmid: 19815794 |
[69] |
Wong, A. W.-K., Huang., J, & Chen, H.-C. (2012). Phonological units in spoken word production: Insights from Cantonese. PLoS One, 7(11), e48776.
URL pmid: 23144965 |
[70] |
Wong, A. W.-K., Wang, J., Wong, S.-S., & Chen, H.-C. (2018). Syllable retrieval precedes sub-syllabic encoding in Cantonese spoken word production. PLoS One, 13(11), e0207617.
doi: 10.1371/journal.pone.0207617 URL pmid: 30458036 |
[71] | Yekutieli, D., & Benjamini, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82(1-2), 171-196. |
[72] |
You, W. P., Zhang, Q. F., & Verdonschot, R. G. (2012). Masked syllable priming effects in word and picture naming in Chinese. PLoS One, 7(10), e46595.
doi: 10.1371/journal.pone.0046595 URL pmid: 23056360 |
[73] |
Yu, M. X., Mo, C., & Mo, L. (2014). The role of phoneme in Mandarin Chinese Production: Evidence from ERPs. PLoS One, 9(9), e106486.
URL pmid: 25191857 |
[74] |
Yue, Y., & Zhang, Q. F. (2015). Syllable and segments effects in Mandarin Chinese spoken word production. Acta Psychologica Sinica, 47(3), 319-328.
doi: 10.3724/SP.J.1041.2015.00319 URL |
[75] | Zhang, K. (2004). Some problems in HSK grading. Chinese Teaching in the World,(1), 71-80. |
[76] |
Zhang,, Q. F., & Damian,, M. F. (2019). Syllables constitute proximate units for Mandarin speakers: Electrophysiological evidence from a masked priming task. Psychophysiology, 56(4), e13317.
URL pmid: 30657602 |
[77] |
Zhang, Q. F., Damian, M. F., & Yang, Y. F. (2007). Electrophysiological estimates of the time course of tonal and orthographic encoding in Chinese speech production. Brain Research, 1184, 234-244.
doi: 10.1016/j.brainres.2007.09.067 URL pmid: 17964559 |
[78] | Zhang, Q. F., & Wang, X. J. (2020). Primary phonological planning units in Chinese spoken word production: Evidence from an ERP study with implicit priming paradigm. Acta Psychologica Sinica, 52(4), 414-425. |
[79] | Zhang, Q. F., & Yang, Y. F. (2003). The determiners of picture-naming latency. Acta Psychologica Sinica, 35(4), 447-454. |
[80] | Zhang, Q,F., & Yang, Y. F. (2005). The phonological planning units in Chinese monosyllabic word production. Journal of Psychological Science, 28(2), 374-378. |
[81] |
Zhang, Q. F., & Zhu, X. B. (2011). The temporal and spatial features of segmental and suprasegmental encoding during implicit picture naming: An event-related potential study. Neuropsychologia, 49(14), 3813-382.
URL pmid: 21986294 |
[82] |
Zhao, J., Li, Q. L., Wang, J. J., Yang, Y., Deng, Y., & Bi, H. Y. (2012). Neural basis of phonological processing in second language reading: An fMRI study of Chinese regularity effect. Neuroimage, 60(1), 419-425.
URL pmid: 22245646 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||